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We use the Weyl quantization W in a general context valid for any finite-dimensional Lie algebra G, to
derive an explicit formula for (P, )= W ~((W(P)), W(P,)]), P\, P, polynomials. In the particular case of
the Heisenberg Lie algebra, this formula reduces to the familiar Moyal bracket.

1. THE VON NEUMANN QUANTIZATION

Let G be a complex Lie algebra with commutation
relations [4,,4,] =i3,c%,A,, in a given basis {A 1
Its symmetric algebra S, isomorphic to the polynomial
ring €la,, . . ., a,) in n commuting variables {a },
admits a Poisson structure! defined by the Poisson
brackets:
0P, 0P,

{P, Bot= 2 cljay 5222
iidek

ij ”aa‘ aa, ’ P17P2(:S'

On the other hand, the universal enveloping algebra® U
of G includes all (noncommutative) polynomials in the
elements of G, and has natural Lie algebra structure
given by

[, v]=uv —vu, u,ve U.

Suppose a quantization rule a;—~A4;, j=1,...,n, is
fixed, Following von Neumann,? we are interested in
finding all algebraic quantization prescriptions
compatible with it, in the following sense:

Definition 1: A linear map p:S— U, defined on S is
said to be a von Neumann G-quantization if and only if

() pla)=A4; v
() p(P)=((P)", VPcS, wmeN,

It turns out, however, that these requirements are in-
compatible. Therefore, as it will be explicitly shown
below, a given Lie algebra G does not necessarily admit
any such quantization.. In particular it is so for the
Heisenberg Lie algebra {P, @,1}.

It is because we propose a weaker version of von
Neumann notion:

Definition 2: A linear map ¢:S— U, defined on S will
be called a weak von Neumann G-quantization for G if
and only if it verifies

O((Z.:Siaj)m):(z.;ngj)m’ ng (519 crry &,,)f—? c".

Proposition 1: For a given G there exists a unique
weak von Neumann G-quantization. Furthermore, it is
characterized by the symmetrization:

1 «—
aj”) - ;'_ %/Ajar(l)

@®

ola. a, ++-  eiep.
(ahafz Tr(2) A"w(r)’

where the summation runs over all permutations = of
7 objects.

Proof: 1t is easily verified that (1) defines a weak
von Neumann G-quantization. Uniqueness follows
from the fact that every polynomial Pq,,...,q,) can
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be written as a linear combination of terms of the form

S, £,a)™ (QED).

We are already in a position to prove that the
Heisenberg Lie algebra G,={a,,4,,A.}, |A;,4,]=i4,,
LAl,A3]= [AZ,AS]:O, does not admit any G-quantization
of the type included in Definition 1. In fact, as a simple
calculation shows,

o(a2a2) =A2A? + 21A A,A, — 3A2=(0(a,a,))* — AL,

2. THE WEYL QUANTIZATION

At this point we make some useful notation
conventions:

a=(a,,...,0)e N, al=ala,l---0q,!, |a|Da,
J
EA=DE A, ESENES g, VEE T,

alal / al(ﬂ

8E™ ~ BEfIOED

8%

As it is well known® U= @ _U™, where U™ stands for
the linear subspace of U generated by the elements
0(a®), lal=m. Let us consider the set U* of all formal
series in the 0(g®). As a typical example we quote

© im Hal
eM4= Lt =T Ly £%0(a®), Ee R ()

The underlying idea in what follows is to use the
right-hand side expression in order to freely manipulate
the coefficients without interference of the noncommu-
tative part o(¢®). Thus, given a set of complex-valued
functions F,: R"—C, ac N", we define an associated
map:

F:R"— U*, F(£)=2F (£)o(a%),

which assigns to each point £ ¢ R” a formal series in
U*, Furthermore, if our F_, are good enough, we can
apply tempered distributions 7 to get

(T, Fy=2(T, F ,)o(a®). (3)

This produces a formal series with complex coefficients.
It is in this context that Weyl quantization? makes
sense:

Definition 3: W:S— U, W(P)=(2x)"/2 (13, ety Pe S,
where P(£)={27) /%[ P(a)e %% dq is the Fourier trans-
form of P. But since P was a polynomial, P is a finite
order distribution with point support £ =0. Therefore,
W(P)=(2m) ™23, ('*/ a 1)(P, £ *)0(a®) e U [observe that
W(P) is nothing but a polynomial in the 4,].
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Proposition 2: W(P)=0(P), ¥Pc S,

Proof: From the familiar properties of Fourier
transform,

aa(g) :(211)"/21:'“] %_g_al 5(5)’

we conclude that

W(aa) Ezlalwlﬂl _(_%_ <6(£), ag

Hence W=o0on S, by linearity (QED).

B> o(a®) = 0(a®).

3. CONVOLUTION VERSUS QUANTIZATION

Since 0:S— U is a bijective map, ? the element

P, x P,=0(0(P)o(P,)), P,,P,cS, 4

is well defined in S. The formal analogy between (4)
and the convolution product f*g=7"*(/f- 7g) in
Fourier theory is obvious, and as a matter of fact.it
will be made explicit in what follows.

Proposition 3:

(P, x P)a)=e"" V" iV P (¢’ ) Pyla”

a’=q*=zq

where V' =8/9a’, V" =3/8a", and 7(£,n)=Ar(E,n) = £ -7
denotes the nonlinear part of the exponent in the Baker—
Hausdorff—Campbell® formula: et4gind = gi*t:m4,

Remark: Since P,, P, are polynomials, the right-
hand side in the previous formula has a finite number of
terms, so it is also a polynomial.

Proof:
o(P,)o(P,) = W(P) W(P,) = (2n)™(P,(£) B,(n), et :m4)

lal
= (2m)" 2 T (BE) Pylm), n(e, m)o(a®).

By expressing A%(¢,n) =21 (g, Ag2(g,n) - - - a3n(E, 1) as
a (finite) Taylor series relative to the point ¢ +7, we
obtain

181y a
A (E,m) = Z (a—;%—

)TB(E,n)-
pEYZS]

Thus we can write

o(P,)o(P,) —(2n)-"/2L Daﬂc(a ) (5)
where
D 4= 2m)™/ 2(r8(&,n) Py (£) Py(n), Loyl +1)),
L ( )'_ aIBI)\a
E TN |

In order to calculate D, we only need to recall the
analycity of 7 at the origin, ® let us say

HE M = 20 tguanE¥M*”

o,

and some well-known properties of the Fourier
transform:
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Dae — (27,)-"/ 2
KD turar (BTN BN, L +1)

= Z t(x’a“ <(t@) * (i@"), Lag)

afy o

= 20 ltguqw G P(@ )GV ¥ Py(a") | yusn o) s Lag)

a’, o

= <(TB(iV', iv”)Pl(a')Pg(a") la'm":q )’(E )1 Laﬁ(g))
=i 8((aB7P(iV", i97) P, (@) Po(a”) | yuaraa) (£), E%).

By substituting in (5) we get
o(P,)o(P,)
-"/22 2'|al
=@m™t L o

X <(eia‘r(iV'. ive ’Pl(a’)Pz(a") la':a"=a)‘(£))’ £ *g(a®)

= (47747 Py (a) Pyla”) | graga) (£), €44)
= o(ela'r(lV:,iV" )Pl(a’)Pz(a”) ‘a':a" =a).

The rest of the proof is trivial (QED).

We will now define a new Lie structure on the sym-
metric algebra S as follows, If P,, P, are elements in
S, also (P, P,)=P, x P,~ P, x P c S, and has the follow-
ing properties:

(1) (P, P)=0(o(P)), o(P,)]),

2 (Py, Pz):"' (PZ’P].)’

(3) (P“RPz +U'P3)=)\(P1, Pz) +IJ-(P1, Pa);

(4) (Ply (PZ’ Pa))"'(Pz, (P3y Pl» +(P3y (PU Pz))=0.
Finally, by making use of the Proposition 3, we have
the explicit formula

(P,, P,) = (eleTiv%iv") _ plaTGV"i™) p (41} P, (o” )l

a’=a* =g

(6)

4. THE CANONICAL EXAMPLE

Let G4 be the Heisenberg Lie algebra. In this particu-
lar case we find:

Me,m) =&, 0y, 8y 4y E5 05 +
and thus

7(¢,m=1(0,0, %(52711 - 51712))'
The formula (6) gives us the result

_ ay [ 8° 92 ]
(P Fy) = (e"p [1 2 <3a{8a2 3dioar

—expli & (~—az—— L)])P (a’) Py(a”)
2 \2a’dal 9ajd ! z

= G2 9 o3 , ”
_Zz(sm 3 (a T 3ar " T aﬁ))P (@) Pyla™)

In quantum mechanics, where a,=gq, a,=p, a;=Hh,
this reads as follows:

%(527’1 ~ £,7,))

a‘za’ =a

a’z=a' =q
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(Py, P,)g, p) P, PYg,py=in(E 2B _ B3R\ _pip by
nfo a 8 9 ¢ 3p 9P 3q
=2 (smi (517 ap” ~ aq” W)) where {P,, P,} is the familiar Poisson bracket.
XP (g, PYPAG" s p") | reqrinq -
p=pap

This is identical with the well-known expression ob-

tained by Moyal, ® which can also be written in the form IM. Vergne, Bull, Soc. Math. France 100, 301 (1972).
2J. Dixmier, Algébres enveloppantes (Gauthiers-Villars,
(Pu Pz)(q, P) Paris, 1974).
- 2mel - - - - 3J. von Neumann, Mthematische Begrindung der
-9 2 i) <E> (-1) d P i P, Quantenmechanik (Springer-Verlag, Berlin, 1932).
woo a0 \ 2 Bl1@2n-k+1)! 3ptag™i™® agtap?™it” ‘H. Weyl Gruppentheorie und Quantenmechanik Hirzel-
Verlag, Léipzig, 1928).
One easily sees that if one (or both) of the polynomials 5N. Jacobson, Lie algebvas (Interscience, New York, 1962),
P,, P, have degrees <3, then 8J.E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
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We consider scattering by screened Coulomb and screened short-range potentials. We prove, in Born

approximation, that the cross section for a sharply cutoff Coulomb potential does not converge to the
Rutherford cross section as the screening radius p—co. On the other hand, for certain *“smooth” screening
functions we show that the screened Coulomb cross section does approach the Rutherford cross section as
p—oo. In the case of short-range potentials, we prove (exactly, not just in Born approximation) that the
screened cross section approaches the unscreened cross section as p— o, whether the screening function is

smooth or not.

1. INTRODUCTION

In this paper we discuss scattering cross sections
for screened potentials and examine the limits of these
cross sections as the screening radius p tends to in-
finity. The main interest in screened potentials derives
from the well-known difficulties in the scattering theory
of the Coulomb, and other long-range, potentials,
While none of the standard methods of time dependent
scattering theory apply to the Coulomb potential

V('V) = 'V/V;

the same methods do apply to a screened Coulomb
potential

Vp('V) = (y/T)CYp(V),

where Otp(r) is some function which goes to zero with »
in a distance of order p. It is natural to hope that the
differential cross section computed for the screened
potential V, would converge to a limit as p—~ « and that
this limit would be the differential cross section for the
pure Coulomb potential (1.1).

(1.1)

(1.2)

The idea of using screened Coulomb potentials is,
of course, an old one. It dates back at least to the 1928
paper of Gordon, ' and is described in several text
books.?* Nonetheless, it is only in the last few years
that it has been carefully studied.*™®

In two recent papers®® we have established some re-
sults for a wide class of screening functions @,(»). We
considered functions «,(r) that satisfy

QD(O) = 1,,

a,(r)—~0 monotonically like o(r=2) (1.3)
as p— < (7 fixed), )

a(r)~1 asr—=(p fixed).

We examined the scattering probability
Wp(dQ e ‘b)

that a particle incident on V,, with in state given by the
momentum-space wavefunction ¢(p), be scattered into
a small solid angle d€2. Provided ¢(p) is infinitely
differentiable’® and d©? does not include the forward
direction, ‘* we were able to show that

LM W,(dQ ~ ¢) = Weo,(dQ ~ ¢)
P

where W_,,,(dQ2 — ¢) denotes the probability for scatter-
ing of ¢ into d? computed using the conventional
Coulomb amplitude

(1.4)
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fCoul =7 exp{21 arg[r(l +27)]}

xexp[-iyin sin®(0/2)]/2 sin®(6/2). (1.5)

The result (1.4) goes a long way toward justifying
the ideas of the first paragraph. Unfortunately, it does
not itself quite prove that the cross section of the
screened potential V, approaches the Coulomb cross
section as p—~ ., In (1.4), W, (dQ — ¢) is the probability
of scattering off V, for a fixed wavepacket ¢. Now the
definition of the cross section involves a large number
of collisions with many different wavepackets. Specifi-
cally, if ¢, denotes a wavepacket obtained from ¢ by
rigid displacement through an “impact parameter” b,
then the cross section for scattering into df? is defined
asl3

oA — )= [ d®bW (dQ — dy), (1.6)

where the integral over impact parameters b runs over
the plane perpendicular to the incident direction.
Similarly,

Ocould— @)= [ d*bW¢ 0 (A2~ §). 1.7

The result we would like to prove is that the screened

cross section ¢, approaches o¢,,, as p— «,
1m0, (dS2 = ¢) = 0cou(dR ~ ¢). (1.8)

Clearly this follows from (1.4) provided we can inter-

change the order of the two limiting processes of inte-
grating over b in (1. 6) and letting p— .

Unfortunately, we have been unable to prove that the
necessary interchange of limits is justified; and we
have, in fact, found fairly compelling evidence that it
is not justified for certain screening functions a(r).
In Sec. 2 we examine the sharply cut-off Coulomb
potential

Vp(V) =y/7,

r<p,
¥ >p,

that is, we take a,(7)=6(p - 7) [which obviously satisfies
the conditions (1.3)]. We show that the cross section

0, in Born approximation does not converge to o¢,,; as
p— . In fact

%‘Egmp(dﬂ — ) =300,,(d2 — O). (1.9)

We shall show that the additional scattering off V, is
caused by the discontinuity in the potential at » =p.
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However large we make p, this discontinuity causes an
appreciable scattering of those packets with impact
parameters b of the order of p. This scattering off the
discontinuity contributes precisely the unwanted éocm
in (1.9).

1t is perhaps not particularly surprising that a sharp
screening of the Coulomb potential leads to difficulties,
and one might well guess that the desired result (1. 8)
would hold only when the screening function a(7) is
reasonably smooth.. We have been unable to prove this
result. However, we do show that the result (1. 8) holds
in Born approximation, provided the screening function
'a,(r) has a derivative whose total variation tends to
zero as p— «. This condition excludes the sharp cutoff
[for which @)(7) = - (p - 7)] but includes any
“reasonable, ” smooth screening function such as
exp(-7/p) or exp{—-7*/p?).

In view of these difficulties with screened Coulomb
potentials it is interesting to consider some of the same
questions for screened short-range potentials. In parti-
cular, if V is a short-range potential {which we define
by the condition V=0(r"2"¢) as r— «] and if

V. (r) = V(r)a,(v),

then we can ask whether the cross section o, for V,
approaches that for V as p— «,

Dollard** has shown that the scattering operator S, for
V, converges strongly to the scattering operator S for V
as p— «. !5 From this one can deduce that the scattering
probabilities W,(dS2 — ¢) and W(dSt — ¢) are equal in the
limit that p— «. But, just as in the Coulomb case, this
does not settle the corresponding question for the cross
sections. In Sec. 3, we consider a class of screening
functions that includes all those of (1.3). (Note that this
includes sharp cutoffs.) We show that, as p— «, the
scattering probability W, (dQ ~ ¢), the scattering ampli-
tude f,, and the cross section o,(d — ¢) for the
screened potential V, all converge to the corresponding
quantities, W, 7, and g, for the unscreened V.

2. SCREENED COULOMB SCATTERING IN BORN
APPROXIMATION

In this section we consider the cross sections for
screened Coulomb potentials, using amplitudes com-
puted in Born approximation. We show that for the
sharply cutoff Coulomb potential

V(r)=(y/7)6(p —7) (2.1)

the cross section ¢, does nof converge to 0,,, as p— «,
the difference being accounted for by particles that are
scattered by the discontinuity at » =p. On the other
hand, we show that for smooth screening functions
(which we shall define as functions with derivatives
whose total variation goes to zero as p— «) the screened
cross section does converge t0 0¢,,; a8 p— ©,

It would, of course, be better to prove these results
for the exact cross sections (rather than those computed
in Born approximation), and it is unfortunate that we
have so far failed to do this. Nevertheless, the Born
results are presumably reliable for potentials that are
sufficiently weak. In particular, the result that the
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cross section o, for the sharp cutoff does not converge
to 0., in Born approximation suggests that the same
must surely be true in the exact case as well.

For any given target potential the cross section for
scattering a packet of shape ¢ into a solid angle d< is
defined as the integral over impact parameters b

o(d2 — ¢) = [ dWAR — b,), (2.2)

where W(dQ ~— ¢,) is the probability that the incident
packet ¢,, with impact parameter b, be scattered into
d). It has been shown'® that this integral is certainly
convergent if (i) the potential is O(r3"%) as » - « (this
is the case with all of our screened potentials), (ii) the
packet ¢(p) is infinitely differentiable with compact sup-
port contained in the forward half-space p, >0 (we take
the incident mean momentum p, to lie along the z axis),
(iii) the direction of observation, defined by d2, does
not overlap the forward cone, defined by ¢(p). We
assume that these conditions are satisfied, V’

The cross section defined by (2.2) can be written in
a more familiar form: The probability W is written in
terms of the scattered wavefunction, and the latter is
written in terms of the amplitude f and incident packet
¢. Standard manipulations (Ref. 3, pp. 49—51) then
give the result

old~ ¢)=a [ @p(p/p,)| F(pu—plo()|?,

where u is a unit vector in the direction of observation.

(2.3)

For normal short range potentials under ordinary
conditions, the factors p/p, and f(pu-p) in (2.3) are
essentially constant in the region where ¢(p) is non-
zero. Thus both factors can be taken outside the inte-
gral, with p replaced by p,. The remaining integral
is the normalization integral for ¢ and the cross sec-
tion reduces to the familiar d2| f(p,u~p,)!%. In our
case, we shall be using (2.3) with the screened ampli-
tude f,, and we shall need to be more careful since f,
may oscillate very rapidly when the screening radius
p is large. However, we may remark here that in some
cases (for example, in the Born approximation for a
smoothly screened Coulomb potential) it can happen
that, as p— «, f, approaches f.,,, uniformly for all p in
the region of integration in (2.3). In these cases, it im-
mediately follows from (2. 3) that o, approaches o,
as p—oo,

The shavp cutoff: We consider first the sharply cut-
off Coulomb potential (2. 1) for which the amplitude (in
Born approximation) is known to be

P’ = p)=-2my/¢*)1 - cosqp), (2.4)

where g is the magnitude of the momentum transfer
q=p’-p. Since the Coulomb amplitude (in Born
approximation) is

fCoul(p"_p):_zm'y/qz, (2-5)
we can write
fo= feou(l —cosgp), (2.6)

displaying the well-known fact that the amplitude f, for
the sharply cutoff Coulomb potential is equal to the
Coulomb amplitude plus a term proportional to cosgp,
which oscillates more and more rapidly as p— «. As
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emphasized in Ref. 8, if we consider f, as a distribu-
tion, then this second term goes to zero as p— «,
However, to compute the cross section (2.3), we must
examine

| 5,0’ = D) 2= | feom(P’ =P} *(1 =2 cosgp +cos?gp).
2.7

When this is inserted into (2.3), we obtain three terms.
The first term alone gives exactly the Coulomb cross
section. The second contains the factor cosgp in its
integrand; this factor oscillates more and more rapidly
as p grows, and, by the Riemann~Lebesque lemma,
the integral goes to zero as p— «. The third term also
contains an oscillating factor, cos?qp, in its integrand;
unfortunately, cos®gp oscillates about the average value
3. Thus as p— « the third integral contributes 3o¢,,,,
and the complete cross section therefore approaches

Limo (dQ +~ ¢) =304, (d2— ¢). (2.8)

That is, the cross section for the sharply cut-off
Coulomb potential does not approach that for the pure
Coulomb as p-— «©, We shall return to examine the ori-
gin of the extra 0., on the right of (2.8). First we
consider the cross section for a smoothly screened
Coulomb potential.

Smooth screening functions: Let us now consider a
smoothly screened Coulomb potential

V. (r)=(y/7)alr),

where a,(7) satisfies the three conditions (1.3) and in
addition is diffeventiable with a derivative a(») which
is of bounded variation on [0, =) and whose total varia-
tion tends to zero as p— «.*® As mentioned in the
Introduction, these conditions exclude the sharp cutoff
a{r)=6(p - 7) but admit, for example, an exponential
screening @,(7) =exp(-7/p) or a Gaussian screening
exp(-7*/p*).

The amplitude for V, (in Born approximation) is

fAp’—p)=~(2my/q) [~ drsingr a(7)

Since a,(r) is differentiable, we can integrate by parts
to give
£ = p)=—@my/g?) (1 + [T drcosqr a,(r)]
= fCoul + 6f;

where
8 (p’ —p) = = (2my/q") [ dv cosqr a)r).

Since a/(¥) is a function of bounded variation, it can be
written as the difference of two positive, bounded,
monotonically decreasing functions p,(#) and v,(r). The
expression for 6/ can then be bounded using the second
mean value theorem as follows:

|67 (@’ ~p)| < @m|¥]/q®) [1,(0) +,(0)]
XSgp] fOR dr cosqr]
< (@m|y|/q% [1,(0) +v,(0)].

Under the stated conditions both terms in the braces go
to zero as p— =, Therefore, the right-hand side of
(2.9) tends to zero, uniformly for all p and p’ in any
compact regions that do not overlap (i.e., such that

(2.9)
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p’#p). As we have already mentioned in connection with
(2. 3) this immediately guarantees the desired result,
that

]‘;lglop(dn s ¢>) = OCoul(dS2 e ¢))

Behavior of the scatteved wave from a sharp cutoff:
To understand better why the cross section o, for a
sharply cut-off Coulomb potential does not approach
Tcoul 25 p— o, let us examine the scattered wave
=(S-1)¢ corresponding to an incident wave ¢, with im-
pact parameter b:

b, olP) = (i/2mm) | d°’ B(E = E") f,{p=— p") exp(~ib - p’) &{p)-
(2.10)

Note that this depends on p, the radius at which the
potential is cutoff, and b, the impact parameter of the
incident wavepacket. If we insert the expression (2. 6)
for the amplitude f,, then we can write

B, 5(0) = Y5 (P) + 8y, (D).

The first term here is exactly the scattered wave one
would compute using the Coulomb amplitude (in Born
approximation) and is independent of the screening
radius p. The second term,

53,,up) = (iy/m [ &’ 6(E ~E") g cosgpexp(-ib-p’) d(p),
(2.12)

(2.11)

is, of course, the source of our difficulties.

From the scattered wave (2.11) we can compute the
scattering probabilities W, (dQ — ¢,), and using the
latter we can compute the cross section (2.2)

o (A — ¢)=d [ d°b [~ p*dp
x{[ggeet|® +2Revg 60k, + | 09, |} (2.13)

It is easily checked that the Coulomb scattered wave
pe! falls off faster than any inverse power of the im~
pact parameter b, Thus the first term in (2.13) is con-
vergent, yields precisely the Coulomb cross section,
and has its main contribution from small impact
parameters b.

To discuss the second and third terms in the cross
section (2.13), we must examine the extra piece 8} of
the scattered wave, as given by (2.12), If we take any
fixed cutoff radius p, then &y, , goes rapidly to zero as
b — «, because of the oscillatory factor exp{—b-p’} in
the integrand. This guarantees that, for fixed p, the
cross section (2.13) is finite, just as we would expect,
However, as we make the screening radius p larger the
factor cosgp in (2.12) also oscillates rapidly. Thus,
however large we make p, we can expect that for cer-
tain impact parameters b, with b =p, the integrand will
not oscillate at all and the scattered wave &), , will be
appreciable. This suggests that, however large p, the
extra term &y, , may contribute to the cross section,
and that, the larger p, the larger the impact parame-
ters b at which this contribution will occur.

To make these conclusions precise, one can analyze
the integral (2.12) by the method of stationary phases.
The conclusions of such an analysis can be briefly
stated as follows'!: The integral (2.12) runs over the
small neighborhood of the incident mean momentum p,
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FIG. 1. The two values of the impact parameter b for which
there is appreciable scattering off the discontinuity at »=p in
the cutoff potential, Note that in both cases 6,=0,, and the

Po

scattering is classical specular reflection off the discontinuity.

where ¢(p) is nonzero, and for most values of b the
integrand has no stationary point inside the region of
integration. As p— « these values of b make no contri-
bution to the cross section. On the other hand, for a
certain small range of impact parameters b there is a
stationary point of the integrand inside the region of
integration, and when b is in this small range, 6y, , is
not negligible however large we make p. The values of
b for which this occurs can be found most easily by
evaluating 8y in Cartesian coordinates with p, as z
axis, The result is that there is appreciable scattering
when b is in the immediate neighborhood of either of the
two points such that

b is coplanar with p and p,,

b= pcosy/2, (2.14)
where 6 is the scattering angle (the angle between p and
Po). These two values of b are illustrated in Fig. 1.
Some simple geometry shows that the conditions (2.14)
imply that a classical particle incident in the direction
of p, with impact parameter b undergoes specular re-
flection at one of the two discontinuities and emerges
in the direction of observation p.

The important point about the conditions (2.14) is
that, however large we make the cutoff radius p, there
are always two values of the impact parameter b that
satisfy the conditions. And the larger we make p, the
larger the corresponding values of b. We can evaluate
the contribution to the cross section (2.13) of this scat-
tering, using the stationary-phase method to write down
81,y in the relevant regions. The results of this rather
tedious calculation are as follows: First, the second
term in (2.13) makes no contribution to 0, as p— .
(This is because y°™! is appreciable only when b is
small, while 83 is appreciable only when b is close to
pcos6/2.) Second, the last term in (2.13) picks up an
appreciable contribution to o, only from those b in the
neighborhoods of the values in (2.14), and the contribu-
tion from each of these two neighborhoods is exactly
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40cou (in the limit that p— «). Since the first term in
(2.13) is already equal to 0g,,;, we conclude that the
complete cross section for large screening radius is

Lmo,(dQ — ¢) =30c,n(d2 — ¢)
as already derived by a different method,

To summarize: We have proved the following results
in Born approximation. The cross section o, for the
sharply cutoff Coulomb potential does not approach the
pure Coulomb cross section however large we make the
cutoff radius p. The scattering of packets with small
impact parameters b contributes exactly o, ; but the
specular reflection off the discontinuity of those packets
with b near pcosé/2 contributes a further unwanted
+0cou- This second term is not present for smoothly
screened Coulomb potentials, and for such potentials
¢, does approach 0¢,,; aS p— «.

3. SCREENED SHORT RANGE POTENTIALS

We next consider a short-range, central potential
V(r) satisfying

Vir)=0(r3"*) as r— o,
V(r)=0(r?*) asr—w,

V(») piecewise continuous for 0 <7 <,

(3.1)

We define the screened potential
V()= V(7) a,(7),
where we now require only that
a,(0)=1,
a,(r)~ 0 monotonically as -« (with p fixed)
{(with # fixed).
(3.2)

We shall prove that as p— « the exact cross section ¢,
for V, converges to the exact cross section o for V,
191_n_;c,,(d9~ &) =0(d2— ¢) (3.3)

We should perhaps emphasize that in this section we
work with the exact cross sections, not just those of the
Born approximation.

ap(r)_. las p—w

Some comments on our assumptions are in order.
Our result can actually be proved for nonspherical
potentials, but the proof is more complicated and needs
some additional technical assumptions on the poten-
tials. '® For simplicity, therefore, we confine attention
here to central potentials. Concerning the screening
function a,(7) it will be seen that we require somewhat
less than the conditions {1.3) used in the Coulomb case,
In the Coulomb case we had to require that o (r) be
O(r*¢) as 7 —  in order that the screened potential be
of short range; in the present case this is unnecessary
since V(7) is itself of short range. It will be seen that
we do not require any kind of smoothness for the
screening function. Therefore, our proof includes
screening functions that are not smooth, like the sharp
cutoff o, (r)=6(p—7).

We begin by noting that Dollard’s work can be easily
extended to all potentials and screening functions
satisfying the conditions (3.1) and (3.2). Thus it follows
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that the scattering operator S, for V, converges strong~
ly to that for Vas p— «

s-limS, =S, (3.4)

PR
Now the scattering probability W(d® — ¢) can be written
as

W — ¢)= [, d|Se(p)|?,

where the integral extends over the semi-infinite cone
defined by df2. From (3.4) it immediately follows that
the probability W, for scattering off the screened poten-
tial V, converges to that'for Vas p— «

UmW,(dQ — ¢) = W2 ~ ¢). (3.5)

As we have seen, the result {3.5) does not by itself
guarantee the corresponding result for the cross sec-
tions. Rather than trying to prove the latter starting
from (3.5), we shall prove it directly. We use the ob~
servation, made in connection with Eq. (2.3), that the
screened cross section o, certainly converges to o, if
the screened amplitude f,( pu~ p) converges to the un-
screened amplitude f(pu~p)

Limf,(pu—p)=f{pu—p) (3.6)

uniformly for all p in any compact region not containing
the origin p=0. We shall prove (3. 6) by examining the
partial-wave series for f, and f.

The amplitude f,(pu —p) is given by a partial-wave
series

flpu—p)=2(2 +1) 7 p) P (cos8) 3.7

with a similar series for f in terms of partial-wave
amplitudes f!. Martin®*'*' has shown that the partial
wave amplitudes satisfy bounds of the form

| FI(p)] < const p'zfow dr| §(pr) || V(1) |

for [ sufficiently large. Since 1 V,(»)i < | V{¢)| we can
replace | V,(#)! by | V(#)| in this bound and obtain a
bound which is uniform in p. The integral in (3.8) can
be evaluated to give

(3.8)

| £X(p)| <const 17%7¢ (3.9)

for all p and [ and for all p in any finite interval. The
unscreened amplitudes f(p) satisfy the same bound.

it follows from (3.9) that the partial-wave series
(3.7) for 7,(pu~p) is uniformly convergent for all p and
all p in any compact region. Similarly the partial wave
series for the unscreened amplitude f(pu-p) is uni-
formly convergent for all p in the same region. Thus,
to prove (3. 6), it is sufficient to prove that, as p— =
for any fixed [, the screened partial-wave amplitude
£J(p) converges to the unscreened amplitude f*(p)

Um/7/(p)=7Hp)

uniformly for p in any finite interval not including p =0.

(3.10)

We can prove (3,10) using Calogero’s variable phase
method®? (much as in Ref. 8 for the Coulomb case). We
let 6)(#) denote the phase function of angular momentum
{ for the screened potential V,. We first note that be-
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cause V(7) is short range {as in (3.1)], the screened
phase shift can be written as

8l =6XR) +O(R™*), (3.11)
where the estimate O(R™%") is uniform for all p and all
p in the relevant intervals, There is a similar expres-
sion for the unscreened 5', Secondly, one can check that
for any fixed R and as p— «, the screened phase func-
tion 6)(R) approaches the unscreened &°(R)

1}}§5:(R)=5'(R) (3.12)
again uniformly for all p in the relevant intervals.
Combining (3.11) and (3.12), we see that

limd} = 6%,

p= o
and hence that the corresponding limit holds for the
partial-wave amplitudes £ and f' as required.
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Branching rules for the second lowest dimensional representation of the exceptional simple Lie algebra of
type Ej are given with repsect to all its 14 maximal semisimple subalgebras. This representation of E; is of
dimension 3875, the maximal subalgebras are of types Ag, Dg, A) * A7, A * E;, Ayx Eg, Ay* Ds, Ayx A,
A, * Ay * As, G, * F,, Ay » A;, C,, and three nonconjugate subalgebras all of type A4;. The Clebsch-Gordan
series, necessary for decomposition of the direct product of three representations of dimension 248, are

given.

I. INTRODUCTION

The purpose of this paper is to present the solution of
two computational problems arising in some recent
group-theoretical applications in particle physics. More
precisely, we reduce the second lowest dimensional
representation of the exceptional simple Lie algebra of
type E, (this representation is of dimension 3875) to the
representations of all its 14 maximal semisimple sub-
algebras by finding explicitly the irreducible represen-
tations of each of these subalgebras contained in the
representation of E,. Such a reduction is often called a
“branching rule.” We also find a decomposition of four
direct products of representations of E, into direct sums
of irreducible components (Clebsch—Gordan series),
which are necessary for a complete decomposition of
the direct product of three lowest dimensional repre-
sentations (dimension 248) of E,.

Our computation is motivated by a class of models
currently being considered as possible classification
schemes for elementary partices.! The relevant feature
of these models is the use of the simple exceptional Lie
groups generated by the Lie algebras of types G,, F,,
Eg, E,, and E,. It is well known from past experience
with particle symmetries, that the branching rules as
well as reduction of direct products of representations
are indispensable mathematical tools for such applica-
tions. Our results are also of interest in pure mathe-
matics, for instance, as intermediate steps in some
questions related to finite groups over fields of charac-
teristic different from zero.?

The branching rules for the lower representations of
all exceptional simple Lie algebras but E; are known.
Indeed, in Ref. 3 all their representations of dimen-
sion less than 1000 are reduced to representations of
all maximal semisimple subalgebras. Among the non-
trivial representations of E, only the lowest one has di-
mension smaller than 1000 so that its reduction is con-
tained in Ref. 3. Clearly this is insufficient in any ap-
plication. The next lowest dimension of an irreducible
representation of E; equals 3875. The branching rules
for this representation are published here for the first
time.

The method of our branching rule computation is that
of Ref. 4 implemented as a computer program?® and
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used in a simpler version in Ref. 3. Our results are
summarized in Table II of Sec. 2. An independent ver-
ification of the table was done by checking the equality
of dimensions, second-, and fourth-order indices of
representations. General properties of these indices
are described in a separate paper.®

Much simpler is the problem of the Clebsch—Gordan
series. There, at least in principle, exists the
Kostant—Steinberg formula’ which solves the problem
in general. For the cases of interest here it is, how-
ever, far simpler to guess the solution just from the
equality of dimensions and indices. Table IV of Sec. 3
summarizes the four Clebsch—Gordan series needed to
decompose the direct product of E; representations
(248) ® (248) ® (248).

In the Appendix a table of a few supplementary branch-
ing rules is presented, which together with Table II and
the tables of Ref. 3 yield the branching rules of the E,
representation of dimension 3875 with respect to any
semisimple subalgebra of E,, not necessarily maximal.

TABLE I. Numbering of simple roots. Black dots represent
shorter roots.
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TABLE II, Branching rules for representations (10000000) and (00000010) of Ej with respect to maximal semisimple subalgebras.
Irreducible representations belonging to the same reducible representation of each subalgebra are arranged vertically.

ES E8
(10000000 (00000010)

A8 G2xf 4 A8 ALXAZKAS
(00100000) (01)(0001) (10001000 (1)(10)(01001)
(00000100) (001 (1000) (01000010) (1)¢01)(10010)
(10000001 (107 (0000} (00010001 (0) (10> (10100)

(11000000) (0)€01>¢00101)

ns A1XA2 (00000011 (0) (00> (01010)
(00000001) (2)(22) (106000001) (1)(11>¢00100)
(01000000) (4)(30) (0)(11)>(10001)

(4)(03) ns (1)(00) (11000

AlXA7 6)(11) (00010000 (1) (00)(00011)
(0) (0001000) 011 (10000010) (2)(10)(00010)
(0 (1000001) (2)(00) (20000000 (2)(01)(01000)
(1) (0100000 (2)(00)(10001)
(1)(0000010)> cz2 ALXA7 (0Y(20) (01000)
(2)(0000000)> (60) (0)(0100010) (0> (103 (00002)

(23) (1)(1000100) (0)(02)(00010)

AZXES (20) (1) (0010001) (0)(01)(20000)
(00 (000001) (0)(1010000) (1) (201 (00001)
(10)(100000) Al {0) (0000101 (13¢02) (10000)
(01)¢(000010) (58) (25 (0001000) (112 (00) (00100
(113 ¢000000) (44) (2) (1000001 (0)(10)(00010)

(38) (1) (2000000) (0)(01)(01000>

AZXDS (34) (1) (0000002)> (0) (00) (10001
(001)(00010) (246) (0) (1000001» 201> ¢10)(10000)
(100) (00001)> 22) (1Y(0100000) 2(1)¢01) (00001)
(010) (10000 (14) (1) (0000010) (2> (11) (00000
(000)(01000) ¢ 2) (0) (0000000) (0> (11)(00000)
(101)¢00000) 2003 (00) (00000)

Al ALXEY

LE LR (46) {0) (0000100) ALKAZ
(1000)(0010) (38) (1) (0000001 2¢ 8)22)
(0100) (1000 (34) (2)(1000000) ¢ 46)(41)
(0010) (0001 28) (1)¢0000010) ¢ 4Yc14)
(00011 (0100) (26) (0> (0000000 { 43
(10013 (0000 22> (10 ¢(11)
(000> (1001) (18) AZKES C 6X(22)

(14) (01)(010000) ¢ 4)(41)

ALXAZRAS 10> (10 (000100) ¢ 4)(14)

(0> (00> (10001) ¢ 2) (00> (100010) C 2Y¢33)
(0)(01)(01000) (11)¢(000001) [GE-PRGR B
(1)(00)(00100) Al (20)¢000010)> 20 6130
(0)(10)(00010) (38) (02)¢100000) 2¢ 6)(03)
(1>¢103(10000> (34) €10)¢100000) 34X
(1)¢01)(00001) (28) (01)C000010) C 2041
(0)(11)(00000) (26) (113¢000000) 2014
(2>C00)(C00000) 2¢(22) (001 (000000) C 0)(60)

18> C 0YC06)

ALXE?7 (18) G2%F 4 20 &1y

(0)(1000000) (14) (01) (0010 ¢ 4>(30)
(1) (0000010) (10) (10) (1000) C 4)¢03)
(2) (0000000) « & (00) (0002) 2¢ 222

«2) (02> (0001) 3 4011
(01> (0001) 20 2)30)

(02> (0000) 20 23003

(00) (0000 20 0227

¢ 6)2(00)

2¢ 2X(11)

¢ 4)(00)

C o1y

¢ 0)(00)

AZKDG AdXA4 c2
(010)(00100) (1010)(0100) 2¢44)
(100> (10010 (1001) (1001 (81)
(001)¢10001) (0101)¢0010) (43)
(101> (01000) (0100) (0101 (80)
(000> (00011} (0010)¢1010) (24)
(110)(00010) (1100)(0001) (61>
(011)(00001) (1000)(1100) 05S)
(000)(20000) (00113 (1000) 2042)
(2005 (10000) (00011 (0011) (23)
(002)(10000) {20001 (1000) (04)
(100)(00001) (0110)(0000) 2041)
(001)(00010)> (1000) (0002) 22)
(0105 (100007 (Q002) (GO01L) (03)
(020) (00000 (0001 (2000) 2040)
(101) (00000) (00001 (0110) 02>
{000) (00000 (1000) (0010 O1)

{01005 (1000)

Al (0010) (0001 Al
) (00015 (0100) (60)
(84) (1001) (0000) (54>
(80) €0000) (1001 (54)
78) C0000) (0000 2052
(76) (50)

2272 Al 3(48)
(70) (72) 2048)
2068 (68) 4(44)
(66> (64) 342
2064) 62) 5(40)
42> 2(60) 5(38)
3(60) (58) 7(36)
2058 2056) 5(34)
3(56) 2054 832
Kigwie] 6300
2¢50 ?¢28)
4048) 7(26)
3¢46) 2
G4a4)
342>
5¢40)
4038)> PL16)
7(36) 6014
4(34) P12y
5(32) 4¢10)
A(32) S(30M 4¢C 8)
20300 728) 3C &
4(28) S(R6) 5C 4)
3(26) 7(24) 3C 0
S(24) 4022
222 720)
4(20) 4018)
18> 4¢16)
314> 3(14)
2014 &(12)
4012) 20100
208) 4(¢ 8)
20 4 ¢ &)
200 3¢ 4
20 0

Il. BRANCHING RULES

We describe the notations in Tables I and II. They

(bybyeee b,,z) +++  where each bracket characterizes an
irreducible representation of a simple algebra in the

coincide with those of Ref. 3. Since our results are
straightforward reproductions of computer outputs, they
do not contain any lower or upper indices. Thus simple
Lie algebras are denoted as E8, E7, G2, A8, etc. An
irreducible representation of a simple Lie algebra of
rank » is specified by n components a, as (a,a, - a,),
where

product and n,,n,, **« are corresponding ranks. When-

TABLE IIl. Dimensions®, second-, fourth-order indices for
some representations of Ey.

a,=2(A,0 )/ ,,a,), i=1,2,..,,%.

(1)

In (1), a, denotes the jth simple root of the correspond-
ing algebra. For each algebra the simple roots are
numbered as in Table I. The brackets ( , ) denote a
scalar product; A is the highest weight of the represen-
tation. The components a; are known to be nonnegative
integers.

A representation of a semisimple algebra which is a

product of several simple ones is written as (aya, *°* O,
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Representation  Dimension ® &
(10000000) 248 480 960
(01000000) 30380 117600 517440
(00100000) 2450240 14227200 96 744 960
(00010000) 146325270 1132840800 10422135360
(00001000) 6899079264 66765283200 774477285120
00000100) 6696 000 42 336 000 314 979840
(00000010} 3875 12 000 41280
(00000001) 147250 684 000 3666240
(30000000) 1763125 10920000 79497600
(20000000) 27000 108000 492480
(11000000) 4 096 000 24 576 000 173015040
00000020) 4881384 31492 800 239345280
(10000010) 779247 4021 920 24131520
(10100000) 344 452 500 2755620000 26233502400
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TABLE IV. Clebsch—Gordan Series for Eg.

Direct products Direct sums

(10000000) % (10000000)

(20000000) + (01000000) + (0000001 0) + (10000000) + (0000000)

(10000000) % (20000000)

(30000000) + (11000000) + (1000001 0) + (01000000) + (2000000) + (10000000)

(10000000) X (01000000)

(11000000) + (00100000) + (10000010) + (00000001) + (0100000) + (20000000)

+(00000010) + (10000000)

(10000000} % (0000001 0)

(10000010} + (00000001) + (01000000) + (0660001 0) + (10600000}

ever the multiplicity of an irreducible representation in
a direct sum exceeds one, it is written in front of the
representation.

We remark that representations of algebras A; and
A, sometimes have the component a, equal to a two digit
number. When this happens for A, algebras, no mis-
understanding is possible, in the case of A, (¢f. Table
VI) a comma separates g, from a,.

HI. CLEBSCH-GORDAN SERIES

Dimensions and indices of relevant representations of
E, are summarized in Table III, 2

Our problem is to find the decomposition of the direct
product of three lowest representations of E;,

(10000000) x (10000000) X (10000000}, )

into a direct sum. First we decompose the direct prod-
uct of two, (10000000) X {10000000), into a direct sum
and then multiply each of its components by (10000000).
Corresponding Clebsch—Gordan series are found in
Table IV,

The results of Table IV were obtained in a straight-
forward way by requiring equality of dimensions, sec-
ond-, and fourth-indices. Thus for instance,
(10000000) % (01000000) has dimension N|N,=248-+30380
=17534240, the second index® N I{®’ + NI
=248+117600 + 30 380 - 480 =43 747200, and the fourth
index® NI + NI + & I =248+ 517 440 + 30 380+ 960
+3 480117 600 =298 609920, Here N,I® 'Y denote
dimension, second index, and fourth index respectively;
their values are taken from Table III. These numbers
must respectively be equal to the sums of dimensions,
second indices and fourth indices of the irreducible com-
ponents contained in the corresponding direct sum. Just
looking at Table III one readily concludes that our re-
sult in Table IV is the only way to satisfy all three
requirements.

In every direct product of two irreducible represen-
tations one can easily find the two highest irreducible
components of the direct sum. Indeed, it is well known
that the first component is obtained just by adding the
representation labels. Thus in the example above we
get the representation (11000000) of E,. The highest
weight of the second component is equal to°

AHdy—(a, ta, +--), (3)

where A; and A; are the highest weights of the repre-
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sentations which are being multiplied and the expression
in the brackets is the minimal chain® of simple roots
connecting A, and A,. In our example above we have

A, = (10000000)

=2a, +3a, +t40,+5a, + 6, +dag+2a, + 30,

A, =(01000000)
=3a, + 6, +8a,+10a, +120, +8a,+4a, +6a,, (4)
a, +a‘2+- ve=a, ta,,

Hence the highest weight of the second component in
the direct sum is

40 +8a,+12a,; +15a,+18a, + 1204 + 6a, +9a,

= (00100000). (5)

APPENDIX

The purpose of this appendix is to supplement Table
II in such a way that branching rules for the E, repre-
sentation of dimension 3875 with respect to any semi-
simple subalgebra of E; (not necessarily a maximal one)
can be read off directly from tables. For that we have
to find the branching rules for all irreducible repre-
sentations of subalgebras of E, which occur in Table II
and whose dimensions are equal to or exceed 1000. In-
deed, for the remaining ones the branching rules are
found in Ref. 3. Consequently, we have to find the
branching rules for the representations of Table V, with
the exception of (00010001) of A, which is contragredi-
ent to (10001000).

TABLE V. Dimensions (N= 1000}, second-, and fourth-order
indices of irreducible representations of semisimple subalge-
bras of Eg contained in (00000010) of Ej.

Algebra Representation

Dimension 2-index 4-index
A8 (10001000) 1050 3360 11 760
A8 (0100001 0) 1215 3888 13824
A8 (0001 0001) 1050 3360 11760
Ds (0001 0000) 1820 5824 20608
D8 (1000001 0) 1920 5888 19968
E7 (0000100) 1539 4536 15120
B7 (0001 000) 1365 4004 13244
D7 (0001000) 1001 3080 10640
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TABLE VI. Branching rules for representations of Table V with respect to all their maximal semisimple subalgebras.
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The branching rules for all representations of Table
V with respect to all maximal subalgebras were ob-
tained using the same computer program. The results
are summarized in Table VI.
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The state labeling problems for SO(N) in U(N) and

U(M) in Sp(2M)

H. S. Green, C. A. Hurst, and Y. llamed*

Department of Mathematical Physics, University of Adelaide, S. Australia 5001

(Received 20 August 1975)

It is shown that, in a boson representation, the operators whose eigenvalues serve to label representations of
SO(N) in U(N) also serve to label representations of U(M) in Sp(2M). The problem of labeling U(2) in
Sp(4) is considered in detail, and it is shown how to find labeling operators with rational eigenvalues,
depending, however, on the representation. The solution of this problem is shown to provide a solution of

the equivalent problem of the labeling of SO(3) in U(3).

1. INTRODUCTION

The study of the representations of the classical
groups has, in recent years, been motivated as much
by important physical applications as by its intrinsic
mathematical interest. Most of the associated problems
have been solved, in principle at least, but several
problems remain which, in spite of their apparent
mathematical simplicity and physical importance, have
not yielded to persistent attack. One of these, formu-
lated by Racah' and Ilamed,? concerns the definition of
an operator with known eigenvalues, to complete the
labeling of irreducible representations of SO(3) within
U(3). Hughes® and Judd, Miller, Patera, and
Winternitz* have recently shown how to determine the
eigenvalues of two different operators, which however
turn out to be irrational in general, and no general
formula for the eigenvalues is known, Green and
Bracken,® on the other hand, have introduced an opera-
tor with integral eigenvalues, probably related to the
integral parameter of Bargmann and Moshinsky®; but
so far no explicit definition of this operator has been
found. There is a similar problem, of some importance
in relativistic quantum mechanics, concerning the
labeling of irreducible representations of SO(4) within
U(4); this has been considered in a similar way by
Jarvis,” but again only a partial solution has been ob-
tained. This is, of course, true also of the more gen-
eral problem of labeling representations of SO(N) with-
within U(N),

An apparently unrelated problem concerns the labeling
of the states of Sp(2M) with operators related to the
integral parameters of the Weyl or Gel’fand bases.
Using boson representations of the generators, Lohe
and Hurst® have considered the problem of labeling
Sp(2M - 2) in Sp(2M), but again no explicit labeling
operators have been found in general,

Finally, it may be mentioned that Govorkov® has
encountered an apparently intractable problem (for p
> 3) when seeking labeling operators for representa-
tions of U(N) within generalized parafermion algebras
of order p. There is, besides, an analogous problem,
not yet discussed in the literature, associated with the
labeling of representations of generalized paraboson
algebras.

Our intention is to show that all the problems men-
tioned above are closely related, and, as usual, pro-
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gress made in the solution of one of the problems is an
important aid to the solution of the others. We shall
make use of boson realizations of the generators of

the algebras (or, equivalently, of differential opera-
tors), and the reciprocal relation between representa-
tions of Sp(2M) and U(N) which has been exploited re-
cently by Quesne and Moshinsky. !° It is easy, in this
formalism, to show that the problem of labeling ir-
reducible representations of SO(N) within U(N) is
equivalent, for a suitable choice of M, to the problem of
labeling irreducible representations of U(#{) within
Sp(2M). We establish simple relations between the in-
variants of the algebras concerned, and show that, for
N=3 or 4 and M =2, the solution of the problem may be
found within an interesting algebra, which is not a finite
dimensional Lie algebra, though it has finite-dimension-
al representations. It is shown how to compute matrix
elements of all the invariants of SO(3) or SO(4) within
U(3) or U(4), equivalently of U(2) within Sp(4), and
hence to determine their eigenvalues.

2. TENSOR REPRESENTATIONS OF U(N) AND Sp(2M)

In canonical form, the generators b,, of U(N) satisfy
the commutation relations

(b4, Der )= Opsbyy = 6,104, (iyiyk,I=1, . .

i79 % ki 011 ., N). (1)
Irreducible representations may be labeled by eigen-

values of the first N of the invariants
(b>:bH, (b%:bijbji, @)
O =b,.b,.b

ii iR R
etc., or of the set of invariants (L,,L,, . ..,Ly) whose
eigenvalues in finite dimensional representations are the
highest weights. They are related to the {»") by

N

21 L =(b),

rel

N (3)
LL(L,+N+1-2r)=(?,

ret

and similar but more complicated identities of higher
degree. The (eigenvalues of the) L, differ by integers,
and L,z L,2>-+>2>L,. If

Cy;=by +cdy, (4)

where ¢ is a constant, the C; are also generators of
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U(N), with representations labeled (L, +¢, L,+¢, °°°,
Ly+c).

The generators [,; of the orthogonal subgroup SO(N)
of U(N) may be defined by
Liy=by; = by, (5)

5 where b denotes the transpose of the matrix
b whose elements are b,,. If H= [$N] (i.e., 5N when N
is even, but $N —1 when N is odd), irreducible repre-
sentations of SO(N) may be labeled by eigenvalues of
the first H of the invariants

B =2("-bby=1,,1,,,
IH =B =Y =11l s

orl=5>5

(6)

etc., or of the set of invariants (I,,1,, . . .,I,) cor-
responding to the highest weights. They are related to
the (%) by

ZZH)ls(Zs+N—2s)=<lz> (M

and similar identities of higher degree.!!

Next we consider Sp(2M). If we denote the generators
by Spq (P,Q=1,2, ., 2M) the commutation relations

[SPoaSUV]:gUPSQV+gUQSPV+ngSQU+gVQSPU (8)
are satisfied, where Spg =S, but gpq=-ggp. If S7,
=g"RSp0, WheregPRg o =06%,, the invariants (S%, .. .,
(S%y defined by

(8 =8P 89,

<S4> = SPQSQUSUVSVP’
etc., may serve to label irreducible representations.
Alternatively, the set of invariants (A, 4,, ... ,A,).
whose eigenvalues in finite dimensional irreducible

representations are the highest weights, may be used:
these are related to the {$%) by!!

(9)

M
220 Ag(hg+2M+2 —28)=(s? (10)

S=1

and similar identities of higher degree. We may choose

gPQ:gDP: Op geat —Opay q- (11)

If A and p take integral values between 1 and M, we
define

&,=S,,, aXu:SMM e (12)
a*, =8,y s

so that the commutation relations (8) reduce to

[ i up]: _é)\ av ,

[ us Vp]"_é “M+6p u:

[a,,,a p]: A, 07,0,

[a,,,a”]=0"%a%, + 0% a", + 0, a, + 0%, a°, (13)

The elements a*, are evidently generators of the uni-
tary subgroup U(M) of Sp(2M), and the invariants of this
subgroup analogous to the (") are {a), . . . ,{a”), where

(@) = a?y,

<CYS> — aluauuav“

(@® =a*, a*,,
(14)
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etc. The set of invariants (A, ,, . . ., },), analogous

to (I;,1,, . . .,1y), are given by
M
Z-)lxy=<a>,
- (15)
) AN +M+1-27)=(a®
r=l

and similar identities of higher degree.!!

We now introduce a set of boson creation and an-
nihilation operators [or coordinates and differential

operators], denoted by a,, (P=1, .. .,2M;
i=1,...,N), and satisfying
[aPi’an]—__gQPG{j' (16)

We may suppose that
=a, [or 3/day], A<M'<M,
M <,

Dya 1y
==,y lor —3/3a,,],

where a¢f, now means the Hermitian conjugate of apy.
Then, if

(1

@y =Gy,
a*, will be a creation operator [or coordinate] for r< M,
and an annihilation or differential operator for rA> M’.

Products of creation operators like a*,a", **+a,,
a, +++ (where A, i, «++< M’ and v,p, *++> M’) can be
regarded as vectors of (reducible) representations of
either U(N) or Sp(2M). In such representations, the
generators of U(N) are

(18)

with an appropriate choice of the constant ¢ in (4), and
those of Sp(2M) are

Spq = ap;aq; + 2Ngpg, (19)
o, =d"a,, +3zN*,, (20)

o L
b” =a‘a, + 2MCSH,

Ag i —
M =aa*, a,=a,a,

The commutation relations (1) and (13) are satisfied on
account of (16), or

lay;,a*,]=00,,. (21)
Since each generator by, of U(N) commutes with each
generator o*, of the unitary subgroup U(M) of Sp(2M),

the invariants of U(M) are also invariants of U(N) in
this representation. It is, indeed, easy to see that
(C!> = aliau + %MN = <b> s
1
(@ -zN(a+:N)=aa,,a,a", =

((b-3M

and, more generally, it has been shown by M,C.K.
Aguilera-Navarro and V.C. Aguilera-Navarro

)b+ zM)),

(o = 3N a+3N™ =((b - sM)(b+ 1),
(+ (@ - 537 = (5 + 33006 - 20019, @2
for n=0,1,2, -+, where @ again means the transpose
of the matrix & with elements o*, [so that, e.g., (@®*,
=a*,a’, = a’,a*,]. A short proof of the results of (22),
and others needed below, is given for convenience in the
Appendix to this paper. It follows from (22), together
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with (15) and (3), that the invariants (A, 2,, . . .,%,)

of U(M) are connected with those, (L,,L,, .. .,Ly), of
U(N) by

M—3N=L!~3M, r<min(M,N),

N -iN=0, N<rsM, (23)

L, -iM=0, M<r<N,

where X and L’ are defined in terms of the A, and L,

by relations of the type A\l —y=X -5, L/ ~»=L, -5,

chosen so that the eigenvalues of both (A, A, . . .,2,)
and (L,,L,, . ..,Ly) are in decreasing order.

Similarly, since each generator S, of Sp(2M) com-
mutes with each generator l‘j of the orthogonal subgroup
SO(N) of U(N) in the representation considered, the
invariants of SO(N) are also invariants of Sp(2M). It
may be verified explicitly that

(S =zN)NS+ 5Ny =aFf jaq,ap,a ;= (I - M)+ M+ 1))
and, as shown in the Appendix,
(S =3NNS+ 3N =((1 - M) (1 + M+ 1)) (24)

for n=0,1,2, -+« . It follows from this, together with
(10) and (17), that the invariants (A, A,, ... ,A,) of
Sp(2M) and those, (I,,1,, .. .,l,), of O(N) are connected
by

A+ M+1-4N=1,, s<min(H,M),
AM+M+1-3N=0, H<s<M,
U,=0, M<s<H, (25)

where A! and [/ are defined in terms of the A  and [, by
relations of the type A{~s=A, -7, l=s=1[_ —v, chosen
so that the eigenvalues of both (A,,A,, . . .,A,) and
(I1y155 - - . ,1y) are in decreasing order.

The operators whose eigenvalues could serve to label
equivalent irreducible representations of SO(N) within
an irreducible representation of U(N) are also related
to the operators whose eigenvalues could serve to label
equivalent representations of U(M) within an irreducible
representation of Sp(2M). To construct such operators,
we introduce linear operators 4,4, B, and B, defined
on arbitrary symmetric tensors ¢, ,, o™, and y; by

P A=dya", +0,,a%,
PrA= Pk, + P,
Bily; = bty T b (26)
Elpu = by Ppy T 0¥y
The tensor (b6 + b),; =by;b,; +by; is symmetric, and it is
readily verified that
(aa)=a*a,,={(b0-3M-1)(b-3:M),
(a,a (A +N)=ao"(2a,,a", + Na,,)
={(b=3M - 1)(b - 5M)(2b+ M)
=((0-3M-1)(b-zM)B+ M),

and, more generally, as shown in the Appendix,

(a,a (A + Nm=(E - zM - 11b - 5M)(B+ M. (27
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Similarly,
(@.a,)=a, ™ =((b+3M+ )G+ 5M)

and, as shown in the Appendix,
(a,a (A =N =B+ 3M+1)B+:M(B - M)". (28)

These, and similar results which can be derived by
the same method for expressions involving more than
one pair of factors «,,, ", show that a solution to the
problem of labeling representations of SO(N) within an
irreducible representation of SU(N) is also a solution to
the problem labeling representations of U(M) within a
corresponding irreducible representation of Sp(2M), and
conversely. However, as can be seen from (23) and
(25), the most general representation of SU(N) can only
be realized by taking M= N -1, while the most general
representation of Sp(2M) can only be realized by taking
H=[3N]= M, In particular, the solution of the problem
of labeling general representations of SU(3) is solved
by taking M =2, but the solution of the problem of label-
ing general representations of Sp(4) is solved by taking
N=4,

The representations of Sp(2M) in terms of boson
operators, constructed in this section, are necessarily
infinite dimensional; finite dimensional representations
could be obtained, if desired, by using fermion or para-
fermion operators'? instead. The infinite dimensionality
may be thought of as associated with the multiplicity of
distinct representations of U(M) contained within an
irreducible representation of Sp(2M). The operators
whose eigenvalues serve to label equivalent representa-~
tions of U(M) within Sp(2M) are, as we have seen, the
same as those which label equivalent representations
of SO(N) within U(N), and generate an algebra 4 with
finite dimensional representations. For M =2, we shall
investigate the structure of this algebra below. For the
sake of symmetry, we eventually choose M’ =1 in (17),
so that U(2) is strictly replaced by the noncompact form
U(1,1). However, analogous results hold also for M’ =0
and M’ =2, so that the conclusions do not depend in any
essential way on this choice,

3. LABELING OF U(2) IN Sp(4)

An irreducible representation of Sp(4) is labeled by
the eigenvalues of the invariants (A, A,), related to
those defined in (9) by

(8% =2(A%+ A% _5),

(SH = 2(A*+ A+ 3A% + 372 - 32), (29)
A=A +2=1,+3N-1,

A=A, +1=],+5iN=-2,

where [, and [, take nonnegative integral eigenvalues.

Distinct representations of U(2) in an irreducible rep-

resentation of Sp(4) are labeled by eigenvalues of

(7, 2,), related to the invariants defined in (14) by
(@=r=-N, (@B=X+N?-3,

(30)
A=2t5, M=-2 T3

If M=1 in (17), the following inequalities are satis-
satisfied:
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Az 3(N-1), M=3(N-1),

A+ NSV =]+, +N-1, (31)

so that if N=3 and [,=0, X and X are positive integers
such that A+ A’ =, + 2, but if N=4 they are half-odd-
integers = 3 such that A+ X =], +,+ 3.

Equivalent representations of U(2) within an irreduc-
ible representation of Sp(4) are distinguished by eigen-
values of elements of the algebra A of invariants of
U(2), constructed from the tensors o™ and a,,, as well
as the generators of U(2). In order to determine the
representations of the algebra 1_4,_ it is helpful to intro-
duce also a set of operators (P,P,Q,Q,R,R,S,S) which
shift from one irreducible representation of U(2) to
another. The simplest of these operators can be defined
directly by
R=aMay, - aha,,, R=a*d), -aMa?,

S=aya - (ay,)?= Ewepaawauo,
S=aa® - (a®)V=¢, e 0aMat’. (32)

They can be regarded as nonvanishing elements of anti-
symmetric tensors, and therefore change the eigen-
values of (A, %), as defined in (30), by (-1, +1), (+1,
-1), (-2, +2), and (+ 2, —2), respectively. The
remaining shift operators can be constructed from sym-
metric tensors, and are easily derived by making use
of the characteristic identities

(A-x+ N =2)(A-2x-1)(A+2) -1)=0,
A-rx+x+2)A-22+1)(A+2)+1)=0,

(33)

satisfied by the linear operators A and A introduced
in (26), when M =2. By the omission of one of the fac-
tors of the left sides of these identities, we obtain
projection operators which, applied to «,, and at*,
isolate the required shift operators. Thus, if

P =2+ +j (34)
and
aku = a;u(p-lpn)-l - 2agu(p-lp1)-1 + a;t(popl)-l,
@y, =30, (A- X+ N -2)(A+2) - 1),
@, =%a,,(A-2x-1)(A+2x -1), (35)
o, =3, (A-A+ N -2)(4-2x-1),
then any component of the symmetric tensors ay,, a)‘fu ,
and «a;, will change (') by (-2,0), (-1, +1), and
(0, +2), respectively. Similarly, if
aM = a3*(p.,p))"t — 28 (p_yp0) "t + X (popy) 7,
att = s (A - A+ N+ 2)(A =20+ 1),
apt=gat(A+ 2N + 1A+ 20+1),

aM =@ HA -+ N+ 2 A+ 20+ 1), (36)

then any component of a}*, ai*, and o** will change

(A, M) by (0, -2), (+1, —1), and (+2, 0), respectively.
Clearly of, and a}* must differ from R and & in (32)
only by factors depending on the U(2) generators; and all
the required shift operators, except S and S can be de-
fined by
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afy = P(Yo¥1po/ )%, all= Blyoy.ipo/p.)" "%,
al,=-Ra?, al'=-Ra',,
ay = Q(azl)Z(Po/Yoylp-z)l /2, al= Q-(QIZ)Z(DO/Y.:;V_1PZ)1/2
Y, =A-al +jtz=N+ai,+j+3, (37
with normalization factors chosen so that
PP=q,,a)*, PP=aMaj,,
RR=a,,d*, RR=a"a,, (38)
Q@ o,a¥, QQ=ata;,.

Commutation relations for the shift operators so
defined can be obtained from the commutation relations
satisfied by @,, and o**, by substituting from (33) and
(34) into (13) and separating terms which shift between
one irreducible representation of U(2) and another.
Thus we obtain

[P,Q]=4p,5, [P,
[P,R]=0, [P,R]=[Q,R],

(P,s]=1[9,5]=[R,S]=0,

[S,R]=2(x=»+1)R,

[$,Pl=42@, [5,@]=4NP,

QP=R*+p%S, (39)
together with conjugate relations, like [@, P ]=4p,S.

All elements of the algebra A can be expressed as
functions of A, X’,A,A’, and two independent invariants

X=%R,R], Y=3%(RR+RR). (40)

Obviously RR=X+Y and RR =Y - X, but if we make use
of the explicit expressions for (§% and (S* in (9), and
the above relations (39), we also obtain

PP=Y+pX+p,%6.,, PP=Y+pX+p’0,,
QR=Y -p,X+pd,", QQ=Y -p,X+p_>2¢!,,
S8$=Y - (0-2)X+¢_¢,/+K,S5=Y — (0+2) X+ ¢,¢", + K,
SR+ RPS=(¢_,+ ¢4 - p,2+ 1)Y = X2+ (0 - )X + (1 - p K,
SR‘2+Rz§:(¢2+¢:2_p02+1)Y—X2+(o+4)X+(1-pOZ)K

2

(41)
where
&=+ = HA2+ A7 ),
¢1= (42— 5N+ A2 L), o=A-N,
K=3(A%+ A2 %) - H(AZ —A'?)2, (42)

It also follows from the commutation relations that
[X,Y]=2(R?S ~SR?) =2(SR2 - R%S). (43)

Clearly the operators X and ¥ do not commute in
general, and are not elements of any finitely generated
Lie algebra. However, there are several special
classes of representations of U(2) in which X and ¥
commute, and in fact have unique eigenvalues. Since for
M =1,x+ X =1, according to (31), if |#) is a vector
belonging to a representation of U(2) such that A+ N =1’
or I’+1, we must have P|#) = |+ =0 it then follows
from (41) that X and Y have eigenvalues
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X=~ %p_lzo., Y=- %9-12(95-1'*' é!)
XA+ M= or I'+1), (44)

in such representations. Also, when A has its minimum
value 5(N - 1), so that PP=385=0, and when X’ has its
minimum value (N - 1), or next to minimum value 3(N
+1), so that Q@=S5=0, X and ¥ have unique eigen-
values given by

X=Y=-p, 9.,

X =20 ,=Y+2p,0 ,=-p,0.,
X=- Y:p-1¢:1s

X+2¢L,=Y+2p ¢/, =-p_ ¢!,

To construct a general matrix representation for the
operators SS and SS, and hence for X and Y, we note
that 4, =2 -3N+4 and g,= ) —$N+ 3 have nonnegative
integral eigenvalues in irreducible representations of
U(2) within the irreducible representation (A,A’) of
Sp(4), and that u, + u, is odd or even according as A+ A’
is odd or even. Let us introduce a set of eigenvectors
Ir)"q of u, and u, such that

v=3+1)]. (45)

u1|r>m =(r+2p)|7),, uzlr)p.q=(s+2q)|r>,,,, (46)
r+s=A+A, |r)p'q:13"@"'|1')0’0,
|7+ 2)0,0=[(r =A+1)2-1/4]5|7), ,.

Clearly, in a representation of U(2) in which u, and u,
have fixed eigenvalues, states are sufficiently labeled
by », which takes even or odd values ranging from
max(n, A+ A’ - ;) to min(u,,A+ A’ —7) where n=0

or 1 according as (4, is even or odd. From the com-
mutation relations (39), and the known eigenvalues of
X and Y in the states 17), ,, given by (44), we find that

55|%),.,,=1glr - Dgls + 1+ (1,2 = A, + 2= 1}, .,
+(u2=rgls = 1)|r+2)
+{(py+ 2 = (s + 2] glr - D |r - 2),

881, ={gtr+ Dgls = 1)+ [k, +2)* = *J(1,* - s?)}
X |10+ (12 = D) gl = 1) |7 = 2)

+ (2P = (r+ 2P g(s = 1) |+ 2), 47
where
glo)=(x =A") - 5. (48)

These formulas provide an explicit matrix representa-
tion for S§S and SS, and hence for X and Y, in an ir-
reducible representation of U(2), labeled by A= i, + 3N
-3 and ¥ =y, + 3N - §, within an irreducible represen-
tation of Sp(4), labeled by A and A’. From the matrices,
eigenvalues can of course be computed without difficul-
ty; they are irrational in general. In the next section

we shall discuss the definition of an operator with eigen-
values corresponding to the integral parameter ».

4. LABELING OF SO(3) N U(3)

The problem of finding an operator with known eigen-
values to label representations of SO(3) within an
arbitrary irreducible representation of U(3) is the
simplest and best known of the problems under con-
sideration.
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According to (23), if a representation of U(2) is
labeled (A, M) ={u, +N/2 -1, -y, - N/2+1), the cor-
responding representation of U(N) will be labeled (L,,
L,,...,L,), where L,=u,, Ly= - y,, and the other
L, vanish. We therefore consider a representation of
U(3) labelled (u,,0, - 4,), with invariants

(D=t - py=0,

) = By (g +2)+ py(, + 2). (49)

The corresponding representation of SU(3) is labeled
(M,, ko) and the invariants of SU(3) defined by Racah’
and llamed?® are

g=2[1, (1 + 2+ py(py +2) = (1, — 1,)%/3],
&a=4(1y = )51y — 1,P/9 — (e, +2)
- Uy, +2) -2]/3. (50)

Different representations of SO(3) contained within an
irreducible representation of U(3) of the type considered
are labeled by the operator [, defined by

1T+ 1)={b* - bd); (51)

this is, of course, the angular momentum in quantum-
mechanical applications. In the corresponding repre-
sentations of Sp(4), the invariants defined in (9) are
given by

($H=211+1)-9,

($H=2[@+3)*+30+3F -32+ 2], (52)
and the representations are labeled by

(A, A)=(-3, —1x3).

Operators whose eigenvalues, if they could be found,
would serve to label equivalent representations of SO(3)
in an irreducible representation of U(3), have been
defined by Racah® and Ilamed?; given by
x=(bbb + bbb ~ 2b) + (B> + (bY(41(1 +1)/3 - 3(b?)),

y = 8(b)yx/3 - 4b%% — (16(6%/9 + 9T + 1)

+ 2003 (0% + 2(0y% + 4) + (b)> - 4 (53)
in the present notation. The operators 0,° and Q,° in-
troduced by Hughes® are related to them by

0,0= - 3V6x,

Q,°=—18y + 121(1 + D[2(0? - 2(0)*/3 -1 + 1) - 3],
while those considered by Green and Bracken® are

S,=(bbb+ bbb),

S, = (bbb + bb%b)

=2(b°0 %) + 9(b%) - 3(b)* - 121 + 1).

Although the eigenvalues of these operators have been
obtained in special representations, ® they are irrational
numbers in general, and no general formula is known,
The algebra of the operators x and y was studied by
Ilamed,? who has shown how to derive commutation
relations of the type

[X,[x;y]]=24y2+ cy+HEy+ sz2+ Lsx+ Ly,
[y,[v,x]]=32x" + L,(xy + yx) + L3y + Lx® + Lex + &y
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[x, 91 = 16x* + £ox® + 169% + £5(x%y + ya®) + &yl + %)
F X+ L)+ LigX + 61 + Ly, (54)

where the ¢, are given as simple polynomials in g, g,
and

s=1(I+1). (55)

Our object in this paper is to show how the results
obtained in the previous section can be used to solve the
above equations. As all the operators to be used are
SO(3) invariants, we may consider an irreducible rep-
resentation in which [ has a fixed integral value. How-
ever, we shall find it convenient to consider a variety
of representations of U(3), in which u; and u, take dif-
ferent nonnegative integral eigenvalues. The dimen-
sions of the irreducible representations of ¥ and y de-
pend on the eigenvalues of 4, and 4, and are, as one
can see from (46), never greater than 3(u,+ p, -1)+1.

To solve (54), we first consider the representation
for which [x,y]=0. These can be found by setting the
right sides of (54) equal to zero; as we have already
seen in the last section, the solutions fall into six
classes, all included in (44) or (45): (i) u, + u,=1, (ii)
Py + My=1+1, (iii) g, =0, (iv) 4,=1, (v) u,=0, and
(vi) g, =1. The eigenvalues of x and y in these repre-
sentations are related to those of X and Y found in the
previous section, the precise relationship between the
operators being given by

x=2X+ 0s/3,
y=-4Y +40X/3 + (2{d® + 3 - 8¢%/9)s

Now, a general representation of U(3) is related to a
corresponding representation of one of the classes (i)
and (ii) listed above by a shift operator of the type P
Q“7, with P and @ defined as in the previous section.
Thus, to determine a general representation of x and y,
labeled by s, 1y, i,, and #, it is sufficient to define P
and . The considerations of the previous section show
that the following factorizations are possible:

(56)

+ (py + )X+ (U, + py+ 1)2¢_,= PP,

U+ Uy + X+ (1, + Uy +3)%¢, = PP,

= (Ut B+ X+ (L, + uy+ 320 =99,

=y + W)X+ (g + py + 1207, = QO
¢,~:(#1+J+1)2—%s, ¢} = (1, +j+1)% -3s, (57)

where P and @ are represented by rectangular matrices
with two more rows than columns, and P and @ are
their adjoints. By different factorizations,

Y+X=RR, Y-X=RR,
Y-(0-2)X+¢_1¢,"+3s(1 -55)=5S,

Y- (0+2)X+¢,¢%, + (1 - $5)=S55, 8

we can define the shift operators R and S and their
adjoints. As shown by (47), a representation can be
found in which §S and S5 have codiagonal form. In such
a representation, certain linear combinations of §S

and SS can be found with upper and lower triangular
form, and these have rational eigenvalues. But the
eigenvalues of other linear combinations of X and Y are
in general irrational.
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We now recapitulate by stating explicitly a simple
solution of the classical problem of defining an operator
or operators with integral eigenvalues, which can be
used to label representations of SO(3) in SU(3).

Let

W, (v)=(p,+ v, +4)85 - (g, +v,)SS, 59)
— = 59
W,(vy) = (u, + v, + 4)SS - (1, + 1,)5S,

where v, and v, are operators whose eigenvalues are
the parameters » and s in the states defined by (47),
which are related by

r+s=A+A". (60)
Then it follows directly from (47) that if
wy(v,) = (u, + v, +4)glv,- V) gy, +1)
— (kg + g, + Dglv, - D+ 4k, + v {1y + D[k, +2)?
— (v, + 2] = (v, + 1)(1,2 - v, B0},
wy(Vy) = (K + v, + 4)g(v, + gy, = 1) — (1, + v,)g(v, - 1)
Xg(vy + 1)+ 4(p, + {1, + D[ (g, +2)?
= (v + 2] = (v, + 1), - v B},
then
(W) =w,(N]| 7
=4(Uy — s iy + Uy +r+s+4)glr -1)|r-2),
[Wols) —wy(s)| P =4, =)y + iy + 7+ s+ 4)glr — 1) |r+2)
(61)

It follows that w,(7) is an eigenvalue of W,(#) in a non-
orthogonal basis, and that w,(#) is an eigenvalue of W,(»)
in a different nonorthogonal basis, for each value of »
between min(n, A + A’ - i1,) and max(p,, A+ A’ —n),

Hence if we define v, and v, by means of the algebraic
equations

W) =w,(v), W,(vy) =w,(v,), (62)

v, and v, will have integral eigenvalues. This may be
compared with the definition of / by means of the al-
gebraic equation (51). Either of the operators v, and v,
defined by (62) may be used as a labeling operator for
the representation of SO(3) in SU(3).

APPENDIX

We now provide a proof, in the notation of this paper,

of the results stated in Eqs. (22), (24), (27), and (28).
First we note that, since

(a+%N)"u:aMa"” (b+§M)H:aMa"i, (A1)

the relation

aylla+zN)P, = LB+ M, (A2)

is trivially satisfied for =0 or 1, Also, since a and

b,; commute, it follows from (A2) that

ayl{a+2N™ P, =a,(a+ NP, [(b+ m)m),,
=, (b+ 3M), [(6 + 52y,

so (A2) is true for n=2,3, «--, by induction. If we

multiply (A2) on the left by a*;, we obtain the first re-
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lation of (22). The second relation of (22) is obtained in
a similar way by multiplying

& [(@ - 3N, =a [(B - sM)],, (a3)

on the left by a,,. Results of this type have been already
obtained by the Aguilera-Navarros,!?

To prove (24), we proceed in a similar way. We note
that

(S+3:NPy=ag,a®;, (1+M),=ap,a",, (A4)
50 that
ag [T+ M+, = ay [(S+ NP, (A5)

is easily verified for =0 or 1. Since [,; and $* com-
mute, it follows by induction that (A5) is true also for
n=2,3, «++. The desired relation (24) is obtained from
(A5) by multiplying with 4%, on the left.

Finally we prove the results (27) and (28) by a similar
method. We use the representations

=0,,5,,+ b6, (A8)

o0 _ 0 8P g 5e
A a?, 0% + a6, B ix%1

Ap tikl
for the linear operators A and B, and note that the

relation
aukau[(‘B+M)"]kHj :apjaoi[(A+ N)"]Ww (A7)

follows immediately from (A1) and (A6), for =0 or 1.
As B,,,, and 4°%,  commute, this result follows also by
induction for n=2,3, -+ . If we set i=j in (A7) and
multiply on the left by ¢**, the result (27) follows, with
the help of

ea,a,, =0 - 3M - V(b - 3M)], etc. (A8)
In a similar way, we use the representations
‘Iﬂam = Euuépx + auxépu, Eisz = b0y F blléjk (A9)
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for A and B and, establish the relation
a“ka*,[(E—M)“] :a"ja"‘[(Z-N)"]""w.

Then we set {=j and multiply this relation on the left
by a,, to obtain the result (28), with the help of

a* at, =[(b+ M+ 1)b+:M)],,.

(A10)

ijRl

a, (A11)

in

A wide variety of interesting and useful identities can
be established by the use of this technique.
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Particle permutation symmetry of multishell states. I. Two
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A method is developed for constructing N-particle states of definite symmetry from n,-particle and n,-
particle states of definite symmetry where N = n,+ n,. A canonical resolution of the attendant multiplicity
question is given. The results, which are a first step toward the construction of appropriate coefficients of
fractional parentage, do not rely upon any particular form for the N-particle Hamiltonian. Rather, the
results are based entirely upon properties of the symmetric groups.S, S, and Sy. The group theoretic

problem which is the construction of irreducible representations of SN from those of S, >(S

1s solved using

induced representation theory together with projection operator techniques.

INTRODUCTION

Among the central mathematical problems in the study
of many-particle systems is the construction of an ap-
propriate set of basis states possessing the proper sym-
metry under the exchange of particles. In the many-
nucleon case such basis functions must, of course, be
totally antisymmetric, and it is often convenient, as
well as physically significant, to accomplish this by
using spatial states of some symmetry coupled to spin—
isospin states having the conjugate symmetry. In many-
particle calculations in which all physical quantities are
represented by either one- or two-particle operators,
one does not actually need these many-particle states.
Rather, one needs the single particle basis states from
which they are constructed and the appropriate one-
and two-particle coefficients of fractional parentage.
These coefficients may be determined once one knows
the following: (1) the manner in which the many-particle
states are built from the single-particle basis and (2)

a complete labelling scheme for the many-particle states
including the resolution of any multiplicites.

Formal solutions to the problem of overall antisym-
metric states have been known for a very long time, !
but detailed solutions which are usable in actual calcula-
tions have been by and large limited to the following:

(1) the case where the only single-particle states in-
volved are degenerate both in energy and angular mo-
mentum (i.e., the case of several particles occupying
a single shell), % (2) special cases involving limited sets
of single particle states all degenerate in energy,® and
(3) the case where the single-particle states are those
of the isotropic harmonic oscillator potential.*~% The
latter has been the most extensively studied and much
use is made of the particular symmetries of the oscil-
lator potential to simplify various calculations. The
techniques therefore are not very readily generalized to
the use of single-particle states arising from a common
potential which is somewhat closer to reality. In this
paper we present a technique which is independent of
the particular potential giving rise to the single-particle
basis states, but rather depends for its validity solely
upon the properties of the permutation group.

The mathematical problem is that of constructing the
basis states of the irreducible representations of S
from those of S XS,

ny+ng

,- That is, we shall construct states
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of definite permutation symmetry for n; +n, objects from
states possessing definite permutation symmetry sepa-
rately on the first », objects (1,2,3,--*,n) and on the
second n, objects (ny +1,m +2,°**,n +ny). This is
accomplished by induced representation theory applied
to the symmetric group and by making use of projection
operations. The results are applicable whatever the
nature of the objects.

As an example for motivation one might consider the
first #; objects to be nucleons (1, 2, 3, - - -, ;) which be-
long to some shell appropriate to a common but unspeci-
fied potential. The second n, nucleons (n, +1, 1, +2, - -
ny +n,) then belong to some other shell. By a shell, one
would mean a set of single-particle states of this com-
mon potential which are degenerate in energy and share
the same angular momentum. This angular momentum
could be orbital only, in which case one would need the
appropriate spin—isospin states to produce overall anti-
symmetry, The spin—isospin problem has essentially
been solved.”*® If the angular momentum is total (orbital
plus spin), then appropriate isospin functions are re-
quired; the solution of this problem is also well known.®
The coupling of the individual angular momenta of par-
ticles within a shell to states labelled by the shell an-
gular momentum and the coupling of the shell angular
momenta to an (i +n,)-particle state of definite angular
momentum is a separate problem which may be handled
by standard angular momentum techniques.® To make
use of our formalism it is necessary to regard the states
of the #; particles in the first shell as having been ar-
ranged to form the basis functions for some irreducible
representation of the symmetric group S,; similarly
ny and S, . This latter problem, which is not entirely
divorced from the question of shell angular momentum,
is solved in principle and in practice by the use of
standard techniques.®'° It remains unsolved, however,
in any truly elegant manner.

In a future paper we intend to generalize the formalism
to the case 0f Sy inyung...n, Dasis functions expressed in
terms of those of S, X8, XS, X-- *X8S,,. The techniques
used in this first paper are, we feel, close to the ex-
perience of most many-particle theorists. In future
publications we intend to also deal with the problem of
coefficients of fractional parentage and with the question
of spurious excitations of the center of mass which are
inherent in any many-particle, common potential basis.
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In Sec. I a simple sketch of the basic ideas of induced
representations is presented as this is central to the
entire approach. Also, the example of constructing
states for S; from those of §; X8, by “brute force” meth-
ods is presented. In Sec. II the general problem of con-
structing states of Syy4n, from those of S,y X8,, is present-
ed and our main results are in Sec. III. Also in Sec. III
we consider the multiplicity and orthogonality problems
and illustrate our formal results by once again return-
ing to the S; example. Section IV is a final example and
commentary.

1. INDUCED REPRESENTATIONS AND AN EXAMPLE

The basic problem is, given the direct product states

\ MY R ) (1)
how does one construct the states
|7y + 0y A5, mphy) 2 (2)

In (1) the labeling means the state belongs to the », row
of the %, irreducible representation (IR) of S, and to the
¥, row of the A, IR of Sn,. It is to be understood that the
permutations of S, are permutations of the first n; ob-
jects (1, 2, -+ -, 1) while those of S, are permutations of
the second n, objects (n; +1,n +2,---,n +n,). The set
of all states (1) labeled 7, and 7, for fixed ) and X, are
the basis for the direct product representation 3, X,

of Spysn,- The states (2) belong to the » row of the X IR
of 8y .ny, and the extra labels are to remind us how this
state was constructed. The product representation A
XA, which is an IR of Sy, X8,, induces a representation
of S, Which is to be broken into irreducible parts.
The state ln; + 1, Ay, 1,2 will be a linear combi-
nation of all the states », 7, of the form (1) together
with other states having the same form as (1) but re-
fering to S, X8, in which the permutations of 8, in-
volve some different ny of the », +#, objects and those
of S;Z involve the remaining n, objects. In fact, the state
Iny +ry Av;m A, nyh,y Will be a linear combination of
states involving all possible ways of selecting n; objects
out of the total ny; +n, objects. From now on we shall
omit the labels #»;, n, and #; +n, from the basis vectors.

We consider first of all the simple example in which
we have one particle (1) in one shell and two other par-
ticles (2 and 3) in a different shell. The particle 1 must
be described by a state which belongs to the [1] IR of
S1.11 For 8; this is the only IR and it is one dimensional.
The state of particles 2 and 3 may be either symmetric
under the exchange of 2 and 3 or antisymmetric. In the
former case it belongs to the [2] IR of 8, while in the
latter it belongs to the [1, 1] IR. For this example we
choose to use the [2] IR. There is then only one direct
product basis state ¢(1; 2, 3) whence

@(1;2,3)=U(1)V(2,3) (3

in which U(1) is the state of particle 1 belonging to the
[1] IR of S, and V(2, 3) is the symmetric state of par-
ticles 2 and 3 and belongs to the [2] IR of §,.

The possible states of three particles may be grouped
into basis functions of the IR of S;. There are three such
IR: [3], [2,1], and [1, 1, 1]. The first problem is to de-
termine which of these is compatible with the state Eqg.
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(3). By standard tableaux multiplication one has
[1]x[2]=(3]+[21]. (@)

The reducible representation of S; on the right of Eq.
(4) is essentially the representation of S, induced from
the IR [1]x[2] of 8, XS,. The next problem is to express
the basis states for either the [3] or [21] IR contained in
the induced representation of S; in terms of states like
that of Eq. (3). In particular we will need the states in
which each in turn of 1, 2, or 3 is in state U while the
remaining pair is in state V. We shall use the shorthand
notation

P =9(1;2,3)=UM)V(2,3),
v, =(2;3,1)=U(2)V(3, 1), (5)
@=9(3;1,2)=U(3)v(1, 2)

and regard these as a column vector. Each of these is
the basis for the {1]x[2] IR of S; XS,, but they differ in
the identification of the particular 8, X8, subgroups of
S,.

In the basis given by Egs. (5), the matrix representa-
tives of the permutations {12) and {13) are

010 001
(12)={100}, (13)={010]. (6)
001 100

All the permutations of S; may be built from products
of these two.

We next order the basis function of the [3] and [21] IR
of S; contained in the reduced representation as

@ =93] (111); [1],(2),
= 9((21] (211); [1],[2)), (7)
g =9((21] (121); [1],[2).
In Eq. (7) the essential labels are the [3] and [21] which
label the IR of S; and the (111), (211), and (121) which
are Yamanouchi symbols labeling the rows within an IR.

In the basis of Eq. (7) the permutations {12) and (13)
have the standard forms (indicated by superscripts)

100 1 0 0
a2r=(oc10 |, (3)={o-1/2 -V3/2]. (8)
00-1 0-v3/2 1/2

Equations (6) express the induced representation in
terms of the basis [Eq. (5)] which is constructed natural-
ly from the IR [1]x[2] of 8 XS,. On the other hand, Egs.
(8) express the same induced representation in terms

of the basis [Eq. (7)] which displays the irreducible
components of the representation in an explicit manner.

The problem at hand then is to determine the trans-
formation which expresses the basis of Eq. (7) in terms
of the basis of Eq. (5). This transformation is unitary
and is defined by

3
¥y =20 Up @ (9

r=1
For any permutation of S, represented by 7° in the stand-
ard basis, Eq. (7), and by 7 in the natural induced basis,

Eq. (5), we must have
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U= Un, (10)

in which U is the matrix whose elements are the U;, of
Eq. (9). By using standard matrix techniques together
with Eqs. (6) and (8) we find

1/V3 1/V3 1/V3

v=|v6/6 v6/6 -V86/3
1/v2 1/Vv2 0

(11)

From Egs. (11) and (9) we then have, for example,
p([21] (210); [1)[2D) =(V6/6)(1;2,3) + (VE/6)9(2; 3, 1)
- (V6/3)¢(3;1, 2). (12)

Now, we want to examine what we have accomplished
by “brute force.” First of all we note that the subgroup
S, X8, of S, contains the elements e and (23). The left

cosets of S XS, in S; are the sets of elements {ﬂﬂ'}, where

7 is any fixed element of S; and different elements of the
left coset defined by 7 are obtained as 7’ runs over the
elements of the subgroup 8§, XS,. Any element of a left
coset can serve to label the coset, and we may arbitrari-
ly choose a standard labeling element for each such co-
set. These labeling elements are called coset represen-
tatives. From the group multiplication table of S;, Table
I, we may construct the entries in Table II, which indi-
cates the left coset to which each element of S; belongs
together with a coset representative. The basis states
@1, Pz @3 [Eq. (5)] in terms of which we expand the

D, ¥s ¥y [Eq. (1)] may all be formed from ¢(1; 2, 3) by

o =¢(1;2,3)=e@(1;2,3)=¢,,
$,=0(2;3,1)=(12)0(1; 2, 3) = @5,
@, =¢(3;1,2)=(13)p(1; 2, 3) =@ 44,.

(13)

Hence, the basis states of Eq. (5) are formed from the
basis states of the IR [1]X[2] of the subgroup S, X8, [in
this case the single state ¢(1; 2, 3)] by operating with
coset representatives of the left cosets of §; XS, in S;.
The dimension of the induced representation of S is
clearly d([1]) d([2]) X the number of left cosets of §; XS,
in 8;, where d()) is the dimension of the [A] IR. In this
example the induced representation has dimension three
and decomposes into the one-dimensional IR, [3], plus
the two-dimensional IR, [21], of S;. As indicated in Egs.
(13) the natural basis for the induced representation may
be labeled by the label [1]Xx[2] of the IR of 8; XS,, the
row labels within this IR, and the left coset representa-
tion; in this example we have omitted the first two of
these labels.

We now give a more general review of those aspects
of induced representation theory which are central to
the remainder of the paper. Suppose H is a subgroup of
order (H:1) of some group G of order (G:1). Each ele-

ment g of G belongs to one and only one left coset of H
in G and may be written as
g=g;h(9),

where g; is the representative of the appropriate left
coset and #(g) is an element of H depending upon g. The
number of left cosets is the order of G divided by the
order of H, i.e.,

(G:1)/(H:1)=(G:H). (15)

Now, let | ul) be a basis state for the /th row of the
[£] IR of H; the dimension of [1] is d(p). The set of
states

gluly=|ul; g,
1=1,2...d(y), j=1,2.--(G:H),

(14

forms a natural basis for the representation of G in-
duced by [1] of H; the dimension of this induced repre-
sentation is (G:H)d(y). From Eq. (14) it follows that

glul; gy =g'|ud),

where g’ = gg; belongs to G. Hence also g’ belongs to the
some (unique) left coset of H in G, say that labelled by
&m S0 g =g.h(g’). Since | ul) belongs to the [u] IR of
H, and since %(g’) belongs to H,

glul; g =g nl)

= ztj' Dy (N | s g (16)

where D%, is the matrix element {ul’ 1h(g’) | u) of h(g’)
in the [1] IR. We may make Eq. (16) more transparent

by defining

(Dl () if gcH,
0 if g H.

In Eq. (16) then one may sum over left coset represen-

tatives and the %(g’) = g5 gg; will pick out the appropriate
one. Thus,

Dige@ = (17)

gl ul;g,->=lE D (gige) | l'; 2,0 (18)
o

Hence the matrix of the representation [4 4 G] of G in-

duced by the [1] IR of H is given by

D;L"ﬁ,zj ):5?'1@;%ggj)u (19)
The general problem then is to determine which IR

of G occur in this induced representation, how often each

IR occurs (the multiplicity question), and specifically

how to determine appropriate bases to reduce the in-

duced representation into irreducible parts. This was

TABLE II. Left coset decomposition of S; with respect to
s1 X Sg-

TABLE I. Group multiplication table for Ss. me 8 left coset coset
¢ representative
e (12) (13) (23) (123) (132) e [e,(23)1 e
(12) e (132) (123) (23) (13) (12) [(12),(123)] (12)
(13) (123) e (132) (12) (23) (13) [(13),(132)] (13)
(23) (132) (123) e (13) (12) (23) [(23),e] e
(123) (13) (23) (12) (132) e (123) ((23),(12)] (12)
(132) (23) (12) (13) e (123) (132) ((132),(13)] (13)
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done for S; by inspection. In the more general case we
shall use projection operators often called the method of
idempotents.

Consider the operator

d(x)

P = Dy

(G l)gZ:JG Ik (g (20)
where [A] is the d(A)-dimensional IR of G which we have
presumed to be unitary; the sum is over all elements
£< G. The Hermitian conjugate operator is

d(n)
P);;_ (G( 0,5 ZJ D) w(@g?t ij (21)
so that
PP = 8,560, Py, (22)

follows from Eq. (20) together with the representation
property of the matrices D*,

Now, we define a state belonging to the jth row of the
Ath IR of G projected from the state {ul; g,) to be

| kul; g = Pl 1L £ (23)

In Eq. (23) the extra labels kpl and g,, serve as poten-
tial multiplicity labels, By inserting Eq. (20) into Eq.
(23) one finds

Nkl gy = 20 (Wl g | N kul g | 15 £), (24)

18y
where the transformation bracket is given by

an) « ~
o I D@ Dt ega.

(25)
From Eq. (23) and the orthogonality of the bases | ul;g,)
it follows also that

(Wl g | N 1R g,y =

N kUl 8 = (L5 Gmr | Pl 5 8. (26)

The projected states are orthogonal on X and j but not
upon the multiplicity labels. The overlap of two such
states follows from Egs. {22) and (23) and is

<ullr gm'

WG Rl g\ N kbl g = (l'; g | Py P | 115 2,
= 850,000 1L’; e | Pho| 1L &)
=000l G | NR 5 RILL ).
(27

Hence, for states belonging to the same row of the same
IR of G, the overlap matrix is dependent only upon the
multiplicity labels.

Equation (25) which gives the transformation brackets
and also the overlap matrix elements may be processed
further. From Eq. {17) it follows that m summing over
g€ G there is no contribution unless gl gg,=he H,
Hence, we may replace the sum on g by a sum over

ke H and write g=g,.hg;t. Thus
1 . d()‘) 1 m
(Bl g | M k1L g) =75 G D2 Z) D} (gmehg) DYy ()
d(x)
=60 I, DH ) D D )
st
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XD y(R). (28)

We may write Eq. (28) in a very useful form by noting
that the operator which projects onto the I state of the
(L]IR of H is

d
e =Ty DK (0= Tt
d —
- (H(fll)) 2iDtu (). (29)
so that
_ a(u) Ak
(Atipll"m> (H 1) %:JHDSt (h)D :l(h)o (30)
Thus,
A <§(u”m,s DY)
XWVJH'U@
d 1)
(G(Al) (;I(u <>Lk\gmput'gm"x]> (31)

The equality of Eqs. (27) and (31) is a manifestation of
the reciprocity theorems of Froebenius.'? Specifically,
if the [A] IR of G is induced from the [1] IR of H n(x, )
times and the [] IR of H is subduced from the M IR

of G n(i, A) times, then n(}\, u) =n(g, ). Thus the multi-
plicity is given by
A) = n(x -
n(w, N =n(), p) = e 1)21 X (r)x* (n), (32)

in which x*(k) =3 ,D};(h) is the character of & in the [A]
IR of G and x*(n) =3 ,D},(h) is the character of % in the
(p] IR of H.

We have introduced three labels, %,I, and g,, to dis-
tinguish the (possibly degenerate) states of the IR {A].
In fact, all the occurrences of [A] may be projected from
the states | ul; g,» with arbitrarily chosen but fixed val-
ues of I and g,. To see this, we use the results (i) for
every group element g of G,

Phg= LPJk'D;k'(g): (33)
(i)

| 1l; 2 = gl 1L €),
and (iii)

l ut'; €)= P4,
Hence

|2 Rl @) = Phi| 1L &)

= Plu(gmePtga) | 1L g

wl; e,

:§ck.P,k. nl; gm
:%‘ck,\xj:k'ul S &) (34a)
where
Cor =Rl 5 Db, W)+ Dl (g o). (34b)

(H:1),cr
Hence the state | )j: kul';gm.) has been expressed as
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a linear combination of the states |Xj: % ul; g, with
arbitrarily chosen but fixed ! and g,. It is most con-
venient to choose g,=e¢, as was done in the S; example,
and we shall make this choice in all that follows. We
are left with d()\) possible values of the remaining de-
generacy label 2. Of course, these need not yield dis-
tinct states.

It is now convenient to relate the number of occur-
rences of [A] in [p 4 G, viz., n(», u) to the trace of the
d(3) Xd() overlap matrix (\j:kul;e| N :k ul;e) (for
arbitrary but fixed 7). We have, from Egs. (27) and (31),
2N kple| N kul; €)

3
da) H:1) 5

=G D a2k Pl
(cé(xl ’%sz;(xk'h])\@D #(h)*
AN N .
~GD %H (D, ()

But from Egs. (34) this expression can be shown to be
independent of /. Hence we may average over / to obtain

2N kul; el N kul; e)
k

(35)

For fixed ! and g,,=e, we adopt the simplified notation
[N kul; e)=| Aj: bul)

and have

|3 s Tl = Pl s @) = 0 (ul's gl X i) | s ),

(386)
where
(l's o ) = S0 (f}(“l S DY (gne) (k| P | 25)
—(g(hl) 2 D? (gm')Dks(h u'(h) (37

5
The overlap of these states is

d()) (H 1
G

_d) & *

"thC_JH Dkk'(h)D‘;t (1.
These projected states are not normalized nor are they
orthogonal on the multiplicity label k. The normaliza-
tion factor is the square root of the overlap of the state
with itself; we choose the phase convention of taking the
positive square root. Thus

daN (H:1)
G:D da(uy

"(_g%ﬁ kk(h)D X (h).

Nk ul| N s bl = <Ak|/9 1| 2

(38)

(N ikepl| N buly= (Ne| P4y | a2y
(39)
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From Eq. (34), the induced representation is guaranteed
to be not more dense than the regular representation

of G. That is, [A] occurs at most d(}) times. In general,
the multiplicity of [7] will be considerably less, the
actual number of occurrences being given by (G : H)d(u)/
d(}) times the trace of the overlap matrix for the non-
normalized projected states. Thus the possible values
of k overdetermine the multiple occurrences of [A] in
{1t Gl. Many of the states projected with different
values will be identical when normalized. One therefore
needs criteria by which nonidentical states may be
chosen up to n(A, 4) in number. Such a criterion is af-
forded by considering normalized projected states

| % s kul)= | X : kul) /V G T RBITA < kil (40)
Thus, two states are identical if
(R ul| N :kpl)

=V {jRulTA Bul)g R Il Tk uly (41a)
or

| Po I ey = (O [ Py | ey | Py [ M)} 2. (41b)

We notice in passing that Eq. (41b) is a reciprocity
statement again, in that it says that if in the subduced
representation of H, the states of [] of H projected
from [AE) of the [h] IR of G using /%, are identical with
those of [u] projected using /%; on lkk’) then the states
of [] projected from |uZ) of H using P}, are the same -
as those of [7\] projected from |ul) using P>‘ For
practical purposes, however, it matters not which ex-
pression one uses, for in either case it is the overlap
and normalization factors which must be computed.

The remainder of this paper is devoted to exploiting
the foregoing method for the case of S, .n, > Sy X 8n,,

ll. LEFT COSETS OF Sp, X8, IN S,,l +n,

In this section we shall enumerate the left cosets of
S, XS,,Z in Spyen, 0y giving a complete set of left coset
representatlves The number of elements of 8, ol
m!n,! and the number of elements of Sny4n, 18 (n1 +n2)|
Thus, the number of left cosets is

(-
n

Consider the set of transp051t1ons (x,y), where x is any
of the symbols {1, 2+ -n,} and v is any of {n, +1,
my + 2+ om +nyf. There are

n\ (n
e = < 11> (12>
such transpositions. Next consider the set of products

of these of the form (%, ¥,)(x,, y,) with the restriction
X3 <Xy Y1 <¥,; there are

(2)(3)

(g +n,)!
ny !ﬂzl
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such doubles. In a similar manner there are

n\ (n,
3/\3
triples (xy, )Xz, ¥5) (X3, ¥g), %1 <%, <%, Y1 <y, <¥s. The

total number of such elements of S including the
identity, is

() ()=0")

Thus the set

ny +ngs

5':‘{9: (x,v), (%, 3’1)(9‘2, 3’2): . }
x;€{1,2,3 m}, vye{m+1,m +2, ..., 0 +nyl,

xj<xj+1> yj<yj+1; (42)

has precisely as many members as there are left cosets.

It remains to show that these are suitable left coset
representatives which we shall do by explicitly demon-
strating that an arbitrary element 7 of Sy en, MAay be
written as

T=g;M Ty,

where g;cSand m & Sps T2 €8y, One must keep in mind
that the elements of S, are permutations on the symbols
1,2--°n and those of S,, are permutations on the sym-
bols ny +1, 1 +2,...,m +n,.

A typical element of S,,l,,,,a has the form
12...1m byt 2ty

ce A, eew cee PRPSPE T .o .
Vit Yt gt K

ETRREE ’
in which 1sx <x,<x3°"*<wmyandn +1<y; <y,---
<my +n,. The indices j, j,* -+ must then be some per-
mutation of the induces &y, k2, - - <. We have divided the
permutation by a vertical dashed line to indicate the
S,,1 X8,, decomposition. By direct multiplication one
readily finds

12:0m .n1+1:"’"1+"2
]
-u.yjl...yjz...yja : . xkl. xkz--.xka
|
= (xy, ¥1) (%3, ¥2) -+
x(lZ'--nl :nl+1,n1+2--=n1+n2>
3
nulle.u.sziluxja"l : ..oykl--.ykz...yka--- ’
]

(43)

which proves the result. The “out of place” symbols are
ordered in increasing order on each side of the dashed
line and are brought out as transpositions which involve
one of 1,2 -n; together with one of ny +1,n +2,---,

n, +n,. This is done pairwise in increasing subscript
order which yields a factor from the set 5. The re-
maining permutation obviously has the form m7, and is
constructed from the original by interchanging x;, with
Vi0 Xy, With 35, etc. An example from S¢°O S3X8q is

(1231:456789)
946 1175823
| 1

x

1 ) I
V3 Y1 Y2

-
PEga—
o
R mm——
w
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=(14)(26)(39) (1 231456178 9)

3121475869

(132)

M S8y

(5'786)

Ty, €8g

_(14)(26)(39)

R

ges

Similarly, for Sy2 8, XS, the same permutation is de-
composed as
1234.'56789)_
(9 461 i 75893 =(26)(39)(1324)(5788).
These results now allow us to apply the methods of Sec.
I to establish a natural basis for the representation of
Spy+n, induced by the [M]X[2,] IR of 8, X8,,.

N THES, ., DS, XS, PROBLEMS

The basis states for the representation [M]%[,] of
Smen, induced by the [N ]X[X;] IR of §, X8,, are labeled
| A8y, 258, ), where M sy labels the s, row of the [A]
IR of 8, and A;s, the s, row of the [X,] IR of 8,,; g; is
a left coset representative. A state belonging to the s
occurrence of the 7th row of the [A] IR of §,,.,, is then
projected according to Eq. (36) as

| X181 2959) = Phol sy Ap8p)

= 20 bty g5 | 27 i shysyhpsy)
git1ty

X | Mt Mot; €50, (44)

in which the transposition brackets are given by [after
Eq. (37)]

(Mt daty; 5| M sA sy 085)

a0 -
- (n1(+)n2) 1 %;2 Dy (g)Dlgy (M) Diye(my)
twv

XDt () Dg (). (45)

2

In writing Eq. (45) we have made use of the direct pro-
duct property of the [} ]x [%,] IR of 8, X8, and also
made use of the representation property of [A]. We now
want to perform the sum on m €8, and T, € Sn,ye To do
50 we note that D*(m) is irreducible when 7, is regarded
as an element of Sy any but is reducible when 7 is re-
garded as an element of S, X8,, or just S, . In the latter
case, D'(m) is the direct sum of matrices which are
irreducible under S, . The Yamanouchi form of the IR
matrices readily lends itself to performing the explicit
reduction since the matrices are in fact constructed by
exploiting the above fact. For example, the [4, 1] IR of
S; for the element (13) is the direct sum of the IR ma-
trices of S;, viz.,

21111 12111 11211 11121

21111 1 0 0 0
12111 0 1 0 0

DHMI(13) T 11211 0 0 =-1/2 -V3/2
11121 0 0 -v3/2 1/2

DL33(13) 0

= D[3](13)

DHI(13)
0
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wherein we explicitly display the reduction. In general
then, one may write

)= 635 Dog (). (46)

Da;(‘”l
The notation 635 of Eq. (46) means that the upper or
leftmost n, symbols of the Yamanouchi row labels must
be the same. That is, the Yamanouchi row label is
Voyeng¥myemgy *** 7271 where the subscript, j say, is the
number to be placed in the 7; row of a standard Young
tableaux. The notation o, B refers to the lower or right-
most n, parts of the Yamanouch1 symbols which are the
row and column labels of the D** IR of S, ._The pattern
[27] is obtained from [} by removing the & boxes from
the [A] pattern. For example, in the [41] IR of S; the
removal of the 11 from 11211 and 11121 means the re-
moval of two boxes from the [41] pattern to yield the
[21] pattern which denotes the [21] IR of 8,, viz.,

[ /¥ A , |
The sum over m €8, in Eq. (45) may then be carried
out by using Eq. (46) and the orthogonality of the IR
matrices of 8, . The result is

2 Dy ("1)0).;;?1 (m)
rcon

= 5"“5ss15u t AIX"nl' /d[x]

o

(47)

in which the meaning of 8,3 is merely that the [A\] IR
Of Spy+n, must contain the [,] R of S, at least once or
the sum vanishes.

At first sight, one might be tempted to use exactly
the same technique to perform the 7, sum of Eq. (45).
This would be incorrect, however, since that sum is
over permutations on the symbols ny + 1,7 +2-- -1 +n,.
The matrices of Sy 4n, in the Yamanouchi scheme are
constructed to be block diagonal for the elements of
Sy, k<mn +mn, with the sequence S, S, -- +Smanye In each
case, the permutations involve the first or lowest or-
dered symbols 1, 2-+-%.. Hence, prior to performing
the 7, sum it is necessary to convert the 7, in D}, (m,)
from a permutation on the symbols n; +1,7n +2, .

n +n, to a permutation on the first n, symbols 1,2 n,.

We denote the #; +1,n; + 2« -5y +n, permutation by 7,
and the corresponding permutation with », +j—j by 7,
Since [%,] is an IR of Sn, it is immaterial whether 7,

or T, is the argument of Dsztz(”a)-
permutation x of Spy +n, such that

We require then a

772 =x1 X (48)
and such that x is independent of the particular m,. An
adequate choice of x is

(12"‘"1 n1+l n1+2'
XxX=
n2+1.=

Temy tny
nytn 1 2:cm, ) (49)

Only the right part of the lower row, 1,2:°-n,, is criti-
cal; the left part could be chosen to be any convenient
permutation of n, +1,n, +2, ---, With an appropriate x

then
~ = AT, o
D}, (y) = 2 D3 (™) Dl o(m,) Djs (%) . (50)
«B
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Then
ED t(ﬂa)Dszt (my)

= Zs; D} (x™) D} (1) D}, (x)Dsztz(”
Xz

= %D"m (x")DQ,(x) oty 59;32 ﬁ,gtzaxgxz ny! /do‘z) (51)
in which an overbar denotes the upper n; parts of the
Yamanouchi label and a undertilde denotes the lower 7,
parts. Also D}, (x™') = D}X*(x) = D} ,(x) because the IR
matrices are real unitary. Thus finally Eq. (45)
becomes

Mty Mta; g5 | M7 s)y sy 2p85)

nyin,! d(n)
T ni)td(mtz(wz Dre(s;)

X D, (%) Dj () 055 Oy ¢, 055 0gs,0 ¢, (52)
with the proviso that this transformation bracket van-
ishes unless [A] contains [X]X[A,] at least once. To ex-
plicitly calculate these brackets we need only know the
matrix elements of the elements of §, which consist of
products of transpositions and are therefore most easily
constructed, and the elements of a single permutation x.
If one always takes »; to be the larger of ny, n,, then
instead of the x given in Eq. (49) one could use

m-1mn+1- n1+n2)
m=-2m-1n 1 0 p,

(53)

which is a member of § as well. If #; <n,, this choice
cannot, of course, be made. With [A] written as
{MA2 0+ 2] and 7 and s written explicitly as

(Yo¥pa* o 7y), (8,8, """ 5;) respectively, one has for
the transposition (n~1, n)

(12 2
Moty

na

I'IG

LAy dpo oo,
DA ey (= 1, W) =TT 6,

)

r nsné"n-l Spal 6'71" n-l

and for 7, #7,4

X 1
57-"5’167"_13,,_1 ()Lr - A, ) +rn-l _ 7'") (543)
n Na
5 1 1/2
St ST <1 h O =2y ¥ ¥t = 7) )
and for the transposition (i ~ 1,4) in S,
n
AL eser . N
DE";"'T{'}(SH"'SL)(Z - 1) Z)
n
=1 ¢, DI Ml (11 G) (54b)

These readily computerized expressions together with
the identity

@N=06i+D)GE+1,i+2)--
X(i+1,4)

G-1,0G-1,j-2)--
(55)
enable one to easily program the transposition brackets,

The overlap of two projected states follows from the
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special form of Eq. (38) and is
18 M 81 285 | M 2 Xy 81 0585)
= 6,0, [y 11,1 /(g + 1)1 AN /() d(2y) ]

X 23 Dy (%) D}, 0(x) B 5, Oy s, (56)
From the normalization factor which is Eq. (56) with
s'=s one has that the projected state vanishes identical-
ly unless the lower n; entries of s are the same as those

of s;. Hence we could add to Eq. (56) the factor 6508
as well, -

The condition that two states be identical (when nor-
malized) is

(18 M8 A8, | W1 SNy 81 )
=({(ar: 87\1517\zszl PUSEYVEID Y
XA : 8 N8 0,8, | M s A s 8,0 /2, (57

Hence the following is the procedure used to resolve
the multiplicity:

(i) Choose the maximal values of s; and s,.

(ii) Compute the matrix whose elements are given by
Eq. (56).

(iii) Form the trace of that matrix to determine

1R, 4 X N5),

(iv) Start with maximal s consistent with s =s; label-
ing the first occurence.

(v) Consider successively the possible s in decreasing
order checking the condition of Eq. (57). The first such
s’ which does not satisfy the condition is to label the
second occurrence, etc.

If we return to the 8,2 §; XS, example, we have [\ ]
=[1] so that s; =1 is the only possibility. Also [»,]=[2]
so0 s,=11, Since {A]=[21], » and s may take on the val-
ue 211 and 121. We note that x=(132) and g;,=¢, (12) or
(13). Thus, in abbreviated notation, the transformation
bracket of Eq. (52) becomes

(g;|7: )= 42, DL Mg, D1 1(132) DR (132). (58)
t

The overlap matrix is easily found using the matrix
representative of (132) which is
211 121
211(-1/2 V3/2

121\W3/2 -1/2/

which follows from (132) =(23)(12) and the IR matrices
of (12) and (23) which follow from Eqs. (54) as

10 -1/2 ﬁ/z)
(21171 0) — 21199y —
b (12)”(0 - 1)’ DEE3) <f§/z 1/2 )
Thus the overlap matrix given by Eq. (56) becomes

(s'|s)=2DE1(132) DA L. (132)

B 1( 1 \/ﬁ)

Te\W38 3/
One sees immediately that the state projected using
s'=121 is the same as that using s =211. Indeed, if one

D'21(132) =
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normalizes the projected state, the normalized trans-
formation bracket {(g,1v: s)/V{s|s) is given by

(g;|7:s)/VIsTs)=V2/3 DAY (g,) DLE1(132),
t

which is independent of s. If one successively inserts

g;,=e, (12) and (13) for =211, one finds that the pro-
jected state differs from the “brute force” state of Eq.
(12) only by a trivial overall minus sign.

IV. THE SIMPLEST EXAMPLE WITH MULTIPLICITY 2

The simplest example in which an IR of S,,lm2 occurs
more than once in a representation induced from an IR
of some decomposition of #; +#n, is the case S5O S5XS,,
where the {21]%[21] IR of §,XS; induces the [321] IR of
Sg twice. In this case, the possible choices of s; and s,
are 211 or 121. The dimension of [321] is 16, but the
condition that s =s, leaves but 12 of these as valid po-
tential multiplicity labels for each choice of s;. If, in-
stead of fixing s, and s, by the choice indicated earlier,
one considers all possible choices together with all
possible consistent values of s, the overlap matrix has
dimension 24. When the normalization factors are in-
serted, one finds that there are but four distinct (not
identical) state labelings. That is, for example, the
states projected from s; =211, s,=211 with s =321 211
are identical with the states projected from s; =211,

s =211 with s =312 211. But these states are distinct
(their overlap is not 1) from

S1 Sy S

211 211 231211
211 211 132211
211 121 132211.

In addition, these above states are distinct from one
another. Hence with this scheme, there are but four
distinct state labelings of which only two can be linearly
independent since the multiplicity is but 2. An alternate
resolution of the multiplicity is to diagonalize this 4%X4
overlap matrix which, of course, has two zero eigen-
values. The corresponding eigenvectors give then the
weighting coefficients for each of the four distinct state
labelings. But this is not without ambiguity on account
of the multiplicity of the zero eigenvalues, which means
that the corresponding eigenvectors are not uniquely
determined.

Within the procedure we have outlined, the first oc-
currence of the [321] IR is projected using s =321211
from the state labelled by s, =211, s,=211. The second
occurrence is projected using s =231211. The projected
states from the two occurrences are not orthogonal this
way, but they are uniquely determined, and their over-
lap is minimized insofar as the use of any other pair of
the four distinct states is concerned.

It is to be noted that we have not proved that our
scheme always gives minimal overlap of the multiple
occurrences. Indeed we must confess our inability to do
so in the general case. Nonetheless, the use of induced
representation techniques together with our resolution of
the multiplicity provides a complete labeling scheme
and a “canonical” resolution of the multiplicity. These
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states may now be used to form appropriate coefficients
of fractional parentage and useful calculations performed
with them. In any physical problem, of course, this
arbitrariness in the multiplicity resolution does not show
up in the final answer. The scheme presented here is
admittedly aimed at computerization of the process, and
it is with regret that we note that a truly elegant resolu-
tion of the multiplicity remains an unsolved problem.

*Work performed for the U.S. Energy Research and Develop-
ment Administration under Contract No. W~7405~eng~82.
IE, P, Wigner, Phys, Rev, 51, 106 (1937),
2H.A. Jahn and H. Van Wieringen, Proc. Roy. Soc. A 209,
502 (1951).
33, P. Elliott, J. Hope, and H.A, Jahn, Proc. Roy. Soc.
A 246, 241 (1953).

1391 J. Math. Phys., Vol. 17, No. 8, August 1976

4p. Kramer and M, Moshinsky, “Group Theory of Harmonic
Oscillators and Nuclear Structure,” in Group Theory and
Its Applications, edited by Ernest M, Loebl (Academic,
New York, 1968).

5J, P. Elliott, Proc. Roy. Soc. A 245, 128, 562 (1958);

J. P, Elliott and M, Harvey, Proc. Roy. Soc. A 272, 557
(1962).

%3, P, Draayer, D.L. Pursey, and $.A, Williams, Nucl.
Phys. A 119, 577 (1968); J. P. Draayer and S.A. Williams,
Nucl. Phys. A 129, 647 (1969).

'J. P, Draayer, J. Math, Phys, 11, 3225 (1970).

8Morton Hammermesh, Group Theory and Its Application to
Physical Problems . (Addison-Wesley, Reading, Mass,, 1962),
%U, Fano and G. Racah, Brreducible Tensorial Sets (Academ-
ic, New York, 1959).

10, D, Murnaghan, The Theovry of Group Representation

(John Hopkins Press, Baltimore, 1938).

Hwe use the standard Young labeling of the IR of §, and the

Yamanouchi labeling of the rows as given by Ref. 8.

123, 8. Lomont, Applications of Finite Groups (Academic,

New York, 1959).

S.A. Williams and D.L. Pursey 1391



Symmetry and invariance properties of the Boltzmann

equation on different groups
J. N. Massot* and R. Bacis'

Laboratoire de Physique du Rayonnement, Université de Saint-Etienne, 23 Rue du Docteur Paul Michelon,

42100-Saint-Etienne, France
(Received 6 October 1975)

The introduction of the group theory in the treatment of the Boltzmann equation shows the reducibility of
the collision integral operator on the invariant subspaces of Klein ¥ or SO, group. Especially we prove the
equality of matrices representing the collision integral operator between inequivalent subspaces first in its
linear form and then in its general form. These results are finally expanded to the full Boltzmann equation
when we consider its properties as a whole in the phase space (&,X¢,). This brings back Boltzmann
equation following the Chapmann-Enskog process to the differential equation system depending solely on
the variable [ The examination of the Boltzmann equation symmetries allows us to obtain the selection
rules which lead to an important simplification in theoretical as well as numerical calculations of the

distribution function.

1. INTRODUCTION

It is well known that group theory makes an important
contribution both towards our understanding of a certain
number of physical processes and towards research
conducted on their solutions. This is the case of atomic
or molecular spectroscopy and nuclear physics. The
majority of positive results obtained are linked with the
demonstration of the symmetries of the basic equations
of these processes (Schrodinger, Dirac, Klein—Gordon,
equations).

L

We propose to apply the same technique to the Boliz-
mann equation. The structure of this equation is well
known and is the subject of many studies. A considerable
bibliography is to be found in the works of Chapman and
Cowling,! Hirsfelder et al.? and, more recently,
Ferziger and Kaper.?

However, in view of our aim, we feel it is particular-
ly important to call attention to the work of Kumar . *=°
This author exploits, by algebraic methods, the invari-
ance property under rotation of the Boltzmann collision
operator. This enables him to express this operator in
a spherical coordinate basis in the space £ y of the
velocities which is in fact a standard basis for rotation
group representations, Consequently, it is possible for
him to simplify the description of the Chapman—
Enskog process, used for research on the solutions of
the Boltzmann equation, and to show that this equation
can be decomposed into irreducible tensorial operators
in relation to the rotation group of £,.

The expansion obtained by Kumar is thus linked both
to the invariance property under rotation of the collision
operator and to the choice of a determined basis, the
standard basis of the rotation group. However, other
bases may be used to describe the distribution function
Ar,v,t), solution to the Boltzmann equation, and partic-
ularly bases of cylindrical or Cartesian symmetry.
Indeed the choice of the basis is especially influenced by
the boundary conditions of the problem when these condi-
tions are taken into account and by the symmetry of
forces F applied to the particles.

The collision operator has a well determined reduc-
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ible structure in each of these bases. This structure
corresponds to an invariance of the operator with re-
spect to a particular group of transformations and gives
rise to precise selection rules which is essential to
know for the calculations.

In order to demonstrate these results and to show the
nature of the transformation groups under which the
collision operator is invariant, we shall use a more
rapid method than that employed by Kumar in the case
of a basis with spherical coordinates. In this work, we
shall directly apply theorems arising from the group
theory and in particular the Wigner —Eckart theorem.
The demonstration will be made when the operator is
linear, then when it is expressed in its general form.
Owing to its reducibility the operator is expressed
according to the direct sum of matrices associated with
the irreducible representations of the invariance groups
which are basically inequivalent. We shall show in fact
that certain of them are necessarily equal and we shall
complete this study by indicating the symmetry prop-
erties of the matrix elements. This work is the subject
of Secs. 2 and 3, for the invariants with respect to the
Klein V group, and of Sec. 4 for those concerning the
S0, group.

All the above properties are those which result only
from the study of the expression of the collision opera-
tor in the velocity space ¢,. One can go further and
consider the phase space (£ ,x¢& ) as a whole. In these
circumstances, it is possible to show that the Boltz-
mann equation possesses invariance properties which
are determined according to the symmetries of the F
force applied to the particles of the system. In order to
exploit these properties, it is necessary to refer to the
results expressed in Secs. 2,3, and 4, Especially,
besides demonstrating the selection rules and invariant
subspaces when the F force is invariant by rotation or
zero, we express the Boltzmann equation eigenfunctions
in the subspace (£;x¢3), which is the tensorial product
of the spaces corresponding to the angular parts of the
r and v variables. This brings the Boltzmann equation
back to a differential equation system corresponding
to the variable irl| to which the Chapman—Enskog pro-
cess is still applicable. Section 5 will be devoted to
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these questions and it will be shown that the moments of
the distribution function expressed in a local basis are
finite linear combinations of the moments connecting to
an absolute basis.

2. REDUCIBILITY OF THE INTEGRAL COLLISION
OPERATOR IN THE HERMITE POLYNOMIAL BASIS

A. Definitions and elementary properties of the
linearized integral

The calculation of the collision integral in its linear-
ized form was achieved by Kumar.*~° By following the
traditional notations” and limiting ourselves to the case
of a single gas in order to simplify the expression, we
have

D[¢l]=ff?ngO(v,Q’)[A¢12]dQ' dv, (2.1)

where §’ represents the polar angles of the vector V’
=v/, - v}, relative velocity vector of the particles 1 and
2 after the collision, and where V is the modulus of this
same vector before the collision. Finally o(y,8’) is the
effective differential cross section of the colliding
particles and

Ad,=P1+ ¢ — b~ &,

the functions ¢, being deduced from the distribution
function £, by the well-known relation

fi=rill+ ey,

and f{ being the Maxwell distribution.

(2.2)

(2.3)

Under these circumstances, it is possible to evaluate
the collision operator D in spherical basis @
=R .Y

nl im
S @8 11 e DL@,y ] d¥y = WV’ | D | mima).

In the absence of any polarization of the physical sys-
tem constituted by the particles 1 and 2, the effective
differential cross section ¢ depends solely on the rela-
tive angle between the vectors V’ and V, and the opera-
tor D is invariant under rotation. It is then simple to
see that the matrix elements (2, 4) are diagonal in [ and
m by using the Wigner —Eckart theorem®® which gives,
in this case,

n'l'm’ | D ] nlm) =56,,,6,..D}

1y .

nim =

(see definition in Appendix A) which gives

2.4)

(2.5)

The explicit calculation of the matrix elements Df,,"
was effected in detail by Kumar*:® and the corresponding
result is found in the relations (103)! and (121).°

B. Reducibility of the collision operator in the Hermite
polynomial basis

In this section our aim is to show that the operator D
is still reducible in the basis Innn,) spanned by the
Hermite polynomials H,(v)=H, (v)H, (v)H, (v,)
(n,,n,,n, integers > 0). These polynothials are defined
in Appendix A. They differ from those used by Grad'®
in that they are immediately factorizable according to
the variables (v,,v,,v,) which simplifies their use.

The two bases |nlm) and |nnn) are bases of the
L? Hilbert space of square-integrable functions. Thus
there exists a unitary transformation with coefficients
(nlm | nnn,y such that
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Hn= E <nlm ‘ nxnynz>inm (2 . 6)
nim
with
23w l'm! | nngn)nngn, | nlm) = 8,40,1 6, 2.7
a
2 (it | mim)nlm | nnn,) = é"x"xé"y";é",";' @2.8)

nim

This transformation has been studied by many authors
and especially by Domergue.!! The explicit expression
of (nlm!n) can be found in Appendix B.

Then, we can evaluate the matrix elements of D in
the Cartesian basis,

J H.D[H)av,=®’|D|n)=D,,,, (2.9)
where by using (2.7), (2.8), and (2.5),
Dy,= 20 @' |wim)D}, (nim |n}. (2.10)

nn’'tm

With selection rules [Appendix B, Eq. (B2)] we can see
that

(= It gty = (=Yg (2.11)
and
(=)= (=), (2.12)

On the other hand, the matrix elements D!, and D,,,
being real and the coefficients (nnmn,|nlm) being real
or imaginary according to the parity of », it is required
that (n,+ n!) be even. Therefore,

(=)ry=(=)%. (2.13)

Finally, with S the signature {(=), (=), (=)} we
have

S$=5". (2.14)
Thus
Dnn:ngn),(n')Gss" (2.15)

where the notation (n) means that the indices (n,nn,)
are taken in such a way that S be constant.

Thus we have proved that D was reducible in the {Hn}
basis. The number of possible signatures S being finite
and equal to eight, the number of invariant subspaces and
therefore the number of submatrices, which result in
the reduction of D, is finite and equal to eight. The
complete set of S values is

{St={(+++),(++ ), (+ = 1), (=+ +), (+ = =)
(=+ =), (= =+), (== =)

b

(2.16)

C. Dimension of the invariant subspaces for a basis of
finite dimension

The reducibility examination would not be complete if
we did not compute the dimensions of each submatrix
when the basis is of finite dimension, equal to the num-
bers of independent polynomials H, of maximum degree
Ny. We shall show that one relation is enough to express
the dimensions connecting to the eight possible
signatures.

The submatrices DS of elements DS, ,., have dimen-
sions which can be deduced from all the possible values
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of the indices #_, #,, n,&[0,N,] for the signature S and
such that

n ot n,Fn, <N, (2.17)
Let us consider first of all the signature (+ + +).

The indices #n_, n,, n, are necessarily even and equal

to 2k,, 2k, 2k,, so that

2k, + 2k, + 2k, <2K, (2.18)
where K=[N,/2] is the integer part of N,/2.

Thus the dimension of the submatrix (+ + +) is given
by
dim[DU I =aK)= 21 =i[K°+ 6K+ 11K +6].
Ryt kytk, <K
(2.19)

After some calculations, the other signatures give the
same relation d{K) with

Ko [M] (2.20)
2
where
1 if Se{(++-),(+—+),(-++)},
B= {2 i Se{(+-=),(-+-),(~=1)}, (2.21)

3 if S=(~---),

As an example, we give in Fig. 1 the structure of D
with a basis of 20 polynomials (N, =3).

3. STUDY OF D IN THE CARTESIAN BASIS H;
A. Groups leading to the reducibility of D

The above calculations are of an algebraic type. They

subspace p=+1

0 ao% —
(+A)7
=(+++)

o 1 1] 80 El+—-)//

=f gl
”Bz;/,f, )4_4.

S
je}

l
(+85) E/T—H:

P S ey ek Gl vy Sompe . ooy

N

|

7
(-8;)
E(—++///

- W
oON © O
N O O 0

|

-85/
=(+-+/7
77

I L
S N O Q

|

1-8B3/
=7+ +—)//

N @ oo M O OO
Q N QO O
~ m

: 1 i
subspace p=-1

FIG. 1. Representation of the integral Boltzmann operator in
the Cartesian basis H§ for Ny =3,
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enable us to demonstrate the reducibility of D in the
{Hn} basis, but their possibilities are limited. In partic-
ular, they cannot give us the physical reasons for the
existence of this reducibility.

Thus, the aim of this section is to answer this ques-
tion. In so doing, we shall obtain new results such as
those concerning the equality of the matrices D"*,
D™= and D-** on one hand, and D"’ D-*-) D=
on the other hand, Moreover, we shall enlarge these
results to the general case of the operator in its non-
linear form. For this, we shall show that D commutes
with all the operators of the Klein finite V group.

Let us remember first of all that D commutes with
the operators R of the rotation group and also with the
inversion operator of space P. So let us consider the
operators I, I, and I, defined as the inversion opera-
tors of axis x, y, z. These operators commute

[Ixaly]:[ly’lz]:[lzylx]:05 (3.1)
and we have
Ian:I,H,,x(vx)H,,y(vy)H,, (v,) 3.2)

).

But the Hermite polynomials have a defined parity.
Thus,

r4

=H, (-v)H, (w)H, (v
x ¥ z

H, (=)= (=)H, (). (3.3)
So, in the general case
Linnn)=(=Y4|nnn) ¥ iclx,y,z]. (3.4

Thus the states |nng,) are eigenstates of the opera-
tors ;. Also, they are eigenstates of the operator P, for

P| nagny =I1I | nngn) = (=) | nnmy. (3.5)

This operator is peculiar to an Abelian group,
isomorphic to an S, group possessing two irreducible
representations,

p=2x1 with p= (=)',
Let us consider then the three operators R,, such that
(3.6)

If we denote by E the operator identity, we can see
that these three operators form with E a finite group
which is easily identified'?:'® with the Klein V group and
we have

R,R,=R,, ER;=R;, RR,=E.

R;=LI,, (i,j,k) permutation from (x,y,z).

(8.7
Moreover, these operators commute,

(3.8)
R, k,]=0.

We know that this group is Abelian and that there are
four irreducible representations of dimension one
(4, B,, B,, B,), the characters of which are given by

T| ER, R, R,
A1 1 1 1
Bjl1 1 -1-1
Bl 1 =11 -1
Bl -1-11
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The action of the operators R, is the same as a
directional change of the axis (j,%). It is therefore
equivalent to a rotation of the axis ; by the angle + 7,
Then these operators are rotation operators which com-
mute with the collision operator D. Thus

[D,R,]=0 ic[x,y,z]. (3.9)
On the other hand, we have
[R{!P]:O: (3-10)

for P and R, are made with J; which commute between
them. If we study the action of the operators R, on the
basis Innmn,), we bave, bearing (3.4) and (3. 6) in mind,

R innmn) =LL|nnmn)=(=Y""|nnmny. (3.11)

Thus the basis |nnn,) is the basis belonging to the
operators R,. It therefore defined a standard basis for
the irreducible representations of R, and the same holds
true for the operator P, given the relation (3.5). As
the operators (P,Rx,Ry,Rz) commute between each
other, it is possible to classify the states Inxnynz) ac-~
cording to the irreducible representations of P and R,.

If we classify the states with the help of the eigenvalue
p of P and the representation T'c {4, B,, B,, B;}, denot-
ing Innmn,) by (n),p,T), we have

PI (n)yp: F>:p| (n))p9 F> = (")nimfmkl (n);P,D,
Ri | (n);p’ I1> = (")"f’nki (n),p, F>-

The examination of the characters of the R, repre-
sentations in the basis |(n),p,T) enables us to identify
the irreducible representations. Thus we obtain the
mapping

(3.12)
(8.13)

T [S(p=+1)S(p=-1)
(—--)

A +++)

B | (+--) (=% (3.14)
B, (=+<) (+=+)
B, (==+) (++-=)

We can therefore connect two distinct values of the
signature S with each representation, every one of
them belonging to the two eigenvalues +1 of P.

Thus, we can write | (n),p,I)=1(n),S). At last, we
have

(@), p,T|P[@"),p",T7) = 04 u 101 Bppr P75

) 3.15)
((n),[” F.R{ l (n' )7.b 3 r’> = 6(n)(u’ )épp’GTF'R{' (

Then, according to the Wigner ~Eckart theorem, we
have

(m)pT|D|(n")p'T"y =5 Dy

(3.16)

The number of possible values for couple (p,T) is
equal to the product of the numbers of irreducible
representations of the S, and V groups, i.e., (2x4)=8.
Thus, the D operator is broken into a direct sum of
eight matrices belonging to the eight invariant subspaces
which then can be labelled by (S) or (p,T).

P! 61"1"'

B. Equality of the matrices of the subspaces I' = B;

A priori the eight matrices D*T =DS® are neither iden-
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tical nor equivalent, because the irreducible repre-
sentations are inequivalent.

However, the results obtained in Sec. 2, Part C
show that the dimension of ( p,Bi) invariant subspaces
is independent of { value, in each space of finite dimen-
sion N,. Thus, we may ask whether the resulting sub-
matrices D*?1 are equivalent. Actually, we shall see
that they are identical.

For this, the commutation relation [D,R]=0 gives
(m)pT|D|(n)pT) = {(n)pT |RDR| (0’ )pT). (3.17)

Generally, the action of any operator R on a state
{(n),pT) does not give rise to a state (or a linear com-
bination of states) of the same subspace (p,T) for this
is not invariant with regard to group rotation operations.
Thus, the relation {3.17) expresses an equality of
matrix elements belonging to different subspaces.
However, the expression (3.17) is too general to be
easily exploitable. Let us consider therefore the partic-
ular rotation operators R: by = 27/3 about the ternary
symmetry principal axis passing through the origin O
of the frame (Oxyz).

So it is obvious that this operation permutes the axis
in a direct or inverse cyclic way. Thus

Rilnnny=nnmn) (3.18)

and finally, as this operation conserves the parity, we
find
By |(n,mn)p, 4 = | (m 0, )p, A),

X YZ

Ry (nnn)p, B = |(nnn,)p, B, (3.19)

XY

(¢,7,%) cyclic permutation from (1,2, 3).

Thus we establish that the subspace I'=4 is invariant
with regard to the action of R,. On the other hand the
subspaces (B,, B,, B,) are permuted cireularly. By
using these results with (3.18), we have

{(nnn)pA D | (innl)pA)

'y 2 x"“y"z

={(n,nnpA|D | (inin!)pA)

zxy

={(nnn,)pA|D| (ninin)pA),

V2

(3.20)

<(nxnynz )pBl ‘ D ‘ (ni'cn;né)pBO
={(nn,n,)pB,|D|(ninn)pB,)
={(nnn)pBy|D| (nintn!)pBy.

y'z'tx v 2

(3.21)

Thus the matrix elements D*4 are dependent since
the two relations (3, 20) exist between them.

On the other hand, the matrix elements of the D21,
D#E, | and D?P3 matrices are identical according to
(3.21). Finally, we can say that in the Hermite poly-
nomial basis, D is the direct sum of the eight matrices
DPT with

D1 =By =DPBy, p=21. (3.22)
C. General case of the nonlinear collision operator
In this case, the operator D is such that
Dl fifel= [ Volwo, )N f1fs ~ 1,121 4 av,. (3.28)

Its matrix elements have been given on the basis
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| nlm) by Kumar® (relations 85,91). Formally, these
are written

f Q:tmD[inl llenzlzmz]dvl

={nlm |D|nlym,, nolym,). (3.24)

In this form, the matrix D is not reduced according
to the invariant subspaces under the rotation group,
since the basis nlym,n,lymy) is not a standard basis.
Nevertheless, it is a complete basis for the operations
of the group and it is possible to construct a standard
basis on it by introducing the Clebsch—Gordan co-
efficients® (I;m,l,m,! Im) of the group.

Thus, D must be expanded on the standard basis
Q,,,(mn,l,1,) such that

Q,,(mmnlyl,) = mE Limalyma | 11)Qy 1 @ugtymsy (3.25)
1™2
whence, in this basis,
[ @, (n010)D(Q,. . (nynyl,1,)] dv,
={(n010)m | D| (nymyl 1,0 m") . (3.26)

In this form, the Wigner —Eckart theorem can be ap-
plied and we have

{(n010)1m | D | (mynyl 1) m") = 6,6, D

l(nOIO) . ("1"21112)'
(3.27)

mm'

We note that this result does not explicitly appear in
Kumar’s work because he uses the nonstandard basis
{@ug2ymys @nyrymy) and this is why his matrix elements
directly depend on the indices (m,,m,,m) by the use of
Clebsch—Gordan coefficients.

The above technique can be used when the basis
considered is the {H‘} basis. However, it requires the
construction of the Clebsch—Gordan coefficients for the
irreducible representations (p,T). We will note these
by (. T, pT51psTy. The irreducible representations of
P or {R,} being of dimension one, the Clebsch—Gordan
coefficients are equal to 0 or to 1 following the selection
rules described below. These selection rules are ob-
tained from the characters of the expansion in irreduc-
ible parts of the tensorial product D?1T1 X D2T2, We
necessarily find p, = p,p,. The value of I'; is given in
the following table:

FZ
T, A B, B, B,
A |A B, B, B,
B, |B, A B, B,
B, |B, B, A B, (3.28)
B, |B, B, B, A

Then, we can introduce the standard basis
HT((n,) p,T,, (n,)p,T,) of the group by the relation

HT ((0,)p, T, m)p,Tn) = p, Ty, 0.7 ]pr‘)H!;:f)le(’::)z. (3.29)

Here we do not have the summation over indices such
as m, and m, as in the relation (3. 25) because the ir-
reducible representations of S, or of the Klein V group
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have dimension one. The matrix elements of D in the
standard basis are so given by
IHPF(G)DH" F'(d')dvz’:(a,Pr‘D( @ T =8, 000 D,

(3.30)

where we applied the Wigner —Eckart theorem and we
denoted by « and o’ the indice sets [(n)pT, (0)14] and
[(,)p, Ty, (n)p, T, 1.

The relation (3. 30) therefore shows the existence of
invariant subspaces for the collision operator when we
consider it in its general nonlinear form and these sub-
spaces are obviously identical and equal in number to
those obtained when D is linearized. Moreover, the
submatrices D?P; with the same p value are equal to
each other according to the result (3.21). Likewise
(3.20) has to be used for the calculation of matrix
elements of D4,

D. Reduction in irreducible tensors

To conclude, we must note that, because of the exis-
tence of eight invariant subspaces, the distribution func-
tion can be decomposed in a sum of eight functions in
connection with each subspace,

fle,v,t) = Erf”(r,v,t). (3.31)
Py

Especially, on the {H,} basis we have

f’r(r,v,t):(}_:/ F!(r, DHL (V) (3.32)

»

with

Fi(r,0)= [ WIS, fPT av= [ WEBL, fav, (3.33)
where we usually have’

W(U)Z%Q = (_32%)3/2 exp(- Bmv?/2). (3.34)

The relations (3.31)—(3. 33) enable us to expand any
function (and any distribution moment) in irreducible
functions of the(S,XV) group leading to collision
operator symmetries.

On the other hand, evaluation of irreducible tensorial
operators can be done using the Wigner —Eckart theo-
rem. If 7T is an irreducible operator of the (S,XV)
group, this theorem still gives

#1Ty r
fWH(nll) TPFH’:izf av

=((n)p,Ty || 77 || (;)p. T pT, poTs | pu T* (3.35)

The Clebsch—Gordan {pT',p,T,ip, I is real and equal
to 0 or 1. The reduced matrix element is therefore
equal to the integral if the selection rule imposed by
the Clebsch—Gordan coefficient is satisfied, i.e., if
p1=pp, and if the representations I',T’;, and I'; conform
to table (3.28).

The results corresponding to these selection rules
are given in Fig. 2 for a subspace of maximum finite
dimension N, =3. In each subspace, we have given the
(p,T) value of the irreducible tensors which are not
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FIG. 2. Representation of T*T tensors in the Cartesian basis
HET for Ny =3,

zero. We will notice that each time there exists only
a tensor which respects the selection rules.

Given these elements, it becomes elementary to
decompose the Boltzmann equation according to the
invariant subspaces of (S,xV). Especially, the
Chapman —Enskog process? can be developed by using
the reducibility of the collision operator and by expand-
ing the first member of the equation in irreducible
tensors for the transformations of (S,XV). This calcu-
lation is straightforward and can be formally followed
in a similar way to that used by Kumar for the SO,
group.

We will not undertake this study because it falls
outside the limited framework of this paper.

Let us point out, however, that this calculation in-
volves, in the reduction of the first member of the
Boltzmann equation, the evaluation of matrix elements
of the tensors v and

2 0 d
"v—{av, o, a—}

For instance, for v, we easily find with v* = fm/2

fWHslel zdv:— (V2(n,, +1)6

[P #l

T V2,0, n, Oz, Oy (3.36)
and for 3/3_,
3
S,_~ s
WHnlla HS2av
(3.37)

— -1 n
= 2nxu HMaxrfizy 0My "2y 5 ll'nzz

Therefore the v, and a/av, operators are irreducible
tensorial operators T‘-%:) and very generally the veloc-
ity v and the operator V belong to the same invariant
subspaces (- B,).
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Finally, we have to note that all the results which we
have established are still valid for a gas mixture for the
structure of the Boltzmann equation and there-
fore the collision integral possesses the same proper-
ties with regard to the Klein V group, whatever the
number of gas constituents. On a practical basis we
operate in the & =&, xX&, X+ X &, tensorial product
space of the G vectorial spaces corresponding to each
gas; each subspace £*T of & remains invariant but its
dimensions are multiplied by the number of gas
constituents,

4. STUDY OF D IN THE CYLINDRICAL BASIS C kmn,
A. Reducibility of D in this basis

In this section we shall very rapidly show the reduc-
ibility of the integral collision operator in an L? orthog-
onal basis of the same weight W as the basis constructed
on the Hermite polynomials but which is naturally ex-
panded with regard to cylindrical coordinates.

Let C,,, be the basis whose explicit definition is
given in Appendix A. The parameters corresponding to
the velocity v are denoted by {V, ¢,v }. We can write

Ckmnz(V’ <0”Uz): Ukm(V)(EXp(iméf’)/m)an(v,), (4. 1)
where %, n, are integers = 0 and m is an integer.

In this basis the matrix elements of D are given by
fc;:'m n'zD[ kmn ]dvl <k,m n |D|kmn} Dk' m'km (4' 2)

with k={k,n}.

Let {plm’| kmn,) be the unitary transformation co-
efficients from the basis to the basis {C,mn } We
have i

bim!

=21 (plm’ |kmn)Q,,,...
pim’
With the selection rules [Appendix B, Eq. (A4)] the
sum over m’ in (4.3) disappears. The operator D being
diagonal in [, in the basis |plm), we finally have

(4.3)

Dy """zpp? Erminl | prim )DL (plm® kmnyy.  (4.4)
Moreover the Dk,m.,km matrix elements are zero
except when
m'=m” =m, (=Ve=(=)=S,. (4.5)

Consequently, the D operator is diagonal in » and
such that the parity of n, is conserved, Thus

D, D(k‘) (k) mm’ 3

where (k) is such that (=) =S,. The operator D is
therefore reducible into two subspaces labelled by the
parity S, =z 1 and in each subspace into a set of invari-
ant subspaces identified by .

K m? km — (4.6)

B. Dimension of the invariant subspaces for a finite
dimension basis

Let N, be the maximum degree of the polynomial
Cpmn,- The dimensions of the submatrices Dy, ) are
obtalned by evaluating all the possible combinations of
the values of ¢ and », such as
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FIG. 3. Repnresentation of the integral Boltzmann operator in
the cylindrical basis CfF) for Ny, =3. The value of the couple
(pm) is noticed in the figure by (m)? and moreover (&) =(kn,).

2k +n,+ |m| <N, (4.7)

with (—)"Z:Sz.

We notice immediately that the matrices Df,,(,, and
D%y have the same dimensions, since the relation
(4.7) only depends on |m!.

After some calculations, we find

:(K+ 1K +2)

gim{ D] ) , (4.8)
with

K:[I—Vi%'ﬂ'] if (<)e=+1, (4.9)
and

K:[Eu%ﬂu] if (=)me=-1. (4.10)

As an example, we give in Fig. 3 the structure of D
with N, =3 (basis of 20 polynomials). However the state
classification can only be understood with the support
of the following.

C. Groups leading to the reducibility of D

These groups are the S, group generated by the parity
operator P and the SO, group of the R (a) rotations by
any angle o about the axis z. Given that P commutes
with rotation operator R and that D commutes with P
and with R, then with R,, it is therefore possible to
form an eigenbasis common to P, R, and D. We shall
see that the basis C,,, (V,¢,v,) is such a basis.

In a space inversion ¢ is changed into (¢ + 7) and the
axis z into -z, Using (4.1) and (3. 3), we have
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Pckmnz(v’ (p’vz)
= Ckmnz(V, @+, —v,)= (-)rn*ﬂ,ckmnz(V, @,v,).  (4.11)
Thus
Plkmn,) = (=)™ | kmn,). (4.12)

In the same way, the R (a) rotation changes ¢ into
(¢+ a). Then

Rz(a)ckmﬂz(v’ w’ Uz) = Ckmnz(v’ 4 + a, vz)

=explima)C,, (V,9,v,) (4.13)
whence
R, (a)|kmn,) = explima) |kmn,). (4.14)

This result is well known for exp(im¢) forms a basis
for the irreducible representations exp(im a) of the SO,
Abelian group. In the present case, the (S,xS0,) ir-
reducible representations are labelled by p = (-)""" and
m, whence by noting

|kmny = |p,m, k) (4.15)

with k= (%,n,) we can write, by applying the Wigner —
Eckart theorem to the D operator,

(p',m',(K)|D|p,m,k)=5

0’ Omm’Dp

(0 - (4.16)

The 8O, group being a continuous one, the number of
its irreducible representations is not finite. Then it is
the same with the invariant subspaces in which D is
developed. However, in any subspace of finite dimen-
sion Ny, we have me [~ N,, + N, ] according to (4. 7)
which finally gives 2(2N, + 1) invariant subspaces with
the two possible values for p. These are the subspaces
seen in Fig. 3, each of them being labelled by the
notation m? =+ |ml|*.

D. Equality of the matrices DP™ and De-m
As D commutes with any rotation operator, we have
D=R;MmDR (n)=R(m)DR (), (4.17)

where R_(7) is a rotation by + 7 about the axis x. In this
rotation, the axis z is changed into - z and the angle ¢
into - ¢. So,

R (m)|kmn) = (=) |k —mn,). (4.18)
By using (4.16), (4.17), and (4.18), we have
Dig ey = (=)D (x5 (4.19)

but the conservation of the parity p= (=)™n, implies

that (-)%": =1; therefore, finally
Dbm — pb=m, (4.20)

The matrices D™ representing D in the basis |kmn,)
are therefore only dependent on |ml.

E. Case of the nonlinear collision operator

This problem is dealt with in the same way as in Sec.
3. The expression (3.23) is evaluated in the coupled
basis by introducing the Clebsch—Gordan coefficients
{pimiy, pamy| pm) of (S,XS0,) such as

Com((ky) pym,y, (K;)pym,)

={ m m myC?1m1 CPa™y
13 P2llig
(ky) (k;,)

(4.21)
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Examination of the characters of SO, and S,'%*® shows
that we necessarily have

(prmy, pama|pm) =8, . B o m - (4.22)

Taking (4.21) into account, we can evaluate (3.24) in
the coupled basis which gives

fCP'"*(a)DC"""'(a') dv,={a,pm|D|a’ ,p'm")
=90,,,0 D?

207 Ormme Dacr s (4.23)
where we applied the Wigner —Eckart theorem and we

denoted by « and o the index sets [(K)pm, (0)1,0] and
(G, )pymy, (ko)pom, ]

The invariant subspaces are therefore the same for
the operator D in the coupled basis as when D is
linearized and evaluated in the simple basis C{J, .

The observations, concerning the decomposition in
irreducible parts of the distribution function Ar,v,#) or
the tensorial operators T, are still applicable here.
We have only to take the relations (3.31)—(3.35), re-
placing the indices (pT') by (pm) and the Clebsch—
Gordan coefficients {p, Ty, p, T, pT) by {pymy,p.m,| pm).

Finally, the invariance under rotation of D being
independent on the number of constituents of the gas, it
is clear that D will still decompose following the same
invariant subspaces whatever the number G of these
constituents, the dimension of each subspace being
multiplied by G.

5. REDUCIBILITY OF THE BOLTZMANN EQUATION
IN THE PHASE SPACE ¢3 X &3

A. Proof

The Boltzmann equation can be expressed in the
general form

Dl f1=nl/], (5.1)
where the operator ﬁ is
2 9 F
=2 N - JEN-T (5.2)
b ot vy, m \B

and where D is given by the relation (3.23). The dis-
tribution function f(r,v,), solution of (5.1), is there-
fore defined in the space &,,=¢ X& of ther and v
variables. The traditional methods to determine f(r,v,¢)
are essential related to a decomposition of the distribu-
tion functionA in the space & +» independently of the prop-
erties that D and D possess with regard to &,.

We shall demonstrate that the consideration of prop-
erties of D and D in relation to the phase space f"
gives us important information for the determination
of the solutions f.

Let us consider first of all the case where the exter-
nal forces F are zero. The operator D is simplified in
d, such as

~ 3
d:ﬁ"’l}'vr. (5‘3)
The Boltzmann equation is written
d{f1=D{r]. (5.4)
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The collision operator D is independent by construc-
tion of the variable r. It commutes with all the trans-
formation operators relating to r and, in particular,
with rotation operators and space inversion operators.,
It therefore commutes with all the operators of the O,
group relating to r. On the other hand, D still commutes
with the operators of this same group when the trans-
formations are applied on the variable velocity v. Only
this last result has been exploited by Kumar in the
spherical basis and by ourselves in the Cartesian and
cylindrical bases. Finally, D commutes with all the
operators of the [(0;),x(0,),] group, the direct product
of the transformations on r and v,

If we consider the operator ci, we detect that this
operator commutes with all the operations of the O,
group (rotation plus space inversion) performed in the
phase space. This is clear for the differential operator
3/dt independent of r and v. On the other hand, the
operator v-V,_is invariant for all space rotation and
inversion performed simultaneously in £, and &,.

In these circumstances, d commutes with all the
operations of the group (O;),,. As D commutes with
the operations of [(O,),%(0,),], it commutes a fortiori
with those of (O,),,, for we have [(0,),x(0,),]

2 (0,)

ry’

re’

Consequently, if we expand f on the irreducible
representations of (O,),,, the Wigner—Eckart theorem
will be applicable to the two members of the Boltzmann
equation and this will be totally resolved in subsequent
independent equations, each one relating to determined
invariant subspace.

The above observations can be used when the external
forces F(r,¢) are no longer zero but possess a deter-
mined symmetry. If F is invariant under rotation about
a fixed point O, the invariance group is still {Oy)yy, the
origin of frames being in G, for ((F/m)-V ) is an
invariant of this group.

If F has an axis of determined symmetry, the invari-
ance group of (F/m)-V,) is then (0,),,. As we have
(0,),,2 (0,),,, the Boltzmann equation is completely
resolvable into the irreducible representations of (0,)
Then an explicit calculation requires the use of the
cylindrical basis C, , . which we discussed in Sec. 4.

rey’

n

Finally in the case where F has Cartesian sym-
metries, the invariance group of ((F/m)+V ) is the
(V),y Klein group. There again, (0,),, contains (V)iy
In these circumstances, Dand D are resolvable into
the irreducible representations of V discussed in Secs.
2 and 3. The basis to use is clearly the Hermite poly-
nomial H_ basis.

The construction of the irreducible representations
of (Og),y,(0;),,, or (V) when the distribution function
flr,v,1) is expanded on a local basis, is a difficult
problem, because the parameters 8 and mean velocity
u, which are included in the definition of the weight
function W, depend themselves on r and ¢ and this de-
pendence complicates the expression of its expansion.
On the other hand this study is simple when the adopted
basis is such that 8 and u are independent of r and ¢.
As an example, we shall look at this in the next section
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and then see the problem concerning the local and
absolute basis.

B. Study of a particular case

In order to illustrate the technique to be used we are
going to consider the simple case where flr,v,¢) is
expanded on an absolute basis (8= 8, and u=u,) by taking
F=0. The cases where F is different from zero or is
of determined symmetry may be dealt with similarly.

In this case, the invariant group is (0;),,. The
distribution function f{r,v,#) is thus expanded on the
Q,..{v) basis,

fle,v, =W 20 F,, (r,0Q,, (V). (5.5)
imn
According to the Chapman—Enskog process, the

Boltzmann equation for a simple gas is written
(Kumar,® relation 111) to the (y - 1) order

approximation,
rel
2J (nlm!dln’l'm’)"‘”Fn.,.m.(r,t)+zl
n 1’ m 8=

X 27 nlm | J | nglymy, mylym )
mlymy
nalamgy

X (T-S)Fnzlzmz(r’ ) (S)Fﬂlll’"l(r’ )
== 22 (nlm 1J \nzlzmzy nllLW]'l>
nylymy
nalamy

X OF, 1m DT F, o (1,1, (5.6)

where the matrix element {(nlm|J1n,l,m,, nl,m,) is
given by Kumar? (relation 91).

Then, if we introduce the standard basis T%(nl1,;rv)
of (O,),, such as

Th(ul17V)= 5 Amim, |LMYY, , (F)@u, V),
rTr

m m
’;:I‘/’)’, (5. 7)
denoting a=(nl1,), we obtain
flr,v,)=W 25 Fi(awt)Th(a;rv). (5.8)

LMo

Then with

L
19)GL (a0, L Ly, 7t)

= 2 (L'M’ | LMy L,My) 0 Fia(ayrt) ) Fia(agrt) (5.9)
M1M2
the Boltzmann equation is written
r=1
20 (aLM|d | /L' M) TV Fllo oty + 20 L
al L* M’ §-1 ‘a1a2L1L2
Ll M'

(aLM|J| a,a,L,L,L'M") 579G (a; 0,L L y;7t)
=-2 2

eyl Ly
Loyt

(aLM|J|@,a,L,L,L"M")

X mGLi(a,a,L, Ly, (5.10)
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where

(aLM|J| alaleLzL'M'>=MEM (LyM,y LyMy | LMY

12

x(aLM\|J| o,L, M, a,L, M. (5.11)
Under these circumstances, the Wigner —Eckart
theorem can be applied and we obtain

(aLM|d| &'L' My =6, 1,600 0% . (5.12)
(aLM|J|aya,L,L,L'M"y =&, (5.13)

By JE .
MM? a,(alaleLz)
Then, we have the system of equations

ral

Ddb, e VFL ot )+ L L JE
a'

@ (ajaslyLy)
s=1 allszle

X G a,L,L,,7t)

=-2 L Thaarn, " CHeaaL,Ly), LEN.

@ ay,LiLy
(5.14)

Each relation is a differential equation which, in op-
position to (5.6), is only relative to the variables » and
¢, On the other hand, the solution " G% does not de-
pend on M. 1t suffices therefore to calculate ‘»"G%
(Me[-L,+L]) whence we deduce "’ F%(a,rt) by

‘O’Ff,;(al;rt) ""Ff,g (g3 7t)

= LEM (LM|L,M,L,M,) ° " GE(a L, Lyst).

(5.15)

At last the functions ‘“ FL(a;r¢) are given by the zero-
order approximation of the distribution function, i.e.,

FO, v, )=nlr, W=W 25 O FL(@:3)TL(a;7v),

LMa
(5.16)
whence
(O)Ff,(a;rt):an(r,t)Tf,*(a;;v) drdv
=0,00,00, 1 [ nlT,O¥%,(r)dr . (5.17)

Finally, we establish that there exists a Chapman-—
Enskog hierarchy relative to the value of L and these
hierarchies are independent.

The Eq. (5.14) therefore represents the most com-
plete expansion of the Boltzmann equation in the absence
of external forces (F=0).

If the external forces are no longer zero but have a
symmetry center O, we situate the origin of the frame
of reference in this point, which gives the same result
(5.14), with only the matrix element d~,,, being
modified. If F has a cylindrical or Cartesian symmetry,
we use the same method in order to expand f(r,v,¢) on
the basis introduced in Secs. 4 and 3.

Let us notice here that the expansion (5. 14) was ob-
tained with the hypothesis 8 and u being independent of
r and ¢. If this was not so, the expansion would have no
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incidence on a theoretical point of view, because the
result (5. 13) is obtained from the invariance of the
operators Dand D under the transformations of various
groups. This invariance is independent of whether the
basis is absolute or local.

However, the use of a local basis presents a certain
technical complexity because 8 and u must be expanded
on the spherical harmonics Y,m(?). This complexity
therefore decreases the interest of the result (5.14)
when the basis is local. However, it would seem clear
that a local basis is generally better adapted tc the
description of the physical phenomena than an absolute
basis. This is because the variations of temperature 3
and of mean velocity u are also included in the weight
function W and not only in the F,,,(r,!) coefficients, as
in an absolute basis. We shall see, however in the
following paragraph that each moment of the distribution
function, expanded on a local basis, is a finite linear
combination of the moments of this same function, ex-
panded on an absolute basis. The two bases are there-
fore equivalent in any L? subspace of finite dimension
for the determination of the distribution function
moments.

C. Equivalence of ““absolute’” and “local’’ moments in
any subspace of finite dimension

This equivalence exists independently of the spherical,
Cartesian, or cylindrical choice of the basis. We make
calculations in the usual spherical basis {,,,,} and the
parameters of the absolute basis will be noted v,
=V Bym/2 and u,, v and u being those of the local basis.
In order to simplify the calculations, we shall first
consider the case where u=u,.

So, we have

fle,v,0)=20 WFo,
nim nim

(5.18)

But with the definition of @, (Appendix A) we can see
that @, (vv) and @ ,, (¥,V) are orthogonal polynomials
with respect to the v variable. Then we find

Fnlm(r’ t) = f Q:lmfdv

= Z; Fg'l'm'fWOQ:Im(w)Qn‘l’m'(yov)dv

”?1'm'

:2 FS,. [ WR_(v0)R,,(vow)v? dv, (5.19)
but R ,(v,v) is a polynomial in v of degree (2n+1). We
can therefore expand it in a finite linear combination of
the polynomials R, ,(v,v) and we obtain

R, (vv) =#ZO C" (1, v/ V) Ryn(vov), (5.20)

where C7, is given in Appendix C,

From this, and by using the orthogonality of the
polynomials R_,(v,v) we deduce

F

nim

(r,0)= 22 Cul,v/v)Fo, (r,0).

n’=0

(5.21)

Thus the moments F

nlm

(r,?) of the local basis are
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(r’ t)Q"lm(VOV) = Z; WFnlm(r’ t)Qan(w)’

finite linear combinations of the moments FJ, (r,t)
of the absolute basis. The converse is evident. Finally,
we must observe that the » first moments F3, enable

us to calculate the n corresponding F , moments.

The interest of the relation (5. 21) is to allow the.
utilization of an absolute basis for the solution of the
Boltzmann equation and therefore finally the exploitation
in particular of the relation (5.14).

This relation was established by making the hypothe-
sis u=u,. The result, however, was still acquired in
the general case because it is a consequence of the fact
that the set @, is a polynomial set and that it is always
possible to expand @,, (v(v —u)) on the set {Q, ... (v (v

~u )}

The demonstration can also be made simply by using
the Cartesian basis {H'}. So we have

Ar,v,)=22 WRS*T BT (1 (v —u,)) (5.22)

=2 WFSTIHT (u(v —u)) (5.23)

and by following the same process as before, we finally
obtain the result

FeO(r, 1) = 20 "KL (v/ vy, u, —0)FS4T(r 1),

n'a0

(5.24)

where K} is given in Appendix C.

NOTE: The results of Sec. 5, Parts A and B were
established in group terms on (£, x¢&,). We also can
express them in an equivalent way in algebraic terms:
The reducibility of the Boltzmann equation in the sub-
space &;XE; of £, xE | shows that the basis used for this
reduction is an eigenbasis of the Boltzmann equation in
this subspace. Explicitly, when for example the exter-
nal forces are zero or invariant under rotation about a
fixed point, this basis is given by the examination of the
relations (5.7) and (5.9), i.e., finally for the subspace
&z xE4) by ¥E such as

‘Ilfl(llliLl! lzléLz;;', {11, 172)

= 2 (LML,M,|LM

Mlemlmi

m_m?
22

XLymydim | LoM ) (Lomlymy | LoM,)
X Yll,,,l(vl)Y,i,,,i(r)lemgﬁz)Y,.zmrz(f’). (5- 25)

In the cylindrical and Cartesian basis, expressions of
the same type are established by considering the func-
tions Hfl, and C?7, as well as the corresponding
Clebsch—Gordan coefficients.

6. CONCLUSION

The results obtained in the above sections show the
interest presented by the theorems of the group theory
to solve practical problems concerning the structure of
the Boltzmann equation, and this without passing by the
intermediary of complicated algebraic equations. We
have thus been able to show that the Boltzmann collision
operator was reduced in the determined basis such as
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{H,} or {Ckm":} in a direct sum of matrices, each of
them belonging to invariant subspaces. The groups in-
volved in this reduction have been identified (V) and
SO, groups) and the invariance of the collision operator
under the rotations was fully exploited to prove the
equality of different matrices of the expansion following
specific rules.

The above results have been enlarged to the full
Boltzmann equation. This has enabled us to define
totally the structure of this equation in the space (& r
Xf,). Full application of the resulting properties has
finally been made in the case where the external force
F is zero or invariant under rotation.

This application enabled us to find the eigenfunctions
of the Boltzmann equation in the subspace (¢, ; xE 5) and
to show how the Chapman—Enskog process could be
used. The method followed in this particular case can
be utilized point by point when the force F is of cylindri-
cal or Cartesian symmetry. It gives very similar re-
sults to the previous methods if the Clebsch—Gordan
coefficients for the corresponding groups are used
together with the indices (pm) or (pT) of their irreduc-
ible representations.

The previous considerations lead to a great simplifi-
cation in the determination of the distribution function
fr,v,t), for instance in the cases of the Chapman—
Enskog procedure or the direct calculation process for
the linearized equation.

It must also be noticed that the research and utiliza-
tion of the Boltzmann equation symmetries allow us to
derive the selection rules, which in an essential manner
depend on the boundary conditions of the problem, to
which f(r,v,?) is subjected through its expansion on dif-
ferent basis. The knowledge of these selection rules is
a fundamental matter since they directly lead to the
reduction of theoretical as well as numerical
calculations.
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APPENDIX A

We give without commentary the definitions of the
various functions used.

(a) Sphevical basis {@ 1
QunWW) =R ()Y, (3) (i=v/v),

where Y, () is the usual spherical harmonic (see
Messiah® for example) and

1
Rn,(uz,'):—l'\/—\yf (o) LI 3 (V%)

nt

SN ey (2111
_Z(>z<ky——————x,

L1+1/2x)
=L 20+ 2k + 1)1

_ nlf@I+DUIP
TRt 2i+ 1)l

f WQ:zan' P @V=0,0.10, s

N,
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with

v 2 2
W:n3/2 exp(- v*?)
(b) Cartesian basis H,:

H (vv)=

vy el

H, v )H, v )H, (v,), n=(n,n,n,),
x y z

[n/2)

1 " 2
Hn(VV):W ng (-)”2 "'P(zp> (Zp—l)' !(V‘U)"- p,
JWH () H (V) dv =6,

(¢) Cylindvical basis {Ckm}
C”""'z( w) = U, (volexp(ime)/V 2m)H, (vv,)
with

27k! /e 22
U, (vV)= <[(k—+Zn—W) - (VV)"'L,',"(V v?)

and

f chmn (VV)

Wt e Ao dv=25,,.5_ . Ot
APPENDIX B

A. Unitary transformation coefficients {n/m |n, n, n, )
of (Q,im eHn* )

These coefficients have been examined by several
authors. Their explicit value is given by Domergue*!
to which we refer for the calculations. We have for
m=0,

nlm I"x"v"z>:CV > zz+ Tt

{1 =m)! ) 1/2n,,!ny!nz! (nx+ny+m )l
x (sntar+ 422 s stm )y

s (21 - 28)! (n + S)!
SII =91 -m =29)[S - (I —m - n,)/2]

%27 (=)
S

Ry M) _ny—nx-m>!
X2 ){t!(ny ) <t N

-1

*[(n, +n, —m)/2 —t]!}

with N, =2""%""zn !n,!n,!, and the following rules:

Ys(nlm | nonn,)

(g n,| nlmy = lm | npgn)* = (- M7

iyt Wyl
(nl = mngnmny = (=y""nlm |nnn,), B
2n+tl=n+n,+n,

(=)mrngm =+ 1, (B2)

(—)"z"”’“: +1.

B. Unitary transformation coefficients {n/m’' | kmn, )
of (Onlm hid Ckmnz)

The calculation of these coefficients was carried out
by Talman. ' These are given by

_ 1/2
Oty = = =) o
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o nel e+ 1m )@ +1) )1/2
Elnl (20 + 25 + 1)1 127 Fn

w3 (=P21 =2p)1(p +n)!
s DY =Pk -2n+n,—-2p)(p+n-k) "’

and also with

(nlm | kmn,) = emn, | nlm)

(B3)
(nlm |km'n,) =06, {nlm|kmn,),
(=)=t 1,
2n+1=2k+n,+ |m|. (B4)

APPENDIX C

Transformation coefficients of R, (vv) and BT (v(v
~1u)) polynomials follow:

v <(2n+2l+1)!!(2n’+21+1)!!)1/2
C",Z,Z:

277 plpt
5E ()3
1 . Yerk!
X <Vl) kz(z " 0( ) k/\R!
o

(2 + 28" + 21+ 1)1 <u>2k
2

20+ 2k + 1)11(20+ 28" + 1)1 ! \ vy,

T
n, ny »

K:, :Kn, Km Kn, ,
x ¥ 2

[n,/20 ny-2p

Kol 3 (<)oo

x. 10 Bnt
x
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% nx!
Tl (k=) 2] (n, — 21 = )]

y (Vl) nx'zl[yo(uo _ u)]nx-zl-lz:

0
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One-component plasma in 2+ dimensions
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The one-component plasma (ocp) model with neutralizing background is extended to real dimensionality
v=2+e€ with —2<e<2. The equilibrium properties (pair correlation and thermodynamic functions)
investigated within the Debye approximation, up to the second-order in the plasma parameter e?/kyTAS,
with the aid of the Wilson quadratures, interpolate between two- and three-dimensional results for 0 <e <1,
and extend the v=3 behavior to all v<2. The dimensionality v=2 is shown to play a special role.
Quantum diffraction corrections are included in the high temperature limit through a temperature-
dependent effective Coulomb interaction. As a by-product, the particle diffusion coefficient (Bohm) of the
strongly magnetized two-component plasma taken in the fluid limit may be given a finite volume-
independent expression in the thermodynamic limit when v =2, provided due atiention is paid to the

Tauberian properties of the Coulomb potential for —2<e<0.

1. INTRODUCTION

It is a common experience that the well-known one-
component classical plasma model (ocp) with a neutral-
izing background exhibits significant modifications of
its properties when the dimensionality parameter v takes
various integer values. This model has received a con-
siderable attention, in the context of plasma physics as
well as in the framework of basic equilibrium statistical
mechanics. It is now a well-known fact' that, for v<2,
the total Coulomb interaction energy per particle does
not remain finite in the V - limit, a phenomenon im-
mediately explained by the analytical form of the v-
dimensional Coulomb interaction,

2av
¢<u>(1,):{sgn(1/-2)|1f| , V#E2 w
In| 7|4, v=2, :
Solution of the Poisson equation
@) 5 zﬂvlz
ACD (r):—lV—ZIS,, ,,(’V), Sv:m (1.2)

Then the total Coulomb energy of N particles with
unit charge e, in the presence of an inert and homogene-
ous neutralizing background reads! (r;;=Ir;~r;!)

e x
WON) =52, 0 (r;) - pe? 1 |d'r

i#j

j=1
2,2
X¢‘”’(4r—rj])+8—ze—/fd"rd"r'
2

) U e®§ w)
X ¢ (‘r—ri)z—é—;{¢) (7’«;1)

Ne? —”\(lr-l)z ~
=+ —t — =
T %_:11 R B,(v,R,N), p

With the background self-energy [V =(S,/V)R"]

v+1 e2N?
Bu(l/, R,N) :<y T3 +¢ (V)(R)th?) Z—Rﬂ

) D v-2| (éj—z%)*sgn(v - 2)] f;(%f_v)“"‘/“

XNI*Z/V, IJ#Z,

v+1 PS\ | 2N
+4 ke ’]

[v+z 21“<vN)] 2

Journal of Mathematical Physics, Vol. 17, No. 8, August 1976

S
]
[\

(1. 4)
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Equation (i. 3) embodies all the previously considered
ocp with integer v. The case v=1 with

-t X N ¥,
W) :._2_;4 (20 -1=-N)r; + ezp.Z‘; 72— eszZ_; 7y
i i= i
eszRZ 92p2R3

+
2 3

(I1.5)

has been extensively considered by Baxter and Kunz,
while the ¥=2 ocp with
R

o g (13

) e? N
v _c 1
WON) =22 In N C

i*j
(1.6)

has recently1 received a lot of attention. As well as

any other ocp, it provides a simple tool for testing the
coherence of the basic principles of the Gibbsian en-
semble theory for particles interacting through a long-
range potential. Also, it allows for a very useful model-
ling of the strongly magnetized v =3 plasma. Equation
(1.3) shows that v=2 is a landmark for the ¢ “’(v) long-~
range behavior. For v = 2, the absolute value of the lat-
ter is a decreasing function of », while it increases with
it for v <2. Therefore, in order to render more sys-
tematic and more transparent the V-dependence of the
equilibrium properties (pair correlation and thermody-
namic functions), and also to allow for a local study
around v =2, badly needed for the determination of the
particle diffusion coefficient in a real two-component
magnetized plasma,® we are led to extend (I. 3) to any
real v. This process is an interpolation of the above
integer-dimensionalized ocp models with an infinite num-
ber of real ones. Indeed, it is a very common technique
both in atomic physics* and in phase transition theory,®
as well as in high-energy physics® to realize (and even
complexity®) the relevant parameter: space dimensional-
ity or angular momentum to get additional information
for the physical models with discrete values of their
quantities. Generally speaking, it allows for the intro-
duction of a much wider perspective through the unifi-
cation and extension of apparently uncorrelated tech-
niques and results. We expect the same Kkind of proce-

Copyright © 1976 American Institute of Physics 1404



dure to be fruitful in the theory of the one-component
plasma, where so many results have already been
gathered in v=1, 2, and 3 dimensions. Qur feeling is
supported by the inverse quadratic form of the Coulomb
interaction in momentum space [Eq. (I.1)]

o¥NR)=-8,/k%, allv, (1.7

allowing the extension of the Poisson equation to any v
values. A first by-product of the extension (I.7), already
noticed previously,! is the v-independence of many fea-
tures of the high-temperature (Debye) treatment in k-
space of the equilibrium properties. As an example,
the limits g,(0) and g,(~) of the pair correlation function
exhibit analogous trends for all v. However, the range
of validity of the high-temperature approximation based
upon a perturbative expansion with respect to the
plasma parameter A remains strongly v-dependent.
The introduction of an infinite number of ocp models
with a %% interaction between ¥= 2 and 3 should give
access to a selective extrapolation of the suitable v =2
behaviors needed in the modelization of the three-
dimensional magnetized plasma, while keeping away
the pathological features arising from the nonvanishing
harmonic term in the V —~< limit for v < 2. This latter
is responsible for the breakdown of the translational
invariance used in the standard Debye analysis of the
Mayer—Salpeter diagrams. Recent calculations? have
revealed that the ¥ =1 ocp model exhibits a periodic
(rather than fluidlike) equilibrium structure persisting
to all temperatures. An important question is the deter-
mination of the smallest v retaining the translational
invariance, thus allowing for a continuous extrapolation
of the ¥=3 equilibrium properties. The Debye expan-
sion performed below makes clear that v,,,=2 + € with
€ > 0. In this perspective, the interest of the real v
extension of the Coulomb interaction seems to lie in a
more flexible modelization of the three-dimensional
plasma, as explained below in Sec. IV where a well-
defined Bohm-like particle diffusion coefficient is de-
tained in the € =0 limit,

On the other hand, the projection of the ¥ =3 ocp onto
smaller v ocp’s could be of value for the determination
of high order corrections to the usual model companion,
free from the well-known short-range divergence of the
»? interaction. Whenever possible, this procedure com-
bined with a Av expansion of a given equilibrium quan-
tity resummed with respect to the plasma parameter A
should provide an alternative derivation of the high-
order corrections to the most diverging graph in the
=0 limit, as explained in a forthcoming work. In so
doing we shall encounter truncated ocp models with the
nonvanishing harmonic sum deleted for v < 2,

The present paper is organized as follows: In Sec.
II, we establish the equivalence of the real-v Coulomb
interaction #** in configuration space with the Poisson
equation solution S22, We extend, to 0<v <2, the cor-
responding Fourier integrals with the aid of suitably
selected Tauberian factors. The high-temperature
(Debye) analysis is displayed in Secs. I (pair correla-
tion function) and IV (thermodynamic functions) up to
the second-order in A with €=v -2, as a running pa-
rameter. The previous V-~integer results are then re-
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covered as special cases of the present extension. In
Sec. V, we consider a wavepacket extension of the point-
like charged particles taking into account the uncertainty
principle in the short-range part of the particle—particle
interaction. We conclude with the above-mentioned de-
rivation of the particle diffusion coefficient for the two
components V=2 plasma taken in the fluid limit (Debye
length —~),

1. COULOMB INTERACTION WITH NONINTEGER
DIMENSIONALITY

The compact expression (1. 3) may be immediately ex-
tended to any real v with

VW) =1/7"2 vz2, (I.1)

Similarly, we have already obtained, in % - space, the
extension (I.7) of the Poisson solution. Therefore, it
remains to introduce a noninteger Fourier relationship
to connect these complementary aspects of the extended
Coulomb interaction. This may be achieved through the
straightforward extension of the volume integral

R T T
J' #iav f sin’%¢, do, f sin®2 ¢, de, - - -
0 0 0

. ’ 27 /2 S
X i ——— e RV =V RY
fo sing, . d¢,_, ﬁ doy,, e /2)R R (11. 2)

and the corresponding Wilson quadratures®

(Zﬂ)‘”/d"kf(k-kl)
:% fﬂdk fvde 2 (sing)"2f(k?, kyk cos¢), (II.3)
0 0

where K,=S,/(27), specialized to the generalized
Fourier transforms

% T . Va2
o ¥7) :K"—'li‘i f dk B! d(b(—sﬁﬁl—exp(ikr coso)
2m° ), 0 k
e/2 + ©
=- svsv_,<%) T (%) v f dk kY2 (ky)
]

==, € > 0’ (II. 4)
and

K - v
¢(U)(k):§l;r;1_/; d”"mf d¢ sing*? exp(~ ikr cos$) ¢ ¥ (7)
0

2\¢/2 ol
=_2girer/2 <E) [Od?“rl'”ze]e/z(kﬁ

(11. 5)

S,
-7
As in three dimensions, ¢ *’(k) is obtained through a
regular quadrature for € >0, while the inverse trans-
form (II. 5) is only meaningful in the usual Tauberian
limit

lim dv e <12 g, . (kr)

a=0 0
_(2R)2r((e +1)/2)
T (@ +)[(e+1) 2] 7F

e/2 +
z;%mzr(lz—e) , €>0,

a=9

(11. 6)
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We may wonder if the present analysis is able to repro-
duce the v =2 logarithmic potential' in the v =0 limit,
and also make sense for € <0, when ¢ “’(¥) increases
with ». These subtle points may be answered affirma-
tively provided the Tauberian factors are given their
Debye-like analytical forms A°/2K, ,,(A)/7* /2 and

(® + 2% as explained below in Sec. TII. Let us resume
the derivation of (II.4) with

. “dR R /2], (k)
m | e
I'(e/2) 2°/2
:AE/ZKe/z(M’) A-oz (2/ )T (1.7

giving back the two-dimensional interaction through
Ky(rX) ~,.olnlAr| provided the limit € =0 is taken first.
An immediate outcome of this approach is that A~R™?

in the thermodynamic limit, in order to reproduce the
dimensionless interaction Inl7/Ri. R could also repre-
sent any other infinite quantity available when the plasma
model is made more specific. For instance, one could
also have A~ L™, L being the infinite length of the mag-
netized rods supporting the linear density of charge.
This Tauberian limit makes clear that the length scaling
the logarithm has to be a very large one. Apparently,

this is the first unambiguous indication for that property.

The relationships (II. 6), (II. 7) do confirm that the
Fourier transforms (II. 4), (II. 5) may be analytically
continued down to — 2< € <0 when ¢ “’(7) is given the
Tauberianized expression lim, . (X*/2/#* /2K, (A7),
while ¢ “’(k) is obtained as

Bt /2 f dr ,,Jelz(ky)Ke/z(M) = (R + )&)'1_ (11. 8)
0

11l. DEBYE PAIR CORRELATION FUNCTION
A. Basic formalism and first order

Once the Fourier transform of the Coulomb potential
is defined, we are allowed to develop the usual high-

temperature formalism based on the perturbative analy-
sis of the pair correlation function'

2,(11) = exp(BW,(11,), B=(kpT)?,

in terms of the potential of average force w,(7y,), with
respect to the dimensionless plasma parameter

(111. 1)

_mean potential energy at screening distance A,

A mean kinetic energy
eZ
A 1. 2
ks TAS ( )
wy(7y,) is then explained by
wy(715) = —:(?2‘) + 05 Bulryp)0%, (111. 3)
B k=l

in terms of the bare potential u(ry,) = 2 ¥ (ry,), and
the simple 12-reducible cluster integrals

1 .
Bk(ﬁz):a/" : »-[d"ra vt 'dvrk+221(k)fij,

with 3% denoting the summation over all possible 12-
irreducible cluster diagrams that can be obtained from
the root points 1 and 2. % refers to the model points.
fi;=exp(—Bu(r;;)) = 1 is the usual Mayer function. Equa-

(111. 4)
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tion (IIL, 4) is meaningful in the N, V-« limit for finite
k. Now, let us introduce the high-temperature approxi-
mation with the condition

e2¢ (V)(Vij)/kBT<< 1, Vi ~p'1 v (111. 5)

without any further restriction on the number density p.
Thus we hope to find a small parameter in terms of
which the cluster expansion may be constructed with

u(vy) >M>0, v <wy, (I11. 6a)
u(r;) ~€, ry<r<X, (I1L. 6b)
u(v;;) decreases faster than »¥, 7>/, (I11. 6¢)

and 7,/X < € <1, fi; is then approximated by — 1 in
the region (III. 6a), of order € in (III. 6b) and negligible
in (III. 6¢) with [ @7 u(7) ~€'A"”. Now, only cases where
the range of the potential is long compared to pt/v

(oA’ > 1) will be considered. Each cluster integral 8,
contains % field points and 1 lines. The order of mag-
nitude is given by €*(oA")* = €''*(pe’A")*, Although €’
is by definition small, the quantity pe' A" may be large
for sufficiently large ). It is therefore useful to re-
group the cluster expansion terms for w,(7y,) according
to the value of / - 2, the summation is over % values for
fixed I — 2. The only dimensionless parameter in the
problem being e?¢ “(#)/kpT, one has to put € = A=(e?/
Ep T @ (\)=e?/ks TX,. In order to get a realistic re-
sult free from the harmonic symmetry-breaking term,
we first restrict to v=2+ € with € > 0. Therefore, the
first-order (I - k=1) contribution to (III. 3) is the usual
Debye chain

8(715) = f(11) +Z_1P"f '--fd"ra...d”rmz

Xf11g) [V any 2). (111.7)

The introduction of f;; ~— Bu(r;;) in Eq. (IIIL. 7) leads to
[V(k) = - Be?S, k2]

Co(712) = 0(7y,)

V(e
= (Zﬂ)'"/dvk exp(ikv cosb) ————(—:,2———
1-pV(k)
K, 4 f‘ f" o ez ) V(k) et

==t dk d6(sin8)’~? exp(iky cosb) ——

am Jy , 4% p( 1= py(k)
— -A K. 12(r/2p) A2 kg T
—25/2[1(1+€/2) (V/KD)HZ s D—W, (111. 8)

giving back at once the well-known results

C,y(r) == Beexp(- 7/2p), Cy(r) == Be®K\(v/Np),

Cy(7) = = Be? exp(- 7/2p), (111. 9)

with K, ;,(x) second kind modified Bessel of order €/2,

and the € parameter analytically continued down to

€ < 0 for the truncated ocp’s with only the Coulomb re-
pulsion retained in Eq. (1. 3). In so doing, we may also
contemplate the ¥ =0 limit

—2BeA} 7 ¥
ek b T g [T Y=0
T(0) 2 A\ ’

corresponding to a gas of noninteracting harmonic oscil-

Co(n) = (T11. 10)
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lators, with the Debye approximation identical (to all
orders) to the perfect gas. Equation (III. 10) stresses out
the topological content of the dimensionality concept
already noticed in Sec. I, with the emphasis put on the
local density in the neighborhood of a given point
charge”® rather than on the metric properties of a sys-
tem, everywhere dense, and filling homogeneously the
available space to it. Negative dimensionalities may
also be given a meaning through first-order Debye ex-
tensions such that

1/2 3/2
cur=-see(2)"(2) "o )

B. Second order (/ -k = 2)

Once the first-order is known, the analysis may be
pursued further to high orders along the same way al-
ready used* for €=0. In so doing, we shall both empha-
size the particular role played by the two-dimensional
ocp, and also allow for an overwhelming simplification
of the previous model calculations separately performed
for integer v. Let us first notice that the Fourier trans-
form of the nth power of the Debye chain (III. 8) is pro-
portional to

[f drr"‘lf d6 (sin8)*~%(Cp)" exp(ikr cos0)
0 )

€+1 a 4 _2_>e/2
—F< 5 )ﬁj; drv¥ (kr

/) "

xJe/z(ky)(zeizi—\/(zf_{__(/z 512\) 3

a locally summable quantity in the vicinity of ¥=0 for
n<2+e€l; gothe Mayer—Salpeter analysis outlined in
Sec. IIIA may be worked out further to order n <2+ ¢,
without embarking in the tedious Meeron resummation

of the most diverging graphs® in the »=0 limit. Restrict-
ing to second-order, we have first to pay attention to

the simplest 2-bubble made of two Debye lines curved
between the root points 1 and 2, i.e.,

A% K2,,(%)
). L —
21 2°I'4(1 +€/2)

(111. 11)

(111. 12)

(2a)= 7 in number of %,.  (IIL 13)
The next two graphs are equal to the convolution product

of (2a) with a single Debye line (III. 8)

K
(2be) === [ d’k exp(ikry ) G(R)H(R), (111, 14)
where
Ay 1B e (%)
Clk) = amy=gr (1 7 < /22 J 7% explkr) =~
— A? Syt _T((1+e)/2)‘ lez(_kj l,he/Z)
T2 (1+¢/2)° 72 a:\7|,,, )’
(111. 15)

given in terms of the Meijer function G}, as detailed in
Appendix A. As an example, for €=1, one recovers the
v =3 bubble function

1,3/2)

1,1/2

47TA ka
2tan‘(k/iz
A 21k ’

(111. 16)

=4
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obtained through

1 (a+Cy)I'(a+C,) -t
T'(a+b)

=C1+-Co
a-1,b

1,2
GZ.Z(

X Fila+Ci,a+Cyath;~x), (I11.17)

On the other hand, the Fourier transform of the Debye
chain (III. 8) reads

—AS, I+ )/2NVT )y
T(1+¢€/2)

—AS, 720 ((e +1)/2)
TTAFE2)EEFD)

H(k)=

f dr vK, 15(7)d ¢ j5{ler)
0

(111. 18)

giving back the v= 3 result — 47(k%+ 1)"!. Introducing
Eqs. (III.16), (III. 18) into Eq. (IIl. 14) yields the com-

pact expression
= A2 F((€+1)/2)>3 L
(2bc) = 31 (Sv-lr(l +€/2) (271)"(27’)5,—2

kAT, o)
< f,
b2

1 1,146/2
XG5 T |1z )

suitable for numerical computation with » (in number of
Ap) as a running parameter. However, it appears too
compact to extract in a convenient way the so important
=0 and == limits, and it is therefore useful to con-
sider (III. 19) under the form

oA T((e+1)/2)\?
(2be) =— (S‘*-’ T +e/2) )

(111.19)

3 /2
@O

= dkk
) Er el

X f dur=< 2 K2 (), 15(ku), (111, 20)
0
explained by
f dkkd p(k7)d e s5(ku) _ )'e Le 1o(NKe (), ¥ <u,
0 k2+1 le/2(74)Ke/2(7’)y Y >u,
(111. 21)

while the last two-legged nodal graph (¢=2} is a con-
volution of (2a) with two single Debye lines located sym-
metrically, given as

A%(S, T((e +1)/2) s °
2'( (1 +¢/2) ) (277)"7’”2,/;

xﬁ dud="2K2,,(w)d, (k)

dk kd ¢ o(k7)

(Zd) (kz F 1)2

(I11. 22)

with
” f “dk kd, (k7). 5 (k)
0 (¥ +1)

“Ie/z(y)[uKe s () — 3€K, /z(u)] - K, /5(w)

B X[zel () + 71, )y (P)], 7 <u,
e 12K, g (9) = 3 €K, ()] = K, 1o(9)
X[3€l 1y (W) +tl, j5n ()], ¥>u.
(111. 23)

Collecting altogether Egs. (III.13), (IIL. 20), and (III. 23),
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we can write the total second-order correction to
wy(71,) as (BeZADSu: 1)

W2(ry,) = (2a) + 2(2be) + (2d)

— A? K2 13(115)
2127 (1 +€¢/2)% )2 71‘272

2 3/21-‘ 1+ 9 ZSV 712 .
(e

XK o(r10) 1, /2(7’12)/
7

duut=* 2K} /z(u)]
12

S,mr((1+ e)/zw[ f "1z
+ 2 1-e/27-2
“ararenr L), duw " 2K7 ()

X[Ze /o) (115K ¢ 1201 (712) = 3 €K 15(715))
- (%Ele /z(u) + ule /z+1(u))Ke /2(7’12)]

+f dunt=2K2 ()= K, () (3€l, 5(ry5)
712

+ V10le 1201 (112)) + 1l 15(715) (K a0 () — 3€K /z(u))]]} .

(I11. 24)

Equations (III. 8), (III. 24) bring into light the central
role played by the € =2 ocp in the high-temperature
range. It is a remarkable fact that the v=0 limit of
these expressions give back the previous ¥ =2 results*
worked out with Inl»/R|, thus making clear that the
screening process does not depend on the detailed form
of d)“”(r), as long as the bare interaction remains long-
ranged.

On the other hand, the substitutions

Ky 1p(0) = (1/2x)' 26, I pp(x) = (2/7)' * sinhx,
Ky p(x) = (1/20)" 2™ (1 + 1/x),
Iy o) = (1/220 2671+ 1/2)
allow us to recover the v= 3 well-known correction’
W2, (v)/N2=e? /¥2 — (1/2v}{ e In3 + e Ei(- 7)
- e" Ei(- 3} +(1/81[(1 +»)e” In3
—4e" - e+ (1 +7)e" Eil-7)
-~ (1-7)e"Ei(- 37)], (111, 25)
thus illustrating the unifying power of this v~dependent
model analysis.
C. Long-range and short-range behavior

An alternative method providing a direct access to
lim, . W,(7) and lim,..W,(#) is afforded by the following
specialization of (I11.17):

k2|1 1*‘/2> T (1~ €/2) k? ( € 3 —k2>
1,2 = =" F 1-=:=.
G22<4 1,172 r(3/2) P L 272’ 4 ’
(111. 26)
introduced in Eqs. (II1.19), (III. 22) with the result
T(1-¢€/2) [~dkit*e/? €3 -k°
@be, 20 *orrmere | e W 1-gig g )
(11. 27)
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More generally, any higher order convolution graphs
with 7 Debye lines and p bubbles'! may be explained as

( (1+€/2) “dk k1+€/zJE/z(k'r) F (1 1_ € 3 —B&\P
\ 2 R (= L S Sl T e o
T(l-e/z) fy' m-1 T 1/2 _
TJ( 2tz ) 20 (m) <’27) e (111. 28)

The longest convolution chain with m=n and p=n-1
displays the characteristic ¥~independent behavior

(Eﬁ} - €/2,)> nel_ gn-3/2-¢ /2,

o2 oy

(111. 29)
thus extending, to any v value, the well-known »"2e”"
three-dimensional asymptotic equivalent.?®'? As a con-
sequence, the hypernetted chain (HNC) :a.ppro1~:irna'cion13
to W,(r,,) consisting of the resummation to infinity of
the second-order nodal graphs, appears also valid for

v <3, as evidenced by a preliminary study of the non-
convolution (Bridge) graphs which are nonnegligible,

but with an increasing finite contribution, in the »—0
limit, when v gets smaller.

The short-range behavior of W,(7;,) is obtained from
the resummation to all orders of the parallel graphs
(the most important ones in the ¥ =0 limit), i.e., the
n-bubbles made of # Debye lines between the root points,
in the exponential series

- Co(r1,)
W2(7’1z) u2'lz
71270 :

-C,(ny) + + =exp[-C,(r,)]-1

(111. 30)

As a consequence, in the high-temperature range, one
gets the limit behavior

(1) (= Crig]e d TR A1/, €20,

7. expl~ C,(7{s) =

82\712 g0 P A7 exp(= A /€), €<0,
(111, 31)

while, for €=0,

A
p”
gn) - <‘%> .

rlz—o D

The € >0 result extends the already known ¥ =3 short-
range behavior, * while, for € <0, the results agree

with the nonrepulsive character of lim, .40 “(+).

V. THERMODYNAMIC FUNCTIONS

This nodal analysis of the pair correlation function
allows for a straightforward computation of the standard
virial expressions for the canonical thermodynamical
quantities. In contradistinction to our previous € =0
studies,! we have to pay some attention® to the lineari-
zation of (II1, 1) when g,(7;,) is introduced in the virial
quantities, with its first-order approximation

gz(7’1z) ~eXP[— cv("ﬁz)Jg 1-C, ().

Such a procedure is receivable as long as the series
expansion of exp(- C,(¥)) may be term-by-term inte-
grated with

w P
fdrw-l(—ﬁrK;?m) <, all P,
0

(Iv.1)

(Iv. 2)
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a condition fulfilled for v < 2, and retaining a meaning
for v <3 when p <2 +¢™!, Nevertheless, in this explora-
tory paper, we shall restrict to the first A-correction
with A <<1, so that (IV.1) can be considered as good
enough an approximation. The systematic study of the
high order corrections is postponed to another work.
Therefore, we obtain the virial pressure

P fod ¥3p () p? / 3, .
Y. —p-— + —
ZalT P 2vk3Tﬁur T &) g JE T g 07)

p2e?s f" c,(n a, ,.
=p-—x Ir v’ X = 1,.2v
Pt VBT )

A1-¢€/2) > (Iv. 3)

:p(l TET(1+e/2)°

taking into account the contributions of the unscreened
positive neutralizing. It easily reproduces the well-
known integer equations of state

Py/kyT=p(1-A/6), P,/kzT=p(1-A/4),
and
Py =kyT(1~A/2)=pkgT - eVpkyT/2 (Iv.4)

with the ¥ =1 result explained in a form equivalent to
the two-component Prager result? P, =20k,T ~ (¢/2)

XVpkgT obtained from the Poisson—Boltzmann equation.

The corresponding internal energy is

Eu _ P @) p )
SUNRRT 1 +kaT d’r g5(r)¢ (r)-mfd’r(p (v

AT(1-¢€/2)
T (1+€/2)

including the ¥=23 result E,/NkyT=3(1 - A/3), However
it should be noticed that our present £,/Nk,T=1-A/2
differs from the Inl7»/R| quantity' E,/NkyT=1+(A/2)
X[1-7yIn(x,/2R)]. These contrasting behaviors in the
€=10 limit are easily explained by the ¢ “’(») dependence
of the above virial expression. Equation (IV. 2) shows
that any repulsive long-range potential with the same
rd3¢p ) (») /87 yields the same equation of state. This is
precisely what happens here with Inl+/R| and 1/#°. In
contradiction, E, does not show up the same invariance
property, thus motivating the above discrepancy. A
more basic explanation for this result is afforded by the
independence, already noticed in Ref. 1, of P, with re-
spect to the way the thermodynamic limit (N -, V-,
p < =) is obtained, while E, strongly depends on it.
The other thermodynamic quantities are easily derived
from P, and E,.

=1 (Iv.5)

b

The excess free energy is

Fexe B , , —AI‘(1—€/2)
= ds’ E e
B Ar ﬁ B (6 ) ZEVF(1+€/2) ’ (IVG)
while
C,_ 35) _ Vky  AckgT'(1-¢/2)
N (aT N“z_+ 20 (1 +¢€/2) ° (Iv.7)
and
Sexe  Fexe_ pexe L 3(F*/N) _ - Ael'(1-¢€/2)
N T = 28 2T (1 €/2) (v.8)

with §7°=— C,* for v=2,
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These results show that the usual polarization pic-
ture® of the first-order A approximation, with all the
corrections negative except C,**¢, holds only for € > 0.
The truncated ocp’s obtained for € <0 exhibit an opposite
behavior which unambiguously demonstrates that the
deleted harmonic terms in Eq. (I.3) are needed to se-
cure the usual long-range polarization (screening) ef-
fect, for ¢ “’(») increasing with 7.

High order corrections to £, and P, may be obtained
in a straightforward, although tedious way, by inserting
the A corrections to W,(#;,), obtained in Sec. III, into
(Iv.3) (IV.5). As far as P, is concerned, a more direct
insight into the corresponding contributions may be ob-
tained from its higher nodal expansion

pa P _ P
1-=}{p” 0 }&%, N (= C (ar P /2))
op i1 ret v
N S (Iv. 9)
~—4(""12/7\1))5/2’ 12 7Dt )

Vanishing with €, in terms of the first-order correction
(ITI. 8) to g,(7y,), which indicates that the first equation
of state (IV. 3) is an excellent approximation for lel <1,

One may also wonder if the ring resummation per-
formed in k-space, on the free energy itself, will re-
produce the virial result (IV.6). It turns out that the
Tauberian procedure involved in the resummation of the
given diverging quantities is strongly v-dependent, as
shown in Appendix B, so that the expected finite result
comes out only when v =3,

High order corrections to F may also be obtained
irom Eq. (III. 8) through

- N2 © © - m
BFm:_f/‘Qif dxwlz,(—cﬂu) (1v. 10)
0

2V X, mea\ ml

V. DIFFRACTION CORRECTIONS

Apart from the dimensionality extension of the ocp
model, it is also possible to consider another generali-
zation of the Coulomb potential which amounts to re-
placing the pointlike = interaction by the corresponding
one between spreaded out charges over quantum-mechan-
ical wavepackets, to take into account the diffraction
effects which become nonnegligible in the high-tempera-
ture regime, defined by (A=#/Vm,kzT)

E g T A<, v.1)

The corresponding temperature-dependent and finite at
r=0 effective interaction may be worked cut for any ¢,
thus extending the ¥ =3 procedure!’ leading to the ef-
fective interaction (¢2/7)(1 — ") with C ~27!, because
the main steps of the corresponding k-space derivation
are essentially v-independent.

Let us consider the standard trick approximating the
two-body high-temperature quantum Slater sum with
the classical Gibbs expression through the ansatz!’

expl- B(H, + H,)] = exp(~ BH') exp(~ BH,)G, (v.2)
where

PO Y |7, -7,

0_{=12me’ lsi—<l,fsN i J
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G is thus a measure of the noncominutativity of H, and
H' in the small B range. It is obtained as a solution of
the Bloch-like equation

= exp(BH)[H, - exp(BH YH, exp(~ BH ] exp(- BH )G .
(v.3)

Expanding the bracket with respect to 8, one gets a se-
ries stopping exactly after the second-order, i.e.,

GB

oG ’
5%: - exp(BHo){B[H JH, ]+§T[H H ]]} exp(~ BH()G.
(v.4)
Restricting to the term linear in H, we get
B d ,
G=1 +J; B, [exp(B,H)H' exp(~ B1H,) ] dB,, (v.5)

which allows the density operator p=exp[B(F - H)], with
H=H,+H’, tobe written as

BF) = exp(~ BH) )
= exp(- BH') exp(- BH,) + exp(~ BH’)f 31%

pexp(~

x{expl(B, - B)H IH' exp[- ( M, Ik
X exp(— BH,) dBy,
simplified through B’ =B, - 8 with

exp(8'H)H' exp(~ 8'H,)

(v.8)

:—ZJ exp(B'Hy) (2m) "} &% explik - 14;)¢ (k) exp(~ 8'H\)

1#]

V.7
and
F;;=exp(8'H) explik - (r; — r;)] exp(= 8'Hy)
=explik - (r; ~ r;) lexp(B'7k/m, - (P; - P;)]
X exp(B'12k? /m, ), (v.8)
explained in Appendix C, in the form
exp(- BH) = exp(~ BH') exp(- BH,) + Z_, exp(~ BH")

2(2

XfB f{¢>‘“’(k> exp(ik - ry;
0 X

X8, %Exp[(ﬁl — B)hk/m, * (P - P,)]
1
x exp[(B; — B)H%k?/ me]}eXP(- BH ()} dp, dk. (V.9)

The corresponding canonical partition function Z
=Tr exp(— BH) is explained by

- Ty | exp (-;mz;‘lp%)l‘f,- CFY

=[(8,/2)1°(1 + €/2)(2m, /BrE) < 2] ¥ (v.10)
and also
. 3'h Ny 2 -
<—7_'i‘"”NieXp(E;Fh}'(Pi—Pi))exP(‘%Rm)l” ce )
€/ ]
= (%r (1 +§) (%;)1 Z) ' exp(h®872kE /pm,)  (V.11)

1410 J. Math. Phys., Vol. 17, No. 8, August 1976

so that

6’} .. -;NleXp(- BH) {;i C Ty
1+ /2 N
B A i

* d (4 .
x{ 2 5, P f (k) explik - 1yy)

o

Now, let us simplify the B;-quadrature with the new
variable a=8"/8 and B’ +B'2/8=Ba(w~1), and approxi-
mate the high order quantum corrections through the
exponential expansion

’Z/B)) dk dB, +—~} (V.12)

iy exp(= ) |7, - y)
S, (2m) 1*/2 AV 8
L&) el

— 1 d
x2, | ¥k - f a—d ¥ (P)
. ( . “Ta (

it

X exp <__§h_i7a_(1‘oz_)> exp(ik - ry;) dkda}
e

27” 1+6/2 ] € N - B =
( (Bﬁ ) i <1+§)) exp(—z—{_#; W(r”)) ,
(V.13)

obtained after an integration by parts with respect to
@, and explained with the temperature-dependent effec-
tive interaction

W(r;;) = (2m)™ f @Y (k)

k

5 J‘l exp (— B;zZI:_;M)dQ exp(ik - (r; - r,)dkK,
0 e

(V.14)
which has the Fourier-transform
1 22 -
W(k) = & @ (k) j daexp (_’ifi“_(l_ J?lﬁ)
0 M,
1
=dW)(p) f da exp(-22k%a(1 - o)
0
IQ(V)( hE (2’2’_1i2k2). (v.15)

Equations (V. 14),
fective interaction finite at »=20,

e/2 + )
W(f):(%) g (62 1) o [ L A

0
1,372
)
€/4,1,0

€/z
xJe/z(kr):r(%l> (%) T cgg(;;

(V.15) extend to any v, the v=3 ef-
in the form

€>0, (v.16)
including the € =1 result!’
W3 (1) =71 (1 - exp(- +2/42)) + (1" /2/X) Eri(r/4)
o111 = e7) V.17

x
exp(—13) dt and C =41,
4
The Tauberian generalization of the Fourier recipro-

with Erf{x)=1-2/V7
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city relationship (II. 4), (II.5) allow to extend the effec-
tive interaction (V. 16) down to € < 0 with

{2 ”h(eﬂ) N ) Sk

) —},‘P{,‘(;) )T ), e

X Py (1; 35 = £ 06D (k7). (V.18)

VI. PARTICLE TRANSPORT IN A STRONGLY
MAGNETIZED TWO-COMPONENT » = 2 PLASMA

As a first application to current plasma physics, we
consider the evaluation of the time-independent trans-
port coefficients such as the particle diffusion coeffi-
cient on the corresponding d.c. conductivity in a two-
component V=2 symmetrical plasma taken in the fluid
limit, i.e., with close collisions and any other discrete
processes neglected. The given analysis is performed
in momentum space with b, < k<3, and &y, ~R1.

We suppose the system to be confined by a very strong
magnetic field B, which enables us to modelize and re-
strict very efficiently the time dependence of the parti-
cles trajectories. The V=2 version of that model has
already received a considerable attention, **=?° because
it is expected to provide a realistic approximation of
the strongly magnetized ¥ =3 plasma with the particles
dynamics restricted perpendicularly to B. For instance,
the transverse velocity diffusion coefficient in the v=2
model of charged filaments®® aligned along B is given
as (¢ =speed of light)
c? [~

Dz?ﬁ (E(0) - E(7)) dT (VL. 1)
in terms of the autocorrelation function of the electric
field E(7T) seen by a test charge at time 7, with the guid-
ing center approximation

X(0) = f E(AB

The bracket in Eq. (VI.1) is explained as*!®
(E(0) - E(T))

= 2 (Ey(0) - E (1) exp(iky - X(7))) (VL. 2)
K.k
where
E(7) =Z:)Ek(7) exp(ik - x(7)) (VL. 3)

To go farther, one neglects the correlation between the
positions of the test particle and those of the background
plasma [the X(7)]. That assumption reduces (VI. 2} to

(E(0) - E(T)) = 2 (Ey,(0) - Ey, (7))
Y.k
X {exp(ik - X(7))) (V1.3")

for a spatially uniform system with E_;(¢) = E,(f), since
E is real. Then the use of the central limit theorem
allows us to explain (V1. 3) as

(E(0) - E(7))

:Z;( Ek‘z)exp{ S5 fd'rlf dr (E(7,) E(rz)}
(V1. 4)
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where (| E,|? is now a stationary quantity obtainable
from the ocp equilibrium properties. Let us define®"®

R(7) = ZB f dTy ] dT,Q(7, -7y,

Q(7) =2"E(0) - E(7))
so that Eq. (VI.4) may be expressed in the form
282 d°R

=T 7;Z:le Ey|2) exp(- 2k%R(7)), (V1.5)
which has the first integral (dR(0)/d7T =0)

1{dR\? ¢ ~ X 2R2R(T

_Z_(d_‘f) —Eﬁzlk/(iEklz) - pz(kz () =0. (VI. 6)

We can extract the long time behavior analytically, by
noting that R(T) -« ag 7 -, g0 that

(@) imn ., (1.7
or

D) = f o d 2dR(t
approaches the limit

D(=) = 2__2 [ZJ%Q]UZ (VL.8)

with the characteristic B?-(Bohm) dependence. We may
estimate Eq. (VI.8) for a large volume V=R2? by replac-
ing the sum over discrete values of k by an integral over
continuous k according to the prescription

ZXlExlz)-fdk(\EkIz) (V1. 9)
k
using the thermal spectrum'®
<|Ek|2>:kBT/77((k)\p)z+1)- (VI.10)
Equation (VI.8) becomes
_ c? By T dk 1 1/2
D(°°)—2[§z T_/Wl"‘ﬁ] . (VI.11)

According to the previous discussion given in Sec. 1I,
concerning the Tauberian extension of the relations
(11.4), (I1.5), it appears now convenient to replace the
bare Coulomb interaction 27 in Eq. (VI.11) with

lim, .o(¥% + 23), so that

D=D(w) =1i CUkm L ]1/2 (VL. 12)
= o) = im-— . .
sa0 Bl ey, FEHAZ R HIL
with the usual fluid-1limit cutoffs %, =27/R and k,,,,
=t Therefore, the transport properties of the real
two-component system may correspond to the sym-
metrical superposition of two ocp’s (electron +ion). If
we were to take the A~ 0 limit in a crude way, we would
merely reproduce the already known diverging result®:!®

ckyT R\
=vV2—E- I Aln{——
D=V2=0% [ h‘(zmpﬂ
So, we invoke previous two-dimensional numerical analy-
sis®’ showing clearly that the v =2 transport coefficients
are more conveniently shielded by the average diameter
R of the system, rather than by A, and the Tauberian

(V1. 13)
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parameter X may be taken ~ ;! with Ay ~% (T ~<) and
Ap < R in the fluid limit with

lim dk k
(B2 T\ (H2he + 1)

A=0, gl =0 (R + 2% (B°25 + 1)

1]-9 2 5 . 3 . ,

= 27\% a)\z ln(kma-x A )12#‘1; + a)kz ln(kmin +X )A2=A52

1 1 1
== ==+
3 ( ) —z—r—kmin% T 1) ; (V1. 14)
Introducing (VI. 14) into Eq. (VI. 12) yields
N 12|_1 1 L/
=v3-= -+
D=V2_=kyTA [ 5 m] , Bty < 1
=€ 1/2
ks TA (VL. 15)

the usual Bohm-like result without the InV divergence.
The same result holds for the d.c. conductivity o, a
result expected from the Einstein propertionality be-
tween D and o, valid when the recombination processes
may be neglected.

As a consequence, we can write the previous diverging
result®’ in the form
cpe 1 f 1 1 172
= A -=+ . .
o= ( 5 T T 1) (V1. 16)
On the other hand, it is easy to convince oneself that
the potential arising from a moving test charge®’ cannot
be screened that way in the fluid limit.

APPENDIX A

Here, we explain the radial integral involved in Eq.
(I11. 15)

I= [ “dr 't 2KE (1), k) (A1)
with the aid of the McDonald relationship
“dv -V=7* (7‘2)
2 = — — ——— —
ZKV(V)_j; v exp( 2 v )Ku V (Az)
in the form
=21 f -@exp(— V/2) f dri=e/2
0 v 0
22
X exp(— VZ/V)JE /2(k7'>K5 /2 7 (A3)
evaluated through
b 72
d’}’?‘l-e /ZJe_/z(kT)Ke /2(—v—>exp(— 72/V)
0
T\ 2 a6y /apmaee 12 1 1("?20 1“6/2)
={Z - -2+ i A4
(2) 2 k K 8 li11/2 ad
and
“duv 2y 146 /2 13 B2 [1.14e/2
 exp(—v/2)GY (—-— =gle(”
o v ol 2\ 8 |1/ 22\4 1170
(A5)
with
\/_‘n P2 1,1+¢/2
= p2* /251,2 (___ ,
2 22\4 1,172
¥ in number of ;. (A8)
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APPENDIX B: RING RESUMMATION FOR F exc

It is also possible to perform directly the long-range
resummation of the Coulomb potential, within the frame
of the so-called ring resummation method, '>** on the
cluster integrals building up directly the excess free
energy. ¢“’(7) indjcates that the most divergent cluster
integrals involving f particles are those of the type
Jfrofe3 - *fia if11; each particle is joined to just two others,
the whole cluster forming a ring. Furthermore, when
the f functions are expanded in powers of ¢ “’(»), the
first term is always the most divergent, when the rela-
tive distance #;; ~. The virial coefficient B; is thus

approximated by the expression!®:®
(=)G-1 g v
B":——OZ—'iTI—/_ RN K FRERY S A OO

X ¥ vy oo ¥ r;), (B1)

where the combinatorial factor (j — 1)!/2 is the number
of ways the j particles can be placed on the ring.

This convolution integral can be treated with the aid
of the reciprocity relations (I1. 5), (II.6) together with

8%k = (Zﬂ)”fd"r exp(ik - 1)
to yield

< dk k'
0 (k?+ )\2)]

(=)s,(S,8¢%?

B; = -
reo 2727

(B2)

i

where A is the Tauberian parameter. To eliminate the
long-range (#=0) divergence, we sum over j before in-
tegrating over %, so that we retain the ring contribution
to the free energy

BF, n,=27 B;p’
j=2

. Sv © v-1 ‘f‘ el (‘ Suﬁezp>j
‘2(211)”}; kR LT\

j=2
- SNG(n)
e 3
2(27) o2 (B3)
where!® (n=212,)
R (=) dwxt
60 =L 5 ey
1 [ dsa = dxxv
E 1<Res<2, (B4
2iT ). ssinms J, OZ+1P)°’ Res <2, (B4)

using the Mellin transform representation of the discrete
sum. With the change of variable x=1ntan#f, the integra-
tion becomes

PR (s-1-¢/2)
2 T(s+;-€/2)

T
Tf'zsf d6 sin®6 cos0?° =
0

(B5)
so that we have
r@) [dsmp? I(s-1-¢€/2)
= . B6
=T Lssinﬂs T(s+3-¢€/2) (B6)

to generate a series in power of 7 appropriate to 7<< 1.
The contour defined in (B6) is closed to the left. Thus,
the contour C encloses the entire axis to the left of and
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including the points s =1+ ¢€/2. Similarly, to generate

a series in 7 appropriate for large 7, the contour is

to the right, The integrand of (B6) has simple poles at
s=1+¢/2,3+€/2,...,-m+1+¢€/2, from[(s-1-¢/2)
and two additional simple poles at s=1 and 0 from
(sinms)™ when € =1, or a simple pole at s=1 and a
double pole at s=0 for € <1, Thus we see the particular
analytic structure of the ring sum for v=3.

Let us first consider the general case € <1

LR —(Q+P)p/2 f‘(l-—e/Z
6 ==—3 {Vsinf(l+€/2)—21 ((1=9/2)

(1= €/ (=1 €/2) = V(1 =€) /2)0(1 - €/2)
”’V[ (A= €/D ]

W h(s-1-¢€/2) -2 (-1-¢€¢/2)
PTG | T (1= 972 } ®7)

Equation (B7) diverges if the Tauberian limit 7=0 is
taken (as usual) at the end. For v=3, the € =0 pole be-
comes simple, and the above expression is replaced by
the much simpler one

G(m) = (1/3)(1 + 1732 - 3n/2 ~ 7 (B8)

with G(0) =7/3 and BF,y,=—-NA/3, in accord with the
virial result (IV.6). This study makes clear that the
usual ring resummation procedure is quite a touchy pro-
cedure, which cannot be extended without appropriate
modification to any v # 3.

APPENDIX C

The relationship (V. 8) is easily derived from the
usual quantum-mechanical expansion

B’ 2>
2m, Py

?
exp (Eﬁ—m— P%) expl(itq;) exp (—
e

’

= exp(ilq;) +5— [P exp(itq;)]
(2 >Z[P2 (P2, explitg;)]] + 1)
21 \2m, i L£7%, eXpleig; — (c

for the canonical variables (g4, ;) of the electron i.

If f depends only on ¢;, one respectively obtains
Pif - fPi=-If=> azf zm%Pi (c2)
and (f= exp(itq;))
P?exp(itq;) - explitq,)P?

= 1k% explitq;) + 2hk explitq;) P; (C3)

1413 J. Math. Phys., Vol. 17, No. 8, August 1976

allowing us through
[P%, [P, explitq;) )] = explitq,) (B%k? + 20k P,)? (C4)

to represent the rhs of (C.1) with an exponential expan-
sion, so that

eXP(fme 1-) exp(itq;) exp(—zﬁl ;)
= exp(ifq;) exp [B (h’kP +ﬁ[;k ):l

yields the rhs of Eq. (V.8), when the reduced mass
m,/2 is introduced in it.

(C5)
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Stability and instability conditions for nonlinear evolutional

equations in Hilbert spaces
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Sufficient conditions for stability, global asymptotic stability, and explosive instability are established for a
class of nonlinear evolutional equations defined in Hilbert spaces by using certain relations between an
abstract function and its Gateaux differential. These results are applied to specific forms of nonlinear
evolutional equations arising from physics, in particular, a finite-dimensional system of complex ordinary
differential equations, functional differential equations, and systems of complex partial differential equations

describing nonlinear diffusion or wave phenomena.

1. INTRODUCTION

The equations governing the dynamics of many physi-
cal systems such as finite systems of nonlinearly inter-
acting particles, and continuum systems involving non-
linear wave propagation, diffusion and other phenomena
can be formulated as evolutional equations in suitable
abstract vector spaces. This formulation is particularly
useful when one is interested in the stability or the
qualitative behavior of the solutions. Recently, at-
tempts have been made in developing general stability
theories for abstract nonlinear dynamical systems, =3
Also, a considerable amount of attention has been
focused on seeking exact explicit solutions of specific
classes of nonlinear partial differential equations arising
from physics.*s® In general, the solutions to a nonlinear
evolutional equation may not be well-behaved at all
time. Explosive instabilities or finite escape-time
phenomena may occur in which some of the solutions
become unbounded in finite time.®® In this paper, we
develop sufficient conditions for stability or instability
of solutions for a class of nonlinear evolutional equa-
tions defined in Hilbert spaces. These conditions are
expressed in terms of the Gateaux differentials of the
equations’ right-hand sides. They may be used to
determine the existence or nonexistence of explosive
instabilities. The applications of the main results are
illustrated by specific examples.

Il. PRELIMINARIES

Let I=[t,,{ and H be a complex Hilbert space with
inner product (v ,+) and its induced norm |{{ -{|. We con-
sider the initial-value problem for the following non-
linear evolutional equation:

du/di=£(t,u), t>1t,, (1)
ulty) =u,, (2)

where f is a given function from IXU into H with U being
a linear subspace of H, and u, is a given element in U.
A function u:I— H is called a solution of (1} with initial
data u, at t=1{,, if ue C,(J;H) and u(¢{)e U for each ie ]
with u(t,) =u,. [C,_(I:H) is the Banach space of ail m-
times continuously differentiable H-valued functions

on I with the norm given by || lulll =37, sup, llama(z)/
driy. )

Let 8 denote the zero vector in H, We introduce the
following basic assumptions:
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(A1) i(t,6)=6for all te I,

(A2) at any fixed < I, £(¢, +) has a Gateaux differen-
tial at every uc U defined by

Di(t,u;h) =lim [£(z,u+ rh) —£(¢,w)]}/x,

where the 1imitk exists for all he U in the sense of the
norm of H. Condition (Al) implies that the trivial solu-
tion u(t)= 8 on 7 is an equilibrium solution of (1). Note
that condition (A2) may be satisfied when f involves dif-
ferential operators. Thus, partial differential equa-
tions are not precluded here.

Let u(t;u,, ;) denote a solution at ¢ with initial data
u, at £,.

Definition 1: The trivial solution of (1) is said to be

(i) stable if, for any e > 0, there exists a 6> 0 such
that |lu,ll < & implies |lu(f;u,, £l <e for all ¢= £

(i) asymptotically stable (locally)_, if it is stable and
there exists a §> 0 such that |lu,|| <3 implies |lu(¢;u,, &)
~0as o,

(iii) globally asymptotically stable (relative to U), if
it is asymptotically stable for any w,€ U;

(iv) explosively unstable (relative to U), if for every
nonzero u,< U, |lu{tu,, )l ™ as t ™ 7> ¢, for some {;

< where {, is the explosion lime or escape time.

111. STABILITY AND INSTABILITY CONDITIONS

First, we give certain identities for abstract func-
tions which will be used in establishing the main results.

Lemma 1: Let g be a mapping on a convex domain
D, CH into H having a Gateaux differential at each point
in/)_, then for every Z,£+zc/) , we have

(g2 +2) - g(@),h) = (Dg(Z + Az;2),h) (3)
for any he H and some e }0,1{, where » depends on h,

The above result is the Lagrange formula for opera-~
tors on Banach spaces specialized to the case of a
Hilbert space. A proof is given in Ref. 9. In the case
where g is a Fréchet differentiable mapping, we have
the following identity relating g and its Fréchet
derivative g’.

Lemma 2: Let g be a mapping on a convex domain

Copyright © 1976 American Institute of Physics 1414



[) C H into H having a Fréchet derivative g'(z) at every
z</),. Then

g(z) - g(@

for z,2¢c/),.

)= [ g+ Mz -2))(z - £) dr (4)

Proof: Consider g(p())), where p is a differentiable
function of a real argument A with p(\)e/),. Since g
is Fréchet differentiable on/,, we have

(@/dnglp M) =g’ (p(A)) dp/dx (5)

Let p(A)= 2z + (1 - M2 with z, Z2e/), and X< [0, 1]. Sub-
stituting this p(1) into (5) and integrating both sides lead
directly to the desired identity (4). ||

Before considering the stability problem, we men-
tion that the existence of a unique solution for the
initial-value problem (1), (2) can be established by
imposing suitable additional assumptions on £.!+?

In particular, if the Fréchet derivative of f exists and
is uniformly bounded on IXU (i.e., there exists a
positive constant M <« such that ||f(¢,u)l| < M for all
(t,u)e IXU), then, in view of Lemma 2, f satisfies a
Llpschltz condition IIf(¢, w) = £(f, ) for any fixed ¢ < I and
allu, 4 U, Moreover, if f is continuous in £ on 7 for
each fixed ue U, then f is continuous on IXU, Con-
sequently, we may apply the classical Picard’s method
of successive approximations to establish the existence
of a unique solution to (1) and (2).*!

Now, we give the definitions for various types of
mappings and results relating the properties of a
mapping and its Gateaux differential.

Definition 2: A mapping g from its domain /) C H into
H is said to be

(i) coercive, if Re(g(z),z)= u(llzl)llz(| for all ch
where u= u(s) is a real-valued function defined on
[0, [ such that p(s)~= as s —=;

(ii) monotone, if Re(g(z) —g(£),z —£)= 0 for all z,

2608;
(iii) strongly monotone, if Relg(z) - g(),z - Z)
> y(llz - Zl)llz - 8ll for any z, 2/),, where y=y(s) is
a real-valued nonnegative function defined for s = 0 such
that y(s) —w as s =« and ¥(s)=0 if and only
if s=0.

(iv) dissipative (resp. strongly dissipative), if —g
is monotone (resp. strongly monotone).

Note that when g is a linear map, it is monotone
(resp. strongly monotone) if Re(g(z),z)= 0 (resp.
Re(g(z),2)> ¥(lIzl)liz]) for any zc),. Also, when deal-
ing W1th a family of mappings {gm dC%]} havmg a com-
mon domain /) C H (for any fixed parameter ¢ in a given
set 4, g, is a mapping on /) into H), we may define
uniform coercivity, monotonicity, or dissipativity of
{g,} with respect to (abbrev. w.r.t.)A in an obvious
way. Here, we require the functions u and y in De-
finitions 2(i) and 2(iii) respectively to be independent
of «.

Lemma 3: For any fixed te I, let g(t, «) be a2 mapping
with domain /) (a linear subspace of H) and range in H,
having a Gateaux differential Dg(t, z; h) at any z< D,
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and g(¢, 6) = 6. If {Dg(¢, Z; -): Z €} is uniformly coercive
w.r.t. /) for every tc I, then g(¢, *) is coercive for each
tel,

Pyroof: From Lemma 1 and g(¢, #)= 8 for each tc [,
we have, for every /<1,

Re(g(z,2),h) = Re(Dg(z, 2z; h), h) (6)

at any z,hc/) and some A< ]0,1[, where X depends on
h. Since {Dg(¢,2;*): £} is uniformly coercive w.r.t.
/), there exists a real-valued function p= u(¢,s), (in-
dependent of ) defined on Ix[0,=[ such that u(¢,s) =«
as s ™= for any t< I, and

Re(Dg(z,%;h),h) > ut, |a])|lh] (7

for any fixed (¢,2)c IX/) and all he /), Setting Z= Az
and h=2z in (6) and (7) leads to Relg(¢,z),2)
u(t, llzllizll for all ze /), or g(t, *) is coercive. | |

Lemma 4: For any fixed ¢t I, let g({, * ) be a mapping
as in Lemma 3. If Re(Dg(¢,z;h),h) < 0 for each ¢t /),
then Re(g(¢,2z),h) < 0 for all z, he/)

Proof: The desired result is evident from (6). | |

Remarks: (R1) In Lemmas 3 and 4, if Dg(¢,z;+)
is a linear (not necessarily continuous) map on /) for
each (£,z) € Ix/), then we have the following specialized
results:

a) If {Dg(¢,z; +):zc D} is uniformly strongly mono-
tone [resp. uniformly strongly dissipative] w.r.t. [,
then g(?, +) [resp. ~g(¢, -)] is strongly monotone for
eachtel.

(b) If, for any fixed tc 1, {Dg(t,2%;+):2< D} is uni-
formly dissipative w.r.t. /), then Re(g(¢,z),h) < 0 for
each (t,z)e Ix/) and all he ).

(R2) If, for any fixed €1, g(t, *) has a Fréchet de-
rivative g'(¢,2) at any z< /), we have from Lemma 2 and
g(, 6) = 6 the identity

g(t,z):folg’(t,)\z)z dX, (8)
where for any fixed (¢,22)<c IX/), g'(¢, Az) is a bounded
linear map on /) into 0. Moreover, if there exists a
real-valued positive function 8= 8(¢) defined on I such
that

Re(g’(¢,2)h,h) = 8(#)| b2 (9)
for any (¢,%2) e Ix/) and all he /), then, from (8), we
have

Re(g(t,2),2) > 8(0)]| 2 2 (10)

for all (¢,2) s Ix/).

Theorem 1: Let assumptions (A1), (A2) be satisfied.
i) Re(Df(z,u;v),v)< 0 for each (¢, u) IXU and all v
S U or (ii) Df(t u *) is a linear (not necessarily
bounded) map on U into U for each {¢,u) € IXU, and
{Df(¢,u; - ):ue U} is uniformly dissipative w.r.t. 0 for
each te I, then the trivial solution of (1) is stable.

Proof: Let u(t)=u(t;u,, ) be any solution of (1), Un-
der assumptions (A1), (A2), and condition (i), it follows
from Lemma 4 that
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%{mUWZ:ZRdﬂnMﬂLuu»so (11)

with {Ju(£,)l] = llu,ll, which implies [ju(¢)ll < |[u,l| for all
t= t, or the stability of the trivial solution of (1). From
Remark (R1)(b), estimate (11) remains valid under
condition (ii). 1 [

Theovem 2: Assume that conditions (A1) and (A2) are
satisfied. Moreover, there exists a continuous real-
valued function p= u(¢,s) defined on Ix[0,[ such that,
for any te I, u(t,s)=0if and only if s =0, and u{¢,s)
—©as s, and

Re(DE(£,w:v),v) < = u(t, | v|D]| v (12)

for any ({,u)e IXU and all ve U, Then, the asymptotic
(local or global) stability of the trivial solution of the
scalar differential equation

d
L= - ult,p), oty =p, (13)

implies the asymptotic (local or global) stability of the
trivial solution of (1).

Proof: Condition (12) implies that {~ Df(t,u;):uec U}
is uniformly coercive w.r.t. U for each € I, We ob-
serve that under the hypotheses of the theorem, the
trivial solution of (1) is the only equilibrium solution in
U. To verify this, suppose there exists a nonzero ic U
such that £(¢,@) = 6 for all ¢c I, then, in view of (Al),
(A2), Lemma 3, and Remark (R1)(a), we have

0=Re(f(/,), %) = Re(DI(\T:@),8) < - u(t, 1)) (14)

for each fc ] and some A< }0,1{. Since the upper bound
in (14) is strictly negative, we have a contradiction
which establishes the assertion.

Now, for any solution u({)=u(t;u,,,) of (1), we have,
from (A1), (A2), (12), Lemma 3, and Remark (R1)(a),
the estimate

% [u() ]| 2=2Re(E(t, u)),u®) < - 2u(, [a@) ) |ub)],

or

d

7 @] < - pt, flu ) <0 (15)
with [la(¢ )l = [lugll. Thus, we have |[a()ll < [lugl| for ail

t= {, or the stability of the trivial solution of (1).

Let p{#:p,,1,) be the maximal solution of (13) defined
on some interval {¢,,¢,]C 1. Such a solution exists when
u is continuous on Ix{0,=[. ** By setting lluy! =p,, we
have the estimate

llalmg, el < plellagll, 1,) for all te (¢, 1,]. (16)

Since the trivial solution of (13) is asymptotically
(locally or globally) stable, estimate (16) is valid for
all € 1. Now, the desired result is evident from (16).
For the case of global asymptotic stability, the solution
initiated from any u,c U at {, tends to the unique equi-
librium point 6 ag . [ i

Theorem 3: Let assumptions (A1) and (A2) be satis-
fied. Also, Df(¢{,u;+) is a linear (not necessarily
bounded) transformation on U into U for each (f,u)e/

1416 J. Math. Phys., Voi. 17, No. 8, August 1976

XU, and there exists a continuous real-valued positive
function y=v(¢) defined on I such that

Re(Df(¢,u;v),v) < ~ y(t)| v 2 amn

for each (¢,u)e IxXU and all ve U. Then the solutions of
(1), (2) satisfy the estimate

[atemg, t) ] < [u,| exp(ftt —¥(s)ds) for any ftel.  (18)

Furthermore, if

lim supftt Y(s)ds =+ =, (19)
Lo 0

then the trivial solution of (1) is globally asymptotically
stable.

Proof: Condition (17) implies that {Df(¢,u;):uc U} is
uniformly strongly dissipative w.r.t. U for each te I,
From Remark (R1)(a), for each t<l, (¢, °) is strongly
dissipative and satisfies the estimate

Re(f(z,w),u) < - ¥(#)||u||? (20)
for all uc U, Thus, along any solution u(t)=ul#;u,, #,),

(ﬁ%ﬂ s~y a0 for all tel, (21)
with [lu(#,)ll = llu,ll, which leads to (18). As in Theorem
2, the trivial solution is the only equilibrium solution
of (1). Its global asymptotic stability under condition
(19) is evident from (18). | |

Theovem 4: Let assumptions (Al) and (A2) be satis-
fied. If there exists a real-valued function u=pu(¢,s)
which is continuous on IX[0,=[ and u(f,s) == as s =~
for each ¢ I such that

Re(Di(t,u;v),v)= ult, | v v] (22)

for every (t,u)eIXU and all ve U. Then, the explosive
instability of the trivial solution of the scalar differen-
tial equation:

d
L= ult,p), plty)=p (23)

implies the explosive instability of the trivial solution
of (1).

Proof: Under the conditions of the theorem, we have
from Lemma 3 the estimate

dllu(a)l]

=, fuo]) (24)

along any solution u(¢)=ult;u,, ;) with {a(/)lt = lluyll.
Since  is continuous on Ix{0,[, there exists a
minimal solution g{t:p,, f,) of (20) defined on some in-
terval [t,,7,]1C 1 [10, p.16]. Setting lju,ll=p, leads to
the estimate

[lattng, t) | = 8lt || uol| ,£,) for all < [£5,¢,], (25)
from which the desired result follows. \ \

Remarks: (R3) A result similar to Theorem 4 can be
readily established for the case where condition (22)
is replaced by Re(Df(z,u:v),v) = ¥(#)(lvl}*; in this case
we have the lower bound

(e, £)]) = Ju, ) eXp(ft: Y(s)ds), t= 1, (26)
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Evidently, under condition (19), we have explosive
instability with explosion time ¢, <,

(R4) If (¢, ) is a linear mapping on U into H for each
te I, then its Gateaux derivative coincides with f(z, - ),
and (Df(¢,u:v),v)=(i(z,u),v) for allue/, and ve H.
Thus, the foregoing stability and instability conditions
reduce to the usual ones.

IV. APPLICATIONS

In this section, we apply the main results developed
in Sec. III to specific forms of nonlinear evolutional
equations which arise in physics.

1 Consider a system of ordinary differential equations
of the form (1) defined on the complex n-dimensional
space C€" with inner product defined by

n
@,v)= 2w, 2m
i=1
for any u,ve €", where () denotes complex conjuga-
tion. Let f be a continuous function on IX@" into C”
satisfying assumptions (A1) and (A2). If we assume
further that, for each fixed {< I, £(¢,u) has continuous
first partial derivatives with respect to »; on €", then
(¢, ) has a Fréchet derivative everywhere on C" given
by /(£,u)=J,(t,u), where J,(f,u) is the Jacobian matrix
of (¢, +) at u. Thus, we can write

Re(f’(¢,0)v,v) =3(Q(¢, u)v, v), (28)
where Q(¢,u) is the Hermitian matrix given by
Q(t,u) =J¥(t,u) + I (L,u), (29)

where (°)* denotes conjugate transposition. Let A, (¢,u)
and 2, (£,u) denote the maximum and minimum eigen-
values of Q(¢,u) respectively. Assume that the follow-
ing quantities exist:

X(O)= inf X (t,u), R(0)=sup A, (t,0). (30)
ucc” uc ¢
From Theorem 3, if
lim supftt AMs)ds = -, (31)
teco 0

then the trivial solution is globally asymptotically
stable. Note that if we take H to be the real n-dimen-
sional Euclidean space R" with the usual inner product,
and assume that Q(f,u) is uniformly negative definite
on IX IR", then the foregoing result reduces to that of
Krasovskii, !

Also, from Theorem 4 and Remark (R3), if

lim infftt Ms)ds =+, (32)
0

teo
then the trivial solution is explosively unstable.

The foregoing results can be generalized by defining
a new inner product on €”":

(a,v)p = (u, Pv), (33)

where P is any positive-definite nX»% Hermitian matrix.
In this case, we can write

Re(f'(¢,u)v, v)p = 2(Q(¢, u)v, v), (34)
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where é(t, u) is the Hermitian matrix given by
Q(1,0)=F* (1, WP + PJ (¢, u). (35)

Replacing Q(¢,u) by -Q(t,u), we obtain stability and in-
stability conditions corresponding to (31) and (32) re-
spectively. In the special case where H=TR" and Q{¢,u)
is uniformly negative definite on IXIR", we have the
generalized Krasovskii’s theorem for a nonautonomous
system. '? Also, when f is a time-independent con-
tinuously differentiable function on R" into IR” such that
for some positive-definite real symmetric matrix P,
the maximum eigenvalue i3 (u) of Q(a)=J7 (W)P + PJ,(u)
satisfy

(36)

where {|u]|3 = (u,u)p and v=1(s) is a real-valued con-
tinuous, monotone decreasing, positive function of s on
{0,f, then we have

Agw) < - v(|ulp) for every uc Rr,

-2 |u0)])3 = 260, Pul)

_2 f " (), Pu(t) at
= f 1(é(gu(t))u(t),u(t)) de < |lu(®)|? f 1 Xa(Eu(t) d

<= Ju]* [ "ot suo] a8

< _”x;||u(t)u§f QLGB

< =3g @ (o l5), t>o, (37)
where ;\, is the maximum eigenvalue of P. Thus,
& @5 = ~ 5t u@ | s(|u0]5)/2<0, 1>0.  (38)

Evidently, the asymptotic (local or global) stability of
the trivial solution of the scalar differential equation

dp

3=~ 2 Mtev(o), p(0)=p, (39)

implies the asymptotic (local or global) stability of the
trivial solution of du/d¢=1f(u). This result is essential-
ly that of Markus and Yamabe. 3

Finally, we note that the evolutional equations de-
fined on € arising from physical situations may not
have Fréchet differentiable right-hand sides. For
example, the equation for the complex amplitudes of
a nonlinear three-wave interacting system has the
form®*

Z_'; =Au+g(t,u) 2 £(¢,u) (40)
with
iw, () 0
A(t) = iwa(t) »
0 iwy(2)
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By (ugrty
[T TR ’ (41)
Mg (Bt

g(tpu) =

where {= f——l; wj(t) corresponds to the complex fre-
quency of the jth wave at time ¢, and I ’s are the time-
dependent complex coupling coefficients. Here, (¢, -)
has a Gateaux differential everywhere in €* given by

Di(z,u;v) = A(t)v + Dg(t,u;v),
By ()04 + voe5)

Dg(t, w;v)= | Ma(8)(ee505 + 000, (42)

)
Mg (t)(u 1{)_2 + ’Ul;tz)
)

Evidently, for any fixed (¢,u) € IX@3, Dg(f,u;*) is not
a linear transformation on €3, Hence f(¢, *) is not
Fréchet differentiable on €%, From (42), we have

Re(Df(xu;u),u)

3 3

=~ 2 Imw,(t)|u, |?+ 21 Re{ El TG URTEN S (43)
j=1 ji=

By direct computation, we verify that (43) is equal to

Re(f(£,u(t)),u(t)) when A=3%. It can be shown that if

[Imw, ()1 and | u,;(z)! are bounded on I for j=1,2,3,

then there exist constants ¢* and 8 such that

—(afju]?+ BlJul|*) < 2Re(f(z,u),w) < o' | u| >+ g]lu|* (44)

for all ¢ I. These bounds may be used to obtain
stability and instability conditions (see Ref. 15 for
details). Of course, (40) can be reformulated as an
evolutional equation on R®, whose right-hand side is
Fréchet differentiable everywhere in IR®,

2. Let 7= 0 be a given real number and // be a com-
plex Hilbert space with inner product (*,+) . Letz
e C([~7,=[/). Fro any tc I={0,=[, we define z, by

z,(s)=zlt+s), -7<s5<0, (45)
Now, consider the functional differential equation:

dz(¢)
T =F(z,), (46)

where F:C([-7,0]:/) —# is a given function satisfying
F(6) = 6y , where ® and 0y are the zero vectors in
C.([-7,0]//) and / respectively. The domain of F is
taken to be a subset )y of Cy([-7,0];/) consisting of
A -valued functions which are absolutely continuous
w.r.t. t on [-7,0]. The initial data at ¢=0 for (46)
is given by

Zo(s)=@,ls), -T<s<0, (47)

where ¢,cg. A function z:/—~# is said to be a solu-
tion to (46), (47), if z,€ g for each te I with z,= ¢,,.
Moreover, z(f) is absolutely continuous w.r.t. fon I
{In general, a solution which is continuously differen-
tiable w.r.t. f may not exist. For example, the scalar
equation z(#) = 2(f — 1) +z(f) with continuous initial data
2(s) = ¢,(s), se[-1,0] does not have a C; solution for
£>0 when ¢, is Cy on [~ 1, 0] but ¢o(0)#* dy(~ 1) +¢,(0).

As in Ref. 16, we reformulate the foregoing equation
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as a nonlinear evolutional equation in the form of (1)
in a suitable Hilbert space H. In the sequel, we take H
to be /X L,([7,0): /) whose inner product is defined by

(w, V)=, Wy + [ (0(s), $ls))yas (48)

for any u= (1, ¢), v=(7, #)c H. Let f be the mapping
from H into H defined by

f(u):[F(“’):‘ , ¢IZ%§ (49)
¢I

with domain
Dy=fu=(m,)c H: pcDp, ¢'c L,([-7,01:/), n=0(0)}.
(50)

Here, a solution to the initial-value problem for the
foregoing evolutional equation with initial data u(0)
=(9,(0), ¢, e/, is defined as a function u:/—~H
satisfying the given initial data such that for each 1< I,
u(t)e /), and u(¢) is absolutely continuous w.r.t. /on 1,
Evidently, if u(#)=(z(#),z,) is a solution to the initial-
value problem for the evolutional equation, then z(#)

is a solution to (46) with initial data ¢,. Moreover, the
stability (or asymptotic stability) of the trivial solution
of the evolutional equation w.r.t. the H-norm implies
the stability (or asymptotic stability) of the trivial solu-
tion of (46) w.r.t. the norms for H and /. [The
trivial solution of (1) with f defined by (49) is stable,

if for every ¢ > 0, there exists a §> 0 such that [|¢,]|< 5
implies {|z{;¢,,0)ll; <e for all /= 0, where || -|| and

|- ”H denote the norms for H and # respectively. ] In
fact, the converse of this statement is also true, since
for ||@ll < & such that [|z(/:¢,,0)ll, <€ for all {20, we
have [[u(:u,, 0)[| < (1 + 7)'/% for all /= 0.

Now, if F has a Gateaux differential on [, then {
has a Gateaux differential on /), given by

DF(¢: ¢
Df(u;v):\: (2"?1 > (51)

where u= (1,¢), v=(7,¢)c,. Thus,
Re(Di(u:v), v) = Re(DF (¢:9), $(0)), + [ Re(@ (s), b(s))y ds
=Re(DF(¢:9), $(0)),+ 1(]|$(0)[|%, - || (- 1|2, ) (52)
Suppose that a constant ¥ can be found such that
Re(Df(u:v),v)< ~ 7| $(0)[|%+ | | é(s) % s} (53)

for all u,ve/),, From Theorem 3 [resp. Theorem 1},
if ¥ is positive [resp. zero], the foregoing evolutional
equation is globally asymptotically stable (relative to
D,) [resp. stable], which implies that the trivial solu-
tion of (46) is also globally asymptotically stable (rela-
tive to Jg) [resp. stable].

Now, we apply the foregoing results to the following
linear time-lag system defined on €™

dz(t)
dt

=Az()+Bz(t-7), 0<7<co, (54)

where A and B are complex nXpn matrices, The initial
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data at =0 is given as in (47) with ¢, C,([- 7,0]; T").
To reformulate (54) as an evolutional equation in H=C"

XL,([-7,0]; € in the form of (1), we define u= (7, ¢)
and

A¢(0)+ Bo(~
fw)= " , o2 (55)

with domain 0, as defined by (50).

Now, by direct computation, we have for v=(¢(0)

¢+ Neb,:

Re(Df(u;v),v)

=Re(Ad(0) + Bo(— 7), $(0))gn+ 5(| (0) || &r— | (=7 &r)
= 3{(¢(0), (1+ A+ A*)(0)) ¢n+ ($(0), (B+ B*)p(~ 7)) o
— (¢~ ), P{= T} =3(Qw, W)g 2 (56)
where w=(¢(0), ¢{- 7)) and
I+A+A* (B+B*)/2 (57)
=\ @+ )2 -1

Evidently, if Q is negative definite, then Re(Df(u;v),
v)<0 for all u,ve/),, and we have stability of the
trivial solution of (54). For the case of a single com-
plex equation (54) with A =g and B=»5, the matrix @ is
negative definite, if the Sylvester inequalities

2Re(a)+1<0 and [1+2Re(a)]+ Re(h)?<0

are satisfied. For real @ and b, the above conditions
may be compared with the following ones for asymptot-
ic stability as deduced from Pontryagin’s results
pertaining to the zeros of transcendental functions

Ta<1 and 7a>b7> ~ (¥2+ T2a®)'/2, (59)

17,18,

where vy, is the root y=atany for 0< y<y; and for a=0,
we take ¥, =7/2. It can be readily verified that the
region in the (a, d) plane defined by (58) is a proper
subset of that defined by {59). Note that (58) is inde-
pendent of the delay time 7. Hence, the negative
definiteness of Q ensures stability of the trivial solu-
tion for all 72 0.

3. Consider a system of complex partial differential
equations of the form:

dulz, x)

2 =[Al, ul, )]x)

+g(¢, x,ult, x)) (60)
defined for ¢>{, and x=(x,, . . .,x,)€ 2—an open con-
nected subset of R™, where u=(uy, . . .,u,), Alf,+)is

a linear operator for each < I, and g: IXQXCn—~ " is

a continuous mapping which is continuous differentiable
w.r.t. u for any fixed (t,x)e IX% (0 denotes the closure
of ). Moreover, g(f,%x,0)=0 for all (¢,x) e IX.

Let H be a suitable complex Hilbert space of €C"-
valued functions. If for any fixed /< J, the domain of
A(f)=Al¢, ) can be chosen to be a time-independent
linear subspaceD of H such that Al¢, <) can be chosen
to be a time-independent linear subspace D of H such
that A(¢, - ue/,; and g{¢, » ,u) € H for any ucH we
may reformulate (60) as an evolutlonal equation in H of
the form:
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dt =Alu+glz,w)2 f(¢,u). (61)

For this system, f has a Gateaux differential given by
(DE(2,u;v), v) = (A, v) + @ (¢, 50V, v), (62)

where J (t x;u) is the Jacobian matrix of g w.r.t. u at
(¢,x,u) and v e/, . Now, if there exist real-valued
functions yi and ¥;, ¢=1,2, defined on I such that for
each teand all vea

n®)||v]|?<Re(A@)v,v)< 7,(0) | v|? (63)
and
()] v|? < Re(d (¢ )| v||? for allue A,
(64)

then we may apply Theorem 3 or 4 to obtain stability or
instability conditions for the trivial solution of this
system. For specificness, we consider a few particular
systems arising from physics.

wv,v) < %,

a: Diffusion System: Let § be a bounded open con-
nected subset of IR™ with boundary 992, and H be the
complex Hilbert space /7%(R) (n-fold Cartesian product
of (Q)] with inner product

[Q (x)dQ) for u,veH. (65)
i=

The operator A(¢) has the form

m
Alvu=Adtha+ 2 A0S (66)
jel %
where A, (t,x), j=1,...,m, are nxn Hermitian
matrices whose elements are continuous functions on
IXQ and, for each fc 1, they are continuously differen-
tiable w.r.t. x on §. A,(#) is an nx# diagonal matrix
operator whose diagonal elements Ao;(t) are second-
order elliptic operators given by

Ay = &~ s o1

* ! FRS-22 axj jk ! ak T
where, for each fixed i=1, . . .,n, the coefficients a{!’
are continuous functions of ¢ and x on Ix{I. Moreover,
they satisfy

m
I ame g0 (t)f) I (68)

for every xc § and g:(gl, ..., £, )eC™, where o, is

a real continuous positive function of ¢ on I.

., (67)

At the boundary 92, we impose the condition

u{¢,x)=0 for all {¢,x}e IX5Q, {69)
For this system, we may take DA to be the linear sub-
space of /7(2) consisting of all continuous functions
which vanish on 92 and have continuous partial deriva-
tives w.r.t. %; up the second order. This type of sys-
tems arises in the study of the simultaneous diffusion
of several substances such as the multigroup neutrons
in a nuclear reactor and a multispecies collision-
dominated plasma.

Assuming that 3Q is sufficiently smooth, we may in-
tegrate by parts and apply Green’s theorem to obtain
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Re(A(t)v,v)= - Z} D a mava @_Ldﬂ
Qo1 ,2e1 ax ox
m
-2 (_-AL v v) for allve/),. (70)
j= .
Using (68) and Poincaré’s inequality'® for each v,
E Caasa f v, |29, (11)
Qj=1 Q
leads to

Re(Al)v,v)< - [)\ min {o, ()}, + 522 %é—lL] v,v), (72
i j=1 9%

where I, is the identity operator on H and A is a positive
constant depending only on .
From (62) and (72),
Re(Df(t u;v),v) < = ({x min {0,(1)}T, + Q(¢,
i

we have

<su)v,v) (73)
for each (¢,u)e Ix/), and all ve/),, where

Q(ty ';u =

(M

{ Z; aA”il.f x) J*(t xu) J (t xu)} (74)
j=1 §

Now, if there exists a real-valued continuous posi-
tive function o = a(t) defined on I such that

Q(t, «;u)v,v)= o) v]? (75)

for every fixed (f,u) €Ix[, and all ve/),, then, from
Theorem 3, the trivial solution of the diffusion system
is globally asymptotically stable provided that

t-o

lim supf [)\mm{o (s)+ als)]ds=+. (76)

For the simple case of a single real diffusion equation
ou/ ot =0%u/9x%+ glu) (GHp)

defined for £> 0 and €= 10, 1{ with boundary conditions

u(t,0)=u(t,1}=0 for all > 0, we may take A=z, Con-
dition (76) is satisfied when
dg(£)/dt<n? for all £ R, (78)

b. Symmetric Hyperbolic System: Let H=/1%Q) as
in the diffusion system. Consider a complex hyperbolic
system in the form of (60) with

Alu= EA ax , (79)
f)

where Alj(t x), j=1,...,m, are nXn Hermitian
matrices as in (66) Here we takeO to be the linear
subspace of H consisting of continuous functions which
are continuously differentiable on £2. For a bounded &,
we require that they satisfy boundary condition (69).
Otherwise, they vanish for sufficiently large values of

1%l g

For this system,
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Re(Df(Z,u:v),v)= - (Q(z, *;u)v,v) (80)

for each (t,u)e Ix/, and all ve),, where Q(¢,x:u) is
given by (74). Similar to the diffusion system, if con-
dition (75) is satisfied with

lim supj

e

s)lds=+, (81)
0
then the trivial solution of the hyperbolic system is
globally asymptotically stable.

Finally, for integro-partial differential systems in
the form of (60), with g(¢, ) being a nonlinear integral
operator having a Gateaux differential on DA, we may
establish sufficient conditions for global asymptotic
stability in the same manner.
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Relativistic multiple scattering of electromagnetic waves
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A general, relativistically exact formulation of scattering of electromagnetic waves by two or more objects
in relative, uniform motion is presented. Coupled and separated integral equations are obtained for far-field
scattering amplitudes of bodies within a system in terms of known far-field scattering amplitudes of the
isolated obstacles. The integral equations are accessible for iteration analogous with the case of nonmoving
objects. Explicit expressions and numerical results are given for the two-dimensional problem of two

parallel, perfectly conducting cylinders.

L. INTRODUCTION

Scattering of waves by many objects has been in-
tensely investigated in the past.! On the other hand,
the field of relativistic multiple scattering, i.e.,
scattering problems involving two or more obstacles
which are not at rest in a single inertial frame of
reference, is a relatively new subject.

Censor? has been concerned with multiple scattering
by two cylinders in relative motion using an iterative
scheme of successive scattering. The method is based
on plane wave integrals representing the scattered
fields and leads to a considerable amount of manipula-
tion in order to get explicit expressions. Numerical
results are given for a very special case only,

The present work is an attempt to approach this kind
of problem in a more general way leading to results
which are much more accessible for numerical compu-
tation. This is demonstrated in the case of two parallel
cylinders of infinite length which are in relative (uni-
form) motion with respect to each other: As to terms of
the first order the amount of computational work is not
essentially greater than in the case where both cylin-
ders are at rest. The same case was previously
treated by Censor? assuming several restrictive condi-
tions (which we do not assume): Both cylinders are
thin (ka<<1) and move on a line which, furthermore,
is the direction for the incident plane wave and for the
location of the point of observation. Only first order
terms in B=1v/¢ are taken into account in the evaluation
of certain integrals.

Since there is no common rest frame for all scat-
terers the analysis cannot be based on time-harmonic
fields because of the fact that the Lorentz transforma-
tion does not in general preserve the property of fields
being harmonic in time. This is true even if the scat-
terers are excited by a plane wave (which is time
harmonic in any inertial frame of reference) because
the interacting fields are not plane waves.

Our approach is closely related to the fundamental
works of Twersky.3* But, even if we hold all scatter-
ers at rest and introduce a three-dimensional notation
by suppressing the time coordinate our approach is
seen to be different from Twersky’s and we believe
that the present paper also throws new light on this
special case. Our basic physical considerations can
shortly be described in this way: Let us fix one of the
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scattering objects. It is excited by the incoming signal
and the total field due to the presence of the other
scatterers,

The latter field can be thought of as being composed
by partial fields each “caused by” one of the other
objects. These partial fields can in a half-space con-
taining the fixed scatterer be expressed by a super-
position of plane waves containing the far-field response
of the corresponding scatterer as amplitude. The far-
field response of the fixed scatterer corresponding to
a single, incident, plane wave is assumed to be known,
and, by the principle of superposition, an integral
equation is obtained.

Mathematically, our point of departure is the four-
dimensional Green’s theorem by means of which we
express the scattered field as integrals over hypercyl-
inders being parallel to the time axis and representing
the scatterers in the four-dimensional space—time
manifold, The total field can be written as a sum of
partial fields each referring to one scatterer.

By introducing asymptotic expressions for the proper
Green’s function (both two and three spatial dimensions
are treated) far-field “scattering amplitudes” are de-
fined generally.

An exact relationship between the partial fields and
their scattering amplitudes are derived by taking the
fourfold Fourier transform of the equations expressing
the field by means of integrals over hypersurfaces as
mentioned before. These relations are used to recast
a partial field “coming from” one scatterer and exciting
another scatterer as a superposition of plane waves so
that the principle of superposition can be applied leading
directly to the integral equations. At this point our
formalism deviates from that used by Twersky for the
case where all scatterers are at rest. Twersky used
the Sommerfeld representation of the Hankel function
in order to recast the partial fields as a sum of plane
waves.,

The integral equations which we derive are coupled
or separated equations for unknown multiple scattering
amplitudes in terms of known (plane wave) scattering
amplitudes for the isolated obstacles.

A scalar formalism is in general not possible for
electromagnetic, multiple scattering. In order to over-
come this problem we make use of the electromagnetic
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FIG. 1, Location of the scat-
N ter in the inertial frame Z.

N1

potentials which seem to be appropriate for the purpose.
In fact, the scalar formulation of the problem can be
applied to each component of the 4-potential vector,

and the translation into Lorentz-invariant tensor formu-
lation is straightforward.

In the special case, where all scattering objects are
at rest in the same frame of reference we indicate how
the connection to the results found by Twersky (who
did not use the electromagnetic potentials, cf. Ref. 7)
can be established. Finally, we indicate how the for-
malism can be extended to an arbitrary number of ob-
stacles moving with different velocities.

1i. ONE SCATTERER

Consider a scattering object excited by an arbitrary
signal and an inertial frame of reference =, where
the object is at rest. See Fig. 1. The coordinates of a
world point in = are denoted by x = (x,, x,, X5, X,)
=(x,x,), where x=(x,, x,, x,) are spatial Cartesian
coordinates. The time coordinate x, is defined by x,
=ict, where t is the time and ¢ the velocity of light in
a vacuum. The four-dimensional scalar product of two
4-vectors p and g is denoted by peq=p-q+p,q,.

In Z the scatterer is represented by a cylindrical
hypersurface parallel to the x, axis,

Applying the four-dimensional Green’s theorem the
scattered field u(x) satisfying the homogeneous wave
equation (representing a Cartesian component of the
electromagnetic field or a component of the 4-vector
potential, cf. Sec. III) can be expressed by an integral
over the hypersurface of the object,

u(x)=i [ imdy‘,ﬁ dS()[n(x - )2 ,uly) — u(y)a,hlx - v)].
s (1)

In Eq. (1) S is identical to the spatial surface of the
scattering obstacle (or any surface enclosing it). Be-
cause the hypercylinder is parallel to the x, axis, 5, de-
notes the spatial directional derivative in the direction
of the outward normal of S. Finally, & is the retarded
Green’s function given by?®

_ 0(=ixy) 8(lx|+ix) _ 0(—ix,) ., .
h(x) = p H =—3 8(x -x), {2)
where 6(-ix,) =1 for —ix,> 0 and =0 elsewhere, and
2 _
(72 + ) 1= 8 = - 5o - ). (3)
oxy

1422 J. Math. Phys., Vol. 17, No. 8, August 1976

The Fourier transform of 4 is defined by

1
pep—ep,’
which assumes the causal nature of the Green function.
(We use tildes to denote Fourier transforms).

Wpy==i [ dixh(x)e o= €~07, (4

Taking the fourfold Fourier transform of Eq. (1),
we obtain

(p) = H(PIG(p), (5)
where G is defined by
G(p) == $ ASG)e*32,2(, p,) — (¥, p)a,e P, (6)

and where the Fourier transform with respect to the
variable y, is given by

2@, pd =1 [ dyuly)eites, (7
As to the second term under the integral sign in (6)
integration by parts has been used.
For p:p=0, G(p) can be given a physical interpreta-
tion, In order to do this we will look at a definite fre-

quency. Taking the Fourier transform of Eq. (1) with
respect to the variable x, we find

W%, py) == $_dSGNA(x = 3, p)3,2(3, py)

- 7:2(5)’ p4)ani;t(;‘ = 5}) P4)], (8)
where
-~ 1 efal®l
0= 2 T ©)

The relation (8) might be obtained directly by means of
the three~dimensional Green’s theorem.

Consider the case, where |p,|ix—yI>1, Defining a
vector p=-ip,x/ x| (which implies p-p=0) we have
approximately —ip,lx —yl~—ip,lx|-p-y,

From this and (8) we obtain
- ebalx _ (e-iia?; -
alx, pyy=~ - T_é ds(y) ma"u(y’ Pa)

- o-ibey 10
‘u(y7p4)an m) . ( )

In the case of three spatial dimensions we are interested
in the situation where, futhermore, |x!>|y| forall y
on the surface S of the scatterer. We find that

i(x, pg) = hix, p)G(B, ps), (11)

where G(p, p,) is the general “scattering amplitude” ex-
pressing how a single frequency component (with fre-~
quency —icp,) of the scattered field for large distance
depends on the direction as given by p. Notationally we
have suppressed the dependence of G on the exciting
field which is not necessarily a plane wave,

In the case of two spatial dimensions the demand
[x[>iy| for “all” y has no physical meaning. There-
fore, we go back to (8) and integrate with respect to
one of the spatial coordinates, y,, for example. Ob-
viously, we can assume that « is independent of y,,
and we will use the notation u(x, k,) with x = (x,, x,).
Furthermore, S can be assumed to be of infinite exten-
sion in the direction of the x, axis.
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FIG. 2. Location of two moving scatterers in the inertial
frames £ and ',

Using the well-known representation of zero order
Hankel functions of the first and second kind as given
by

I

- = _
XUy X =3y im0y |2 -],
1% =3l
1 for p,/i>0,
2 for p,/i<0,

Eq. (8) reduces to an expression for » which also can be

obtained by means of the well-known two-dimensional
Green’s theorem,

a(x, p,) == (i/4) $, dSWIH (| 5] |x = y])2,8(y, ) - 2ly, p,)
-0, H(|pg 2=y (13)

If |p,l lx~9yI>1and |x|>lyl for all y on the scat-
terer S (a two-dimensional closed curve), we can intro-
duce asymptotic expressions for the Hankel functions
which leads to

- L1 explzi(ip,] Ix1+7/4)]
u(’_"llx)-- zm (Ip4|4\§|)”2

12)

G(p, ps),

+for p,/i>0, -for p,/i<O0. (14)

Let u(x;k) denote the scattered field corresponding
to an incoming, plane wave given by exp(ik - x), where
k-k=0 as a consequence of the fact that the plane wave
obeys the homogeneous wave equation, Since - ik, is
assumed to be real, the components of 2 may be com-
plex provided k. k=0 is satisfied.

u(x;%) is harmonic in time so, we may write
ulx; k) = w(x; k) exp(ik,x,) (15)

and

(16)

If the general scattering amplitude for the field (15)
is dencted by G(p;k) we get from (6) and (16) that

D(x, pyyk) =206 (ip, — ik w(x;k).

G(p; kY =275(ip, - ik4)g(5;k), (0%))]
where we have introduced the plane wave scattering
amplitude
gpik) == $ dS(Me 30, w(3;k) - w(y;k)a,e" 3. (18)

The concept of scattering amplitude as given by (18) is
identical with that defined by Twersky, %4

I1l. TWO SCATTERERS

When we are dealing with two or more scatterers in
relative motion to each other we have to face the fact
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that a scalar formalism as used in Sec. II is no longer
sufficient. Only for a very special configuration which
will be treated in the next section can a scalar formal-
ism be applied.

Four-dimensional tensor notation will be used.
Greek subscripts run from 1 to 4 and repeated sub-
scripts obey the summation convention., Commas in
these subscripts denote partial differentiation with
respect to the coordinates (or covariant differentiation
since the metric tensor is independent of the coordi-
nates). The metric tensor is given by the Kronecker
symbol §,, (Cartesian spatial coordinates are used)
and therefore, we do not distinguish between contra-
variant and covariant tensors.

Consider two scattering objects S, and S, which are
at rest in the inertial frames of reference denoted by
% and %', respectively. Without loss of generality we
may choose the Lorentz transformation to be given by

X = uXns (19)
where
100 0
01 0 0
T ) v —iyB ) (20)
008 ¥

B=v/c, y=(1-p%)"7/2, and v is the relative velocity be-
tween the scatterers, cf. Fig., 2.

The situation can also be illustrated in a four-dimen-
sional space~time manifold. The scatterers are then
represented by two hypercylinders each parallel to its
time axis and displaced in the direction of the x, — x}
axis, cf. Fig. 3.

N We want to make use of the electromagnetic potentials
A, ¢ in order to elaborate the general formalism.

It is well-known that the equations

St

FIG, 3. Location of two scatterers in four-dimensional space—
time manifold.
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B=v.A, E:_v(p_it 1)
as well as the Lorentz convention
- 1aop
VoAt 5oy =0 (22)

are Loreniz invariant. Furthermore, u, = (7&, ip/e) is
a tensor of the first order (4-vector) called the 4-
potential.

In tensor notation (22) is given by
=0, (23)
and (21) can be written as
Fyu=cluy,,—u, ). (24)

The components of the field tensor F,, may be found in
Ref. 6.

Each component of the 4-potential satisfies at any
point outside the scatterers, in any inertial frame of
reference the homogeneous wave equation, i.e.,

ty, uu=0. (25)

Applying the four-dimensional Green’s theorem the
4.potential of the total scattered field u, can be written
as a sum

(W) =M (0 ¥) + 0wl (x;F), (26)

where u{"’ and «*’ are 4-potential fields given by inte-
grals over the hypercylinders of the objects. In the
respective rest frame T and X' these integrals are quite
analogous with (1) involving the surfaces S, and §,
respectively.

In (26) ¥ denotes the dependence on the incoming,
exciting field ¥,(x). The field «{*’ can be interpreted
as the response from scatterer S;, due to the incoming
field ¥, plus the “multiple scattered response” due to
the field u{®.

The formalism which was developed in Sec. II can be
applied to each component of the fields »{*’ and u®'.
We will do it in order to work out the integral equations
for these unknown fields or for the more suitable func-
tions G and G{*' defined by means of (6) and repre-
senting the multiple scattering amplitudes.

For this purpose consider the situation at scatterer
S,, for example. In part V (hatched in Fig. 2) of the
space (which contains S,) we can represent the total in-
coming field on S, as a superposition of plane waves
(obeying the wave equation). In order to do this we con-
sider the fourfold Fourier transform of u{*' given by (5),

4 -

uP oo ¥y =1 (%ﬂ—) f d*ph(p)GP (p;¥) exp(ip,x,).
27)

The Green’s function defined by (2) is invariant (and

covariant), i.e., #(x')=h(x) [=1'(x)] and so is the

Fourier transform k. Furthermore, u{*' is a 4-vector

implying that G{*’ is a 4-vector, and by means of (23)

we derive from (27) that

PGB, ¥)=0. (28)
In the rest frame T’ of scatterer S,, G} (p';¥) is

defined by means of (6) and is analytical in p,=p,. This
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implies that G{*(p;¥) is also analytical in p, and there-
fore, for all x in V we can close the contour of p, inte-
gration in (27) in the lower half of the complex p, plane
because we can assume that x, ~ y, <0. (It means that
the scatterers do not come into collision at any time,
cf. Fig. 2.)

Denoting the closed contour in the lower half of the
complex p, plane by C- the field u{*’ can for all x in
V be written as a superposition of plane waves satisfying
the homogeneous wave equation,

u§2>(x;\y)=_i<;—ﬂ) 4f PG (p;WIR(p) explip,x,).  (29)
[o

When |p, 12> (p,)? + (ps)?, the plane waves in (29) are
real, i.e., nonattenuated in all coordinates. When
|12 < (p)? + (p,)? the field components of (29) are in-
homogeneous plane waves, propagating in a direction
orthogonal to the x, axis and decreasing exponentially
in the direction of the negative x, axis.

Equation (28) shows that the plane waves in (29) obey
the Lorentz condition so that they can be interpreted as
4-potentials. This is in agreement with the physical
interpretation of G{z’ as far-field scattering amplitudes
of the 4-potential «{*’, cf. Sec. II.

Before integral equations can be set up by means of
the principle of superposition it is necessary to define
responses and scattering amplitudes for the isolated
obstacles as we did in Sec. II, Egs. (15)—(18). But,
in the present case the situation is a little more compli-
cated because we are dealing with vector fields.

Consider a plane 4-potential wave

A, expliq,x,) (30)
satisfying the homogeneous wave equation, i.e.,

BhG=0 (31)
and the Lorentz convention (23), i.e.,

A, g, =0, (32)

A response to (30) depends not only on ¢, but also on the
4-vector A,.

Because of (32) the set of possible amplitudes 4,
forms a three-dimensional space., Furthermore, A, =g¢,
is a possible amplitude 4-vector leading to the noninter-
esting case, where all components of the electromag-
netic field vanish, which follows from Eq. (24). There-
fore, the set of possible amplitudes in (30) which are of
interest forms a two-dimensional vector space.

In the light of these remarks we define for given
g, two basic amplitude 4-vectors b{*(q), o= {1,2}
satisfying (32) and the additional conditions

b{OB =1, biMbP =0. (33)
[This is always possible which may be seen in this way:
Consider an arbitrary frame of reference =*, choose
b{®* =0 and choose the spatial parts of the 4-vectors in
question as two unit vectors perpendicular to each other
and to g*. Then (32) and (33) are satisfied in £* and
therefore in any system of reference Z because we are
dealing with tensor equations. ]
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As mentioned before we have to introduce some re-
sponse functions referring to the isolated obstacles.
Let an isolated scatterer, S, for example, be excited
by the incident field ¥,. The scattered field is denoted
by #{}’(x;¥) and the corresponding general scattering
amplitude by G{’(p;¥).

In the special case, where ¥, is a basic plane wave
b (q) exp(iq,x,) the scattered field is denoted by
ud(x;q, k) and the corresponding genera scattering
amplitude by G(p;q,k). According to (17) we have

G (p3a,1) =2m8(ipy — iq) & (P34, )- (34)

It is observed that this equation only can be used in the
rest frame X of scatterer S;, the plane wave scattering
amplitude g}’ is not a 4-vector.

The field «{® is a superposition of plane waves as
given by (29) satisfying the Lorentz convention (28).
Each amplitude 4-vector z(p)G?(p;¥) of these plane
waves can be decomposed into two components propor-
tional to the introduced basic amplitude 4-vectors
b*(p). Hence, by the principle of superposition the
response from scatterer S, to »{® plus the incoming
field ¥, is found to be

P (o3 0) =l (a5 ¥) = 4 ( ) f d*ph(p)

x Su (30,062 (3016 (5). (35)
k=1
The corresponding equation expressing the response
from scatterer S, might be found in the same way.
Taking the fourfold Fourier transform of Eq. (35)
we derive by means of (5) the integral equation

G{“(k;w)zcﬂ’(kw)-z( )fd‘*ph < Goi) (ks )

X G p; W) (p). (36)

In the same way we derive the integral equation
G (k) = G2 (ks \1/)—1( > f a*ph(p)

x3 G2 (k;p, k) G (p; )6 (p), (837)
k=1

where C, is the closed contour in the upper half of the
complex p, plane.

Equations (36) and (37) are coupled integral equations
for the unknown functions G{*’ and G{#', which in princi-
ple can be calculated by means of these integral equa-
tions if the plane wave scattering amplitudes as well
as the general scattering amplitudes referring to the
isolated obstacles are known,

It is not difficult to separate the coupled integral
equations with respect to the obstacles. If the zero
order term of (37) is inserted into (36), we obtain a
first order contribution to the scattered field given by

(k‘l’)——Z( )/d“ph(p)iGéi’(k;p,x)
X G (p;)bE (p). (38)

1425 J. Math. Phys., Vol. 17, No. 8, August 1976

Eliminating G2 in (36) leads to

G (kW) = G (ks ¥) + G (B3 \I')—z<21) f ' ph(p)

C+

Xib‘“’(ﬁ)Gm (B0, k)G (p; ¥). (39)

k=l

The analogous equations referring to the other scat-
terer are found in the same way. Equations (36)—(39)
are tensor equations, i.e., they do not change their
form under Lorentz transformations as given by (19).

The scattered electromagnetic far-field is easily
derived from the general scattering amplitudes by
means of (24): Let an observer be situated in an arbi-
trary inertial frame of reference which not necessarily
is one of the rest frames of the scatters. Let S,
oe {1,2} be a closed surface enclosing one of the scat-
tering objects at any time. Strictly speaking, such a
closed surface exists only if the object is at rest in the
observers frame of reference but, the main contribu-
tion to the field may arise from a limited time interval.
This is the case for multiple scattered fields by two
moving objects, where the main contribution can be
expected to arise from a time interval, where the
scattering objects are close together.

In the far-field region the scattered 4-potential
related to S, can be found by (9)—(11) [or (14) in the
case of two spatial dimensions]. We derive that

w9 = (1) [ dlk/ DG (Ve v*s, o 11,2},  (40)

where f(r)=1/4n7, r=I%|, k=(%/1%])k,/i lor Ar)
=exp(zin/4)/ Bul k| 7)*/2, + for k/i>0, - for k/i<0,
r=Ixl, k=(x/1x1)- k,/i in the case of only two spatial
dimensions].

As mentioned in Sec. II, formula (40) preassumes
that the farfield conditions | &,| 1X-7!>1 and 1%/
>|§ 1| for all 5 on S, are satisfied for all k,/i which are
essential for the integral in (40). From (40) and (24)
the electromagnetic far-field components corresponding
to S, are obtained immediately:

(6 W) > icf(r) [T d(ky/ D)k, G (k;®)
=BG (B W) etvrv o= {1, 2} (41)
For numerical purposes we will introduce plane wave
scattering amplitudes into (38) by means of (34) and its
analog referring to scatterer S,. We also assume that

the exciting field ¥, is a basic plane wave with amplitude
4-vector b{*(q). Then,

G (ksq, )__z< ) f PRI (ip, — k)5 (D, - iqL)

X 3 g (s p, ) a SOF 0, 0L (42)
K=1

where z¢ {1, 2},

Equations (40)—(42) are not covariant equations.
(42) refers to the rest frames of the scatterers, and
the approximations in (40) and (41) depend on the frame
of reference.
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The first (“zero order”) term on the right side of
(36) or of (37) is the response of the exciting field
corresponding to isolated obstacles.

It is observed that the functions G{’ and G?’ on the
right sides of the integral equations (36) and (37)
are restricted to the “cone” p,p, =0, where p, may be
complex. Furthermore, it is seen from (11) that as far
as we are concerned with scattered far-fields we are
not interest in the functions G{*'(k;¥) and G{*’(k;¥) for
all values of %, but only for real values of % and %,/¢ on
the cone &k, =0.

It is of practical interest to know how the fields p,
transform under a space—time translation as given by

it =x, —d,. (43)

If u,(x;q,17) is any field response due to an exciting field
bi*(q) - explig,x,), and ut(x*;q,1) denotes the corre-
sponding field response in the translated frame of
reference due to the excitation 5{*’(q) - exp(iqx%)

= b{¥(q) expliq,x, — iq,d,) we conclude by means of
linearity

ut(xt;q,1) =exp(-iq.d,)u,(x;q,1). (44)

A fourfold Fourier transformation of this equation
leads to

Gi(p;q,k) =expl- i(q, ~ p.)d,1G,(b;q,1) (45)

for the corresponding scattering amplitudes as defined
by (5).

It is readily seen that the formalism can be extended
to an arbitrary number of scattering objects. If the
objects are not moving in the same direction spatial
rotations have to be taken into account, of course.

1V. TWO-DIMENSIONAL, SCALAR SCATTERING

Consider the case, where we are concerned with only
two spatial coordinates x, and x,;, for example, corre-
sponding to a configuration, where the scattering ob-
stacles are cylinders of infinite length parallel with the
x, axis, cf. Fig. 2. The formalism developed in the
foregoing sections can readily be adjusted to this case.

Inspection of formula (6) shows that the function G
now involves a factor 275(p,) the remainder being inde-
pendent of p,. From this we conclude that the integral
equations (36) and (37) take the form

3 ~
6005 = 605w i () [ o)

L\’JN

X 23 G (R py k)G (P390 (p), (46)

=
"
-

3 ~
G20 =6 s -1 (57) [ @i
><iGéi)(k;p,K)Gﬁl)(p;‘l’)bff)(l?): (47)
k=1

where d3p=dp,dp,dp,, the G functions and »*’ are inde-
pendent of p, and & is still given by (5) with p, =0. Other
equations in Sec. III can readily be adjusted in the

same way.
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Next, we will look at a special case which is particu-
larly simple because only one component of the 4-poten-
tial is involved, i.e., the problem is scalarized.

Let the exciting field ¥, be a plane wave perperidicular
to and polarized parallel with the cylinders,

1

0 ]
W, = 0 exp(igux,), ¢,=0 (48)
0

The Lorentz convention (32) is satisfied, and (48) holds
in any inertial frame of reference.

We may assume that the scattered field from an
isolated cylinder consists of a single component paraliel
with the cylinder, i.e., G =0 for oe {1,2}, x < {2,3,4}.
Imagine now that the integral equations (46) and (47)
are solved by iteration. By induction we conclude that
also G =0 for o= {1,2}, A= {2, 3,4}. This shows that
only the first component of the potentials are involved
and therefore, we erase the coordinate subscript from
now on, i.e., we write G’ instead of G{*, and G{®’
instead of G{J’, etc.

If the Ith order contribution to the scattered field as
given by (42) is adjusted to the present situation we
obtain

G (e q) =~ (i/ 2m) | __ d*ph(p)5(ipy — ik )0 (it ~ id})
x g (ks p)gh® (p'3q") explilq, = p,)d) (49)

and in quite the same way, corresponding to S,,
G2 (kg ) =- i%f d%’?z(p')é(ip",- iky)d(ip, - iq,)
C+
x g @ (k5 pgs (prq) explilp, - k)dl. (50

The phase factors expli(g, ~ p.)d] in (49) and expli(p,

— ky)d] in (50) are introduced by means of a coordinate
translation (43) applied to g,® so that the plane wave
scattering amplitude gt®’ refers to a rest frame for S,
which spatial origin passes that of the rest frame for
S, in a distance d (at the time x,/ic=x}/ic=0).

Though gi* and gt® and the form of the right sides in
(49) and (50) refer to inertial frames of reference,
where the scattering cylinders are at rest respectively,
both equations can easily be transformed to an arbi-
trary system of reference. This is so because the
quantities on the left sides are known to be invariants.
In particular we have G;?(k';q")=G® (k;q).

The first-order terms {49) and (50) are readily
accessible for numerical computation (g{'’ and g4
must be available, of course). Making use of the & func-
tions and the pole in i(p) all integrations d®p = dp,dp,dp,
can be carried out. It turns out that

2

G ) == g &8s p)gs ™ (i)
xexpli(qy ~ pa.)dl, (51)

Gi®(k'q") = zﬁipé &2 (k508" (s
xexpl—i(k, - p,)d), (52)

S. Berntsen and G. Johannsen 1426



u:w
- o
35
o
)
z -
°—
—
~
3
VO
Wt T T I I T
-350 -250 ~150 -50 o 50 150 250 350
X4 - VALUES
W, |
2 °_J
=]
o
o -
=
-
o _]
~e
~
M
Vo
w e a T T T v T T — e e A R
- 350 -250 -150 -50 /] 50 15¢ 250 350
X & - VALUES
w3
4%
o
o
z, B =0,5
H
f'\°~_
~
>
=3
e e e S e S L SN AR SR A B
-350 -250 -150 -50 0 50 150 250 350
X4 - VALUES

FIG, 4. Far-field amplitude of the multiple scattered field of
the first order for two parallel, perfectly conducting, circular
cylinders of infinite length. One of the cylinders is at rest in
the frame of observation and the other cylinder moves perpen-
dicular to the cylinders and to the direction in which an ob-
server is situated. Furthermore, the incident plane wave
comes from the direction of observation [x =x=¢ =¢;=0, ¢
=q/i=1, i.e., “back scattering,” cf. (48) and Fig. 2]. The
cylinders have equal radius a=2/7 (x is the wavelength of the
incident field), and the shortest distance between the center~
lines of the cylinder is d=4A/n. During the normalized time
x4=1q4) ct observers frame) the moving object traverses a
distance given by ABx,/27, where B=v/c is the normalized ve-
locity. At the time x,=0 (retarded with respect to the position
of the observer) the two objects are nearest to each other.

where py = (ks = gi/ M)/ (i), ps.=(qs— ki/\)/(iB),
Po-== (= pa - K%, and py, = (~ p}, - ¢)*/*. Further-
more, it is assumed that ¢,/i> 0.

In order to find the electromagnetic far-field we have
to insert (51) and (52) into (41) and add the results in a
proper way. Let us find the electric field vector given
by® E,=F,/i, E,= E,=0, Remembering that G{ =0
for ne {2,3,4}, 0 {1 2} and that G{©’ is denoted by G2,
etc., we derive for the multiple scattered far-field of
first order

E® - eturu NGO (Be
()= S [ Ak ) ey (kDG (50,

(53)
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where o {1,2}, + for k,/i>0 and - for k,/i<0.

Equation (53) is valid in any inertial frame of
reference, where the far-field conditions as mentioned
in connection with Eq. (40) are fulfilled.

If an observer is placed such that (53) is a good
approximation to the far-field for both values of o, it
follows that the first order term of the total multiple
scattered far-field is given by

A
E(x;9)~¢ = | d(k,/1)

expli(el x| — x,/D)k,/i]

TrTTeTe— (/DG (k59) + G2 ),
4 —_—

(54)

where we have made use of k=(x/ lx1)(ky/3), cf.
Eq. (40).

Another approximation to the far-field is obtained by
using (53) in the rest frame of reference of the respec-
tive scatterer and then transforming both confributions
to the observers frame. We will do this for the case
where the observer does not move relative to S, so
that E}® is to be transformed.

Using (20) and (24) we derive that E® (x;q)=F,/i
=403, F /1= 04,71/ 1= (a45F 31 + aag Fy)/i=y(BFy
+Fj/i). From tnis, Eq. (41) and the relation £’
='/1x'| )kf,/i we obtain

[ il q/z)exp [l &I 1%’ | = x5/ 9)]

E(Z)(x q)~c (!kll lx ‘)1,2

x(k4/z)(1 8 7) I 5q) (55)

which is to be added to (53) with 0=1 in order to find
the first order term of the total, multiple scattered
far-field. [It can be shown that Eq. (54) or (55) contains
Eq. (17) of Ref. 2 as a special case. ]

In Fig. 4 numerical results are given based on formu-
la (54), they expose an interesting feature: At very high
velocities such as $§=0.5 the interaction between the two
objects decreases rapidly when the moving object has
passed the point of shortest distance between the
scatterers.

It is worthwhile to remark that as far as Ith order
approximations are concerned the amount of computa-
tional work is of the same magnitude as in the case
B=0 (both objects are at rest in the frame of observa-
tion). This is a consequence of the fact that time ex-
pression (40) contains two & functions instead of one
when 8=0, so that (54) [or (55)] involves not more
than one integration (as is the case when g=0).

V. THE SPECIAL CASE3=10

Since the general formalism in the foregoing sections
was developed by means of tensor equations it is valid
in any frame of reference independently of whether
both, only one, or none of the scatterers are at rest
in the frame of observation.

This is in particular true for the integral equations
{(36) and (37) for the general far-field scattering ampli-
tudes [or the separated equation (39) and its analog with
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respect to the other scatterer], [As to Eqs. (40) and (41)
connecting the scattering amplitudes to the far-field
components of the potentials and the electromagnetic
field respectively they depend on the inertial frame

as mentioned before. ]

Let both scatterers be at rest in the frame of ob-
servation, i.e., 3=0, We can make use of (34), and
from (36) we get

GO () = G (ks ¥) +(1/ 20 [, _d®Bh (b, k)

3 BB, by VG B, kg VDL (B, ).

k=1

(56)

This equation and the analogous integral equation
corresponding to (37) determine in principle the general
far-field scattering amplitudes if the responses from
the isolated obstacles corresponding to the exciting
signal ¥, as well as to an arbitrary plane wave are
known. The field components can be calculated by
means of (41).

These results may be compared with existing works.
Equation (56) corresponds to Eq. (122) of Ref. 7,
though the two equations are not identical which is due
to several circumstances:

The analysis of Ref. 7 is based on the Helmholtz
wave equation involving the time independent Green’s
function. In the present work our point of departure is
the time dependent Green’s function. In order to com-
pare the results we have to assume that the exciting
field ¥,, which is quite arbitrary in (56), is a plane
wave as in Ref. 7.

So, let ¥, be given by (30). Equation (34) can be
applied to (56). Since k,=ilgl, where g is the wave
vector and g, the normalized frequency of the incident
plane wave, we supress notationally the dependence on
the frequency. Furthermore, g;‘” =0 which follows
from the Lorentz condition g‘® - %2+ g,k, =0 in connec-
tion with the relation g'’ - k=0 for the far-field, We

obtain
B0+ (o )/dﬂph(p>I,4-,.q.

gV (Ryg,€) =
2 - - - - - - — -
X L g5 (Rshy 02 (B3,6) - 5 (B)], (57)
k=1
where € is the polarization vector of the incident plane
wave.

Equation {41) reduces to

F9(%;q,€) ~ 2ncf(r)e™ |k, gl (k;q,€)
)«g{f)(l_e;‘—l’ E-)]k4=i 13!

Another difference between the present work and that

of Ref, 7 is that we use the electromagnetic potentials.
So, let us look at the electric field vector, for example.
The components are given by F,/i, where ke {1,2,3},
cf. Ref. 6, p. 217. Remembering that g{” =0 and that

(58)

Ar)= 1/411| x| for the three-dimensional case we obtain
E
E0G3,0 = - gelal S5 20%a,9). (59)
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In (58) and (59) 2=Iglx/1x], cf. (40).

Equation (59) agrees with the corresponding equation
(116) of Ref. 7. In fact, if the electromagnetic potentials
are introduced some manipulation shows that the surface
integral [defined by (12), Ref. 7] in (116) reduces to an
expression proportional to clqlg®’, where the defining
surface integral for g is given by (8).

Returning to Eq. (57) we can carry out the integration
with respect to p, by means of the method of residues.
Furthermore, we make use of (45), so that g'©’ and g®
refer to two systems of “local coordinates” with ori-
gins in the “centers” of the two scatterers respectively.
(The two origins are connected by the vector d). We
obtain

5T e (s b (L 2 ® ei@h-2
g (k,q’e-)‘“go (k,q,e-) 2(27T> // dpdp, b

x5 g0EpOEOELD FOG.  (60)

This equation corresponds to Eq. (122), Ref. 7, and
by means of some manipulation it is possible to show
agreement if the foltowing formal deviations are
observed:

As to the summation signs they have a different
meaning in the two equations in question. On one hand
we can reformulate Eg. (60) in such a way that it
concerns more than two objects in quite the same way
as in (122), Ref. 7. On the other hand basic vectors
may be introduced into (122), Ref. 7 in quite the same
way as in Eq. (60). Then, two summations would
appear in both equations in agreement with each other.

The two integration variables in (60) are real valued
whereas both integration variables in (122), Ref. 7
are complex valued. But, it is not difficult to show by
means of suitable substitutions that the equations are al-
so in agreement with each other on this point.
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Explicit nonspreading (i.e., characteristically propagating) solutions to a certain class of two-dimensional,
hyperbolic, differential equations are found. This class of equations is a generalization of equations that

arose in a study of radiation in cosmological backgrounds.

1. INTRODUCTION

The propagation of disturbances of many physical
systems can be described mathematically by second-
order, normal-hyperbolic, differential equations. The
solutions to these equations can be classified into two
types: nonspreading, or characteristically propagating,
solutions and spreading solutions.! A nonspreading solu-
tion describes a disturbance propagated at some charac-
teristic speed, which is determined solely by the medi-
um in which it propagates. In the case of a spreading
solution, the front of the disturbance described by it
will still propagate at the characteristic speed, but the
wave will have a tail that travels at smaller speeds.

In the course of a study? of radiation in Friedmann~
metric backgrounds, a class of two-dimensional, hyper-
bolic, differential equations was found to admit non-
spreading solutions. (The equations describing radia-
tion in Friedmann backgrounds were special cases of
this wider class of equations.) In Sec. 2 we show how to
construct these solutions., Some remarks concerning the
associated substitution sequences, as defined by Kundt
and Newman, ! are given in Sec. 3.

2. NONSPREADING SOLUTIONS

First of all, we shall discuss the differential
equations

62¢111 _[l(l"‘l) hz(v +v >
dvov’ B b
{1
L (l‘d-; 1) sch2<

Here [,1'=0,1,2,+-+; b and d are arbitrary constants,
and ¢;, are functions of v and »’. To aid in constructing
solutions for Egs. (2.1), we define

7 7
L )coth""(v dv

with m,m’=0,1,2,++-, and A;; . ) arbitrary func-
tions of v. Then it is easy to see that

8251 P—— v’ s v=0'
' mm m
EREmY coth -7

m(m +1) z(v +v\ m/(m’+1) of v =20
X [*-—52——— csch 5/ 7 csch 7

_m; matf Vv +V’ mfv=v'
bA,,,m,,,,(v)coth (—-————b )coth (——d——)

v+v'y m'. v +v’
xcsch2(—5—-) + AL e (v) coth (—72—)

(2.1)

o

-~ +
¢”' mm* EAII' mm’ ('U) COthm(v A )} (2. 2)

=A s () coth"'(” +
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Dsert(L5 ) - 2=l
) our(25)
xosch"’(v * v’>+ m’ = A,,, 7)) coth’"(—z%:)

14
Xcoth"'"z(v Y )cschz( dv ), (2.3)

With A gy (0)=2dA 3 e 0)/dv. With the help of Egs.
(2. 3), it is easy to see that

X coth™ "(

XA”Jmm (U) coth""2(

(2.4)

are solutions of Egs. (2.1) if the following conditions

are satisfied:
[l(l +1) - m(m + 1)]All'mm' + (m + 2)(171 +1)1411'(m4~2)m'
+b(m+1)AH'(m+1)m' =0, (2.5)

[l’(ll -+ 1) - m'(m' + 1)]A”'mm' + (ml +2)(m, + l)Alem(ml*z)

+d(m'+1)lall'm(m’+1):0) (2-6)
with A, =0 for any of the following cases:
(Bym>1, (i) m<0, (i) m'>10', (iv) m’'<0. (2.7)

In order to streamline the construction of solutions,
we define a set of polynomials F,,{x), wherel
=0,1,2,cccand m=0,1,2,...,7, by means of the
equations
(2@ +1) = mlm + 1)]F 1, (x) + (m + 2)(m + 1DF 1 g9, (x)

+ (M 4+ DXF 1(ey,(x) =0 (2.8)

and
Fll(x)Ely (2.9)

The self-consistency of conditions (2. 8) and (2.9) may
easily be verified. For 0<m <!, Eqgs. (2.8) define F,,
in terms of the F;; defined in (2. 9).

Fia.x)=0 form>1 or m<0,

We can now see from the definition of the polynomials
F,, that

All'mm' (v)EFlm(bﬁ)Fl'm’ (dﬁ)A”'(U), (2.10)

with A,,, (v) arbitrary functions of v and D= 3/dv, satis-
fy conditions (2.5), (2.6), and (2.7). Thus we conclude

that
- 1o - -
b1 = 25 2 [Flm(bD)Fl'm' @dD)A;1 )]
m=0 m* =0
I 14
X coth™ (v tv ) coth™ (y—;i) , (2.11)
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2
TABLE I, Incoming solutions, of the form ¢,,. =2

m=0 m’=0

’

5,,.,”,",, to Eqs. (2.13) for various choices of R(v,v’).

Rv,v")

qbll'mm'

l(l+1)

v+’ l’(l’+1) s fv=v’
b ese d

v—v’
d
v+o’ l(l’+1) 3 fv—v’
7 )+ sech ( 7 )

vr+1)
“w-v)E

b

l(l+1) B2

l(l+1)

l(l+1) 2(v+v’) l’(l'+1) sol?

l(l+1)

v+u’
b
<v+v’)

l'(l’+1) sect v—v’
d

1{1+1) r@+1)
w+v')2 " @w—v')

1(0+1)  r('+1) v’
(v+v’)2+ 22 sech? (v dv )
(+1) v@w+1) o (v—v’
w+v’)? d? d
1(I1+1)  r+1) v—v'
w+v’2~  4d¥

[F n®D)Gyop (dD) Ay, (v)] coth™ (v ;v ) cotm’ (v _dv' >
[ (U;v,)coth"‘ (v—dv')
[F OB, B, (v)] cothm (” o’ )tanh"' (%)
[F D) H,pe (B)A,,.(v>]comm (”;”') (- o)™
.Ul
=) (55)
[H D)H,, . D)A,;. (v)] v )y — o)

[

[H i) Telm (dD)A”:(v)](v+v’)""cot’" (i"d—”>

m ODVF 0, (dT))A”,(u)]cothm

o

[F ®D)G,.,, - dD)A”,(v)]coth”' (

o

Im ﬁ)Fl mt (dD)A” . (U)](U +y I)-m tanh™ (1) —dy ’>

[H D1y '(_dD)Aw(U)](v+v')"" tan™ <—” 'd”')

v+u’ m [ vV’
B >cot ( 7 )

[G ®D)F,.,, JdD)Aw(v)]cot’"( 2ty

[c ®D)G,.,, uD)A,,.(v)] cotm <

[G DG, (- dD)A”,(v)] cot™” (

[Gb,. bD)G,oy (—dB)Azlr(v)] tanm (v J;)v,>tar{"' <v—dv’>

l(zbzl) escz(vﬂz’) l’(l’+1) esd? (v—v')
l(l+1) 2(1} v’>+ (l'+]) ( )
l(l+1) 2 (2 w) l’(l'+1) 2 (2=
=
z(z+1) 2(1} u'> l’(l’+1) oo )
l(l+1} Secz(ﬂ v’>+ (l'+1) sechz( )

’ ’ ’
_l(zb;n oot <v;u >+l (fi;nse 2

)

[G D) F,, ,(dD)A,,,(v)} taom ( ”*b”

[F,,,, ®D)F;,, . dD)A;;. (v)] tanh™ ( L

with A ;. (v) arbitrary functions of v, are solutions of
Egs. (2.1).

The functions $,,., as defined by Eqgs. (2.11), are
nonspreading solutions of Eqs. (2.1). This can be seen
from the facts that » and v’ label the characteristic
surfaces of Egs. (2.1) and that ¢;;» =0 if v is outside
the support of the “news functions” A;;. (v).

Because Eqs. (2.1) are invariant under the inter-
change of v and v’, it is easy to see that
H 1’

b1p=20 23 [Fip(®D)F 14 e (@D)Byy (07)]

m=0 m’ =0
’ ’
v ) COth"f(g—d-\]L),

with B, (v) arbitrary functions of v’ and D= 3/,
also nonspreading solutions of Egs. (2.1).

(2.12)

v+
X coth"'(

are

Solutions that contain arbitrary functions of v will be
designated as “incoming solutions, ” while those con-
taining arbitrary functions of v’ will be designated as
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“outgoing solutions.” With this convention, ¢;; and (ﬁ,,,
are incoming and outgoing solutions, respectively. For
equations that are invariant under the interchange of v
and v/, incoming and outgoing solutions can be obtained
from each other by the interchange of v and v’.

Based on similar arguments, we can construct in-
coming and outgoing nonspreading solutions for a larger
set of differential equations. These equations are all of
the form

Kt J1) =R, v, (2.13)

wov’
where R(v,v’) is a given function that is invariant under
the interchange of v and v’. The incoming solutions,
&10, of these equations for a number of different
choices of R(v,v’) are given in Table I. These solutions
are expressed in terms of the three sets of polynomials
F.(x), Gulx), and H;,(x), with 1=0,1,2,--+ and m
=0,1,2,...,l, where the new polynomials G,,(x) and
H,,(x) are defined by the equations
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[ +1) = mim +1)]Gn(x) = (m + 2)(m + )Gy many (%)

+ (m + 1)xGy(maty (*) =0, (2.14)
Gux)=1, G;,(x)=0 for m>1 or m<0, (2.15)
(1@ +1) = mom + 1) H;, (%) + (m + DxH ety (0) =0,

(2.16)
H;(x)=1, H;,(x)=0 for m>1 or m<0. (2.17)

Because Eqs. (2.13) are invariant under the interchange
of v and v, the outgoing solutions, ¢;;., can easily be
obtained from the incoming solutions, ¢;;..

By means of the transformation v’ —~ - ', we can con-
struct solutions to certain partial differential equations
that are not listed in Table I. For example, under the
transformation v~ - v’, the equations

gy [1E+1) ofv +v’
wov’ | bT °°¢ b

’ l’ 1 — 1
—l—(—d;-—) cschz(v—zv—)}p,,.

2.18)
become
az¢1;l _ l’(l"*"l) 2 v+v’
o0’ — | d Mg
Il+1 v=-v'
'(_b"—) CSCZ(T)]‘P”" 2.19)

From the incoming solutions of Eqs. (2.19) given in
Table I, it is easy to see that the incoming solutions to
Egs. (2.18) are

i

511'=E E [Fl’m'(dﬁ)Glm(bﬁ)A”'(v)]

m=0 m’ =0

’ ot
xcot"‘(v ZU ) coth""(v dv )

The outgoing solutions of Egs. (2.18) can be obtained
from the incoming solutions by the interchange of v with
v’ and the replacement of D by D,

(2.20)
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3. DISCUSSION

Kundt and Newman' have discussed the relation be-
tween the existence of nonspreading solutions to hyper-
bolic differential equations in two dimensions and the
termination of what they have referred to as “substitu-
tion sequences.” The solutions that we have presented
in this paper are consistent with these results of Kundt
and Newman.

As a result of the fact that F;,(x), G,,(x), and H,,(x)
are polynomial functions of x, all of the incoming solu-
tions discussed above are of the form

d""A ()

pr (3.1)

n
$=20 gulv,v")
k=(
with # some positive integer and g¢# 0. It then follows!?
that the associated substitution sequences terminate to
the right. Because the substitution sequences are sym-
metric, they also terminate to the left,

The substitution sequences associated with the dif-
ferential equations discussed in this paper are not only
symmetric and terminating, they are also nontrivial;
i.e., the members of these sequences are not functions
of W +v') or (v—-v’') alone. The existence of these non-
trivial sequences can be used to test the validity of cer-
tain conjectures concerning the analytic shape of mem-
bers of terminating symmetric sequences.*

*Research supported in part by the National Science
Foundation.

*This work incorporates some results of a Ph.D. dissertation
by S.C. Chang (University of Pittsburgh, 1974).

¥Present address: Aerojet Nuclear Company, 550 Second St.,
Idaho Falls, ID 83401.
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The purpose of this investigation is to find the conditions for characteristic propagation of multipole
radiation in Friedmann backgrounds. The radiation fields studied are Klein—Gordon scalar fields,
conformally invariant scalar fields, electromagnetic fields, and gravitational fields. The behavior of
electromagnetic and conformally invariant scalar radiation is similar to that of the corresponding radiation
in flat space-time, since both fields satisfy conformally invariant equations and the Friedmann backgrounds
are conformally flat. Thus characteristically propagating solutions are possible for both fields in any
Friedmann background. For the Klein-Gordon and gravitational fields, it is found that characteristic
propagation is possible only for special Friedmann backgrounds. Two physically important Friedmann
backgrounds, those for which P=0 and P = p/3 (where P is pressure and p is density), are among these
special backgrounds for both types of radiation. In the course of this study, all Friedmann backgrounds for
which P = ap, where a is an arbitrary constant, are found; the methods used and the resulting solutions are

much simpler than those previously given by Tauber.

1. INTRODUCTION

The propagation of waves in most media is not of the
nonspreading, or characteristically propagating, type;
i. e., the waves do not propagate at some characteristic
speed that is solely determined by the medium in which
they propagate. Usually, the wavefront of a disturbance
will propagate at some characteristic speed, but it will
be followed by a wave tail that propagates at smaller
speeds. This tail, in some sense, can be considered as
arising from the continuous backscattering of the wave,

When radiation propagates in various space—time
backgrounds, there is usually a radiation tail resulting
from the interaction with the space—time curvature.
Kundt and Newman! investigated the problem of back-
scattering for scalar and electromagnetic waves in both
flat and Schwarzschild backgrounds, Their results in-
dicated that, although the flat background produced no
backscattering, there was always backscattering in the
Schwarzschild background. The questions naturally
arise then, of whether backscattering is unavoidable
in curved backgrounds, and if not, under what cir-
cumstances radiation tails will be absent. In order to
give a partial answer to these questions, we study
radiation in Friedmann backgrounds (with vanishing
cosmological constant). These backgrounds, which in-
clude models with negative, positive, and zero spatial
curvature, are highly symmetrical and thus relatively
easy to handle. A brief introduction to the Friedmann
models is given in Appendix A, The radiation fields that
we study are scalar, electromagnetic, and gravitational
radiation. The basic equations governing their prop-
agation in Friedmann backgrounds are discussed in
Secs. 2, 3, and 4, respectively. The circumstances
under which these equations admit nonspreading solu-
tions are then discussed in Sec. 5.

Both conformally invariant scalar radiation® and
electromagnetic radiation satisfy conformally invariant
field equations. Since the Friedmann backgrounds are
conformally flat, it is not difficult to see that the be-
havior of such radiation in Friedmann backgrounds is
similar to that of the corresponding radiation in flat
space—time, and can thus be described by nonspread-
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ing solutions. 2=4 Tn other words, radiation without
backscattering is possible for any Friedmann back-
ground. The results of our study, as expected, confirm
these conclusions,

The Klein—Gordon equation is a well known example
of an equation that is not conformally invariant. We
thus might expect that scalar radiation governed by this
equation would usually be accompanied by backscatter-
ing when it propagates in Friedmann backgrounds.
Again, our study confirms this expectation. We find,
however, that multipole radiation of the Klein—Gordon
field can have the property of characteristic propaga-
tion for a special class of Friedmann backgrounds.
Among this special class are two physically important
backgrounds, those with the equations of state P=0
and P=p/3, where P and p are pressure and density,
respectively.

The question of the existence of backscattering for
gravitational radiation in Friedmann backgrounds is
closely bound to the question of what field equations to
choose as governing this radiation. Penrose? has sug-
gested a set of conformally invariant equations for
zero-rest-mass fields of spin s (where s=3,1,3, ),
viz.,

VA% 4 gk =0,

where ¢ 45...5 is a totally symmetric spinor with 2s
indices. For the special case of s =2, Eqgs. (1.1) re-
duce to

1.1)

V4% 4 pop=0. (1.2)

One might think that Egs. (1.2), with the attractive
property of conformal invariance, would be the best
choice of equations governing gravitational radiation in
Friedmann backgrounds. On the other hand, the follow-
ing argument seems to work against this choice. We
first note that in a vacuum the Bianchi identities re-
duce to the form

VA %4 pcp =0, (1. 3)

where §,5cp 15 the Weyl spinor. Since Egqs, (1.3) are
the same as Egs. (1.2), the choice of Egs. (1.2) as the
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governing equations for gravitational radiation propagat-
ing in a vacuum seems reasonable. However, in more
general cases the Bianchi identities need not take the
form (1. 3). Thus, in the case of the Friedmann back-
grounds, which are not vacuum backgrounds, the choice
of Eqs. (1.2) as the governing equations is no longer
very convincing.

The approach we take to discover the appropriate
governing equations is through perturbation theory ap-
plied to the Einstein field equations, with the Fried-
mann solutions as the zero-order solutions. We employ
the Newman—Penrose formalism, > which we consider
to be the one best suited for our study. As we are only
interested in gravitational radiation, we assume that
the Ricci tensor has vanishing first~order perturbations
{which could be considered as perturbations of the mate-
rial, as opposed to the gravitational, background), while
allowing nonvanishing perturbations of the Weyl tensor.
Since the Weyl tensor now satisfies equations that are
not conformally invariant, we again find that the multi-
pole radiation can propagate characteristically only for
a special class of Friedmann backgrounds. As in the
Klein—Gordon case, we find, rather surprisingly, that
the backgrounds with equations of state P=0 and P
=p/3 belong to this special class.

The results of Secs. 2—4 are summarized in Table 1.
It is seen there that all of the equations governing the
various fields share the important property that their
characteristic hypersurfaces are null hypersurfaces of
the background space—time. In other words, the
characteristic speed of all of the different types of
radiation is the speed of light. It is also seen that the
equations governing the Klein—Gordon and the gravita-
tional radiation fields are related in a strange way. As
explained in Sec. 5, they are the images of each other
under a simple mapping of one Friedmann background
into another of the same spatial-curvature type. Other
surprising results, e.g., the relation between Tables
II and III, which describe certain Friedmann back-
grounds that lead to characteristically propagating
multipole fields, are also discussed in Sec. 5, and
summarized in Sec. 6.

Finally, we note that Friedmann backgrounds satisfy-
ing the equation of state P=ap, where ¢ is an arbitrary
constant, are discussed fully in Appendix B. Our meth-
od of finding all such backgrounds, and their resulting
forms, are much simpler than those given previously
by Tauber, ®

2. SCALAR RADIATION

Our discussion of radiation in Friedmann backgrounds
will start with the simplest type, i.e., scalar radia-
tion. Specifically, we shall discuss those scalar fields
that satisfy an equation of the form

(g4,),, + L= ry—o,

5 2.1)

where n is an arbitrary constant, We note that for
n=1and n=0, Eq. (2.1) reduces to the Klein—Gordon
equation and the conformally invariant scalar field
equation, 2 respectively,
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If we take i to be a first-order quantity and the
metric backgrounds to be those of Egs. (A8)—(A10),
a straightforward calculation shows that the linearized
version of Eq. (2.1) can be transformed into

_ai.__ 27 + £ —) )

3‘[131}'_ na/o\ 465 qb) ( . )
where ¢ is defined by

b =efy, 2.3)

and H, 1(}, and I are defined by Egs. (All), (A21), and
(A23), respectively, The differential operators & and
5 are essentially the spin-weighted differentiation
operators on a sphere, %8 I we expand ¢ as

b=2 (2. 4)

H

d)tm(v’ v,)Ylm(gs Z)v

w©

¥ 0~

>
-~

where Y,,,(¢, ¢) are the spherical harmonics, then Eq.
(2. 2) implies that

im _[l<1+1)1_ 2 ]
dwov’ L 4 naQ (i

for 1=0,1,2,- -

Equations (2. 5) describe the multipole radiation, in
Friedmann backgrounds, for scalar fields governed by
Eq. (2.1). In particular, for conformally invariant and
Kiein—Gordon scalar fields, Eqs. (2. 5) become

(2. 5)

and m=-1,-1+1,...,1L.

ERo T (A )

oevi= 4 O (2.6)
and

oin _(Z(l +1)L

Jv o’ - 4 a /0\ ¢lm’ (2- 7)

respectively, Equations (2. 6) and (2. 7) will serve as the
basic equations for our study of characteristic scalar
radiation in Sec. 5.

3. ELECTROMAGNETIC RADIATION

We shall employ the Newman— Penrose formalism?®
to study electromagnetic radiation in Friedmann back-
grounds, Maxwell’s equations in this formalism are®

Dd; - 5d, = (1 - 2a)®, + 20®,; - k., 3.1)
Dy — 5% =— by +21d, + (p— 2%)d, (3.2)
5By~ Ady = (1 — 29)®; + 273, ~ 0y, (3.3)
5%y~ Ay == vdy + 2udy + (T - 28)d,. (3.4)

In linearizing these equations, we take the field varia-
bles &,, ¢4, and @, to be first-order quantities. Then
only the zero-order terms of the other quantities need
to be considered, and the resulting linearized equations
describe electromagnetic fields in the given background.
If we adopt Hawking’s tetrad and coordinate conditions, 9
and use the background quantities given in Appendix A,
it is easy to obtain and solve the linearized versions of
Egs. (3.1)—(3.4).T The entire solution can be expressed
in terms of certain initial data and the spin-weight-zero
quantity ;. We find that &; obeys the equation

i I -
2L = 2550, 3.5)
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where ¢ is defined by
¢ =e"3,. (3.6)

If we consider the expansion of ¢ in spherical
harmonics,

t —
E ¢1m(U’ v,)Ylm(z’ §),

=0 m=al
(3. 5) implies that
I (l g+

s

b= 3.7)

then Eq.
829 im

wav'

for1=0,1,2,-

¢lm (3. 8)

candm=-1,-1+1,...,,1.

Equations (3. 8) are the basic equations describing
electromagnetic multipole radiation in Friedmann back-
grounds. These equations will be studied further in Sec.
5.

4. GRAVITATIONAL RADIATION

Again, the formalism of Newman and Penrose® will
be employed to attack the problem of gravitational
radiation in Friedmann backgrounds. We specialize
this formalism by using Hawking’s notation, definitions,
tetrad and coordinate conditions, and field equations,®
which will not be reproduced here.

All quantities are separated into unperturbed and
perturbed parts, e.g., ®,, is written as @00:%:00 +?00,

with &, the unperturbed part and ?00 the perturbed
0

part. We consider only pure gravitational radiation
with the perturbed parts of all components of the Ricci
tensor vanishing, Thus we have

=A=0.

Do = Byg = Bgp = Bgy = P =
100 111 122 1()1 102 112 1

4.1)
Conditions (4. 1), together with the unperturbed (i. e.,
zero-order) quantities given in Appendix A, can be

used to obtain the linearized forms of the field equa-
tions, and the resulting equations can be solved, ” The
entire solution can be expressed in terms of certain
initial data and the spin-weight-zero spin component of
the Weyl tensor, ¥, (which is equal to \?2, because \112
=0). We find that ¥, obeys the equation

o _

ov v’ (4.2)

(4’22 += 65)%

where ¢ is defined by

¢ =3, (4.3)
When %22¢ 0, ¥, is further restricted by the condition
\I/2+‘iz=0; (4- 4)

in other words, ¥, has only a magnetic part. & If we
consider the expansion of ¢ in spherical harmonics,

¢= ,Eo Z,"”"‘” V)Y (L, 2), (4. 5)
then Eqgs. (4.2) and (4. 4) imply that

Pdim  [LE+1)

o (L - g)o, “.6)
and

¢lm+(_ 1)m¢l(-m)=0’ (47)

respectively, for7=0,1,2,---
l.

and m=-1,-1+1,,

These equations, which also will be studied further
in Sec. 5, are our basic equations for gravitational
multipole radiation in Friedmann backgrounds.

It may be seen from Egs. (4. 86) that v and v’ label the
characteristic hypersurfaces of these equations. As
noted in Appendix A, v and v’ also label null hypersur-
faces in the Friedmann backgrounds. Thus we see that
the wavefronts of the multipole radiation governed by
Egs. (4.6) propagate with the speed of light. It is easily
seen that the analogous conclusions hold for the scalar
and electromagnetic radiation fields discussed in Secs.
2 and 3.

5. CHARACTERISTIC RADIATION

In Secs, 2—4, we found that the study of scalar,
electromagnetic, and gravitational radiation in Fried-
mann backgrounds could be reduced to the study of
certain two-dimensional differential equations. In the
present section, we shall discuss the circumstances
under which these equations admit characteristically
propagating (i. e., nonspreading) radiative solutions. 10

First, a summary of the major results of the preced-
ing sections will be useful. This summary is given in
Table I, where Eqs. (5.1)—(5. 4) are the equations

TABLE I. Differential equations governing radiation in Friedmann backgrounds.

Type of field Field Variable

Definition of ¢ Equation for ¢

Equation for ¢,

2 = 2
Conformally Invariant b p=ély 8_8—827:—411664) (5.1) %ﬂg;&zﬂ!%m (5. 5)
Scalar Field vov vov
2 = 2
Klein-Gordon v 6=y 20 (2a+ioB)e 520 0 Llm . &*—1)—’ ~a’A) ¢y, 6.6)
f dvdv’ ¢ 4 dvov’ 0
Scalar Field
2 —_
. s e I o _ l(l+1)I
Electromagnetic &, b= g, PR —-455 o3 (5.3) Foser 1 Vim 6.7
Field
et . - 8t I5% 82 1I+1)1
Gravitational Field T, ¢ = iy, 55%7=_ (%22 +25?5)¢ (5.4) -8—1%%: (—4——-%22 1 (6.8
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determining the basic field variables and Eqs. (5.5)—
(5. 8) are the corresponding two-dimensional equations
obtained by an expansion in spherical harmonics. We
see immediately from this table that Egs. (5.1) and

(5. 3) are identical, as are, correspondingly, Egs.
(5.5) and (5. 7). Also, these equations are independent
of the specific form of the function a(¢), as is evident
from Eq. (A23). These properties, of course, are not
accidental. They result from the facts that these equa-
tions are associated with conformally invariant fields
and that the Friedmann backgrounds are conformally
flat. For the Klein—Gordon and gravitational fields,
the equations are more complex and depend on the
specific form of a(?). Although Eqs. (5.2) and (5. 4) are
not identical, they are still very similar, and in fact
have a strange connection between them. In order to see
this, we first define

s(a) Eazzo\c (5.9)
We then have, from Eqs. (A21) and (A22), that
a"/4a- 3%,
s(a)={a"/da+3, (5. 10)
a"/4a,
and
(@')/2a* - a"/4a - ¥,
Oy (@)={(a')/2a* - a" /a3, (5.11)

@)/2a*-a”/4a,

for models with negative, positive, and zero spatial
curvature, respectively. It follows from Egs. (5.10)
and (5. 11) that

s(1/a)= %’22(0)- (5.12)

Thus s{a) and %22(a) are the images of each other under

the transformation @ —1/a of backgrounds. It is now
easy to see that Eqs. (5.2) and (5. 4) are the images of
each other under the same background transformation,
and so are Egs. (5.6) and (5. 8).

We now embark on the study of Egs. (5.5)—(5. 8).
Since the functions ¢,,, satisfy the same equations for
every allowed value of m, we shall drop the index m
in the following treatment.

A. Equations (5.5) and (5.7)

With the aid of Eqs. (A23), it is seen that Eqs. (5. 5)
and (5. 7) can be rewritten as

a%p, 1@ +1) 2(1) +v’>

oo’ — & Mg )% (65.13)
3¢, _ 1@ +1) z@+v'

v ov’ - 4 csc 9 ¢1) (5- 14)
¢, _ L@+1)

vov' T (w+uv') 15 (5.15)

for models with negative, positive, and zero spatial
curvature, respectively. Equations (5. 13)—(5.15) are
special cases, obtained by setting b=2 and I’ =0, of
the equations
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2 - ’ 11t —nt
Pou =[&5+2L) csch2(v+u )_ 1@ +1) csch2<v v )]

dv v’ b d? d
Xy, (5.16)
% [10+1) v+t 1@ +1 v — v
avaz' =[ (b °s°2( b )' (dz )cscz( d )]"’”"
(5.17)
ey [1E+1) '@ +1)
Jvov' - (v+v’)2- (1)—1)')2 én’y (5-18)

respectively. In the preceding paper, 10 it was shown
that Egs. (5.16)— (5. 18) admit nonspreading solutions
for all nonnegative integral values of 7 and !’ and
arbitrary constant values of b and d, Thus we conclude
that Egs. (5.5) and (5. 7) always admit nonspreading
solutions,

B. Equations (5.6)

We initiate the study of this case by considering those
Friedmann backgrounds that satisfy the equation of
state

P=oap, (5.19)

where « is an arbitrary constant, and P and p are pres-
sure and density, respectively.

In those cases for which 3a +1#0, it is shown in
Appendix B that azlo\ for this class of backgrounds is
given by

1-30 gen? (3_a?+i t> ,

1-3a 3a+1
2A2 2( )
a A g °sc ) t],

1-3a 1
2@a+1)2 &2

(5.20)

for models with negative, positive, and zero spatial
curvature, respectively., Using Eqs. (A23), (5.20), and
(A7), we can rewrite Egs. (5.6) as

2%, _[1(z+1) 2(v+v’ _1-3a
o L 4 esehi 3 8

xcschz(sa: 1 - v'))]qs,,

%0, _[l(l+1) cscz(”'H)')_ 1_3chc2(3a+l (v—v’)>]

(5.21)

dvov' 4 2 8 2

Xy, (5.22)
¢,  [10+1) 21-3ax) 1
ov 81;' _((v +v')2 7 Ba+1)? (‘U—v’)2>¢" (5.23)

for models with negative, positive, and zero spatial
curvature, respectively.

A sufficient condition that Egqs. (5. 21)— (5. 23) admit
nonspreading solutions is that these equations be special
cases of Eqs. (5.16)—(5.18), respectively, where, in
the latter equations, b and d are constants and ! and I’
are nonnegative integers. This will be so provided that
d is chosen to be
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TABLE II, Values of « satisfying Eqs. (5.26) for allowed
values of I,

=0

I'=1 I'=2 I’'=3 —_—— ]
a=( a==1 a:—-1— ——
Ol:% 9 ‘ 8 a-—.__%
a=-1 qo=-=2 a=-% 7"
d=+4/Ba+1), (5. 24)

and that, for allowed values of I, « and !’ are related
by

Ba+1)4'@’ +1)=2(1 - 3a). (5. 25)
The solutions of Egs. (5.25) for a are
ezl o012, (5. 26a)
3L +17)’ ’ ’
and
a:—l'—”;,z,wﬂ,z,--- (5. 26b)

The numerical results of Eqs. (5.26) are indicated in
Table II.

Among the Friedmann backgrounds specified by Egs.
(5. 26) (or Table II), only those with a=0 and a=3
have nonnegative pressure. For a =0, the background
is pressure free. For « =3, the pressure is entirely
due to radiation.

Let us now drop the requirement that the Friedmann
backgrounds be subject to the equation of state (5.19).
We then see, making use of Egs. (5.9), (5.10), and
(A7), that Eqs. (5.6) will still be special cases of Egs.
(5. 16)— (5. 18) provided that

a” 1 UQ@'+1 2t

rrintrie —(‘-ﬁ-—) CSChZ(E>, (5.27)
a” 1 U(QQ'+1 2t

12 + 1= —(—dT—) cscz<g>, (5. 28)
a” I'(’'+1

oot (5.29)

for models with negative, positive, and zero spatial
curvature, respectively. Equations (5. 27)—(5. 29) are
not difficult to solve. For example, if we define x

= coth(2t/d), then Eq. (5.27) becomes

d*a da ( (d(2)2>
-y _ st 1! - — 1
A-x) 7 -2 qQ+1) T—2)2=0 (5.27")
which is one form of Legendre’s equation and is thus
easily solved.

We have found that, for a variety of different Fried-
mann backgrounds, including some physically impor-
tant cases, the equations for multipole radiation of the
Klein—Gordon field become special cases of Eqs.

(5. 16)— (5. 18) and thus admit nonspreading solutions. In
the preceding paper, 10 it was shown that a much wider
class of second-order, two-dimensional, hyperbolic
differential equations, including Egs. (5.16)—(5.18) as
special cases, admits nonspreading solutions. From a
comparison of Eqs, (5.6) and these other equations, it
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is seen that for some Friedmann backgrounds that do
not satisfy Eqs. (5.27)—(5.29), Egs. (5.6) will never-
theless admit nonspreading solutions. We leave the dis-
cussion of these other backgrounds for future study.

C. Equations (5.8}

In order to expedite the treatment of this case, we
shall make use of the relationship between Egs. (5.6)
and (5. 8) that was discussed at the beginning of this
section. First, however, we shall examine the behavior
of the equation of state (5.19) under the background
transformation @ ~1/a. We begin by defining

P*=d’P, p*=d’p. (5. 30)

We then define P* and p* as the images of P* and p*,
respectively, under the transformation a —~1/a, i.e.,
we have

Pr=P*(1/a), p*=p*(1/a).

It then follows, from a straightforward calculation
based on Egs. (B1) and (B2), that

Pr—- (Pr+3p%), F*=p.

(5. 31)

(5.32)

We see, from Egs. (5.30)—(5.32), that the equation of
state P=ap leads to

P=ap, (5.33)
where

B=P(1/a), p=p(l/a), (5. 34)
and

T (5. 35)

In other words, if a background characterized by a(?)
has its pressure proportional to its density, then so
does a background characterized by 1/a(t), with the
proportionality constants for the two backgrounds
related by Eq. (5. 35).

Based on Eq. (5.35) and the relationship between
Egs. (5.6) and (5. 8), as explained at the beginning of
this section, a simple calculation shows that Eqgs.

(5. 24) and (5. 26), pertaining to Eqs. (5.6), should be
replaced by

4

d:¢3a+1 , (5. 36)
and
I’+3
a=- 3 +1)° 1"'=0,1,2,---, (5.37a)
2-1
= LY l,:-l’z,'“, (537b)

respectively, in the present case. The numerical re-
sults of Eqs. (5.37) are indicated in Table III

A comparison of Egs. (5.26) and (5.37) (or of Tables
II and I) shows that the set of values of o determined
by Egs. (5. 26) is identical to that determined by Eqs.
(5.37). Furthermore, a one-step clockwise rotation of
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TABLE III. Values of @ satisfying Eqs. (5.37) for allowed
values of I/,

=0 I'=1 I'=2 =3 ~—— I/~
(}5:% a=0 a:—%. -——

a=~1 a—- -1
a;—_% az_g_ a:-% ——

the a’s in Table II (but keeping the limiting value of
-} in the same position) gives us Table III,

Again because of the relationship between Egs. (5. 6)
and (5. 8), the search for more general Friedmann back-
grounds for which Egs. (5. 8) admit nonspreading solu-
tions is essentially the same as in the case of Egs.

(5. 6); we shall pursue it no further here.

6. DISCUSSION

Perhaps the most interesting of our results is that
there is a class of Friedmann backgrounds, including
the physically important cases P=0 and P=p/3, in
which gravitational and Klein—Gordon multipole radia-
tion can propagate without backscattering., This should
be contrasted with the earlier results of Kundt and
Newman, ! which suggested that the presence of matter
would lead to noncharacteristic propagation.

In Sec. 5, we noted several rather mysterious re-
sults. There was a strange relation between the equa-
tions describing the Klein—Gordon and the gravitational
fields; although they arose from quite different con-
siderations, they were images of one another under the
simple background transformation a(f) — 1/a(t). This
transformation had the further strange consequence
that it preserved a proportionality between the pressure
and the density of the backgrounds. The simple relation
between these constants of proportionality led to still
another strange relationship, that between Tables II
and III, We suspect that these results are not just
mathematical coincidences, but may arise from some
deeper physical structure that we have not yet
understood.

Finally, it may be of some interest to pursue similar
discussions of radiation in other sorts of cosmological
backgrounds, A preliminary study of Klein—Gordon
fields in de Sitter backgrounds indicates that multipole
radiation does propagate characteristically.

APPENDIX A

In this appendix, we give a brief review of the Fried-
mann metrics.

It can be shown that the line element for any Fried-~
mann model can be written in one of the following
forms'!:

dst=a®(t)[ds? - dx® ~ sinh®x(d6® + sin*0de?)), (A1)
dst=al(t)[df’ - dx? ¥y - sin’x (d6® + sin*0 do?)],  (A2)
ds*=d (t)[dt* ~ dx? - X*(d6? + sin0 de?)]. (A3)

Models with negative, positive, and zero spatial curva-
ture correspond to the forms (A1), (A2), and (A3), re-
spectively. We take x>0 in (A1) and (A3), 0<x <7 in
(A2), and a> 0 in all three cases.
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I we introduce the coordinates u=£—y and {=x2
+ix%, where x% and ¥° are the stereographic coordinates
related to 6 and ¢, then Egs. (Al)—(A3) take the forms

ds? =@ ()~ di? + 2dudt — (1 + 1£8)? sinh®(t - ) dt dt],

(A4)
ds? = a* (D)~ du? + 2du dt — (1 + 1£2)"2 sin®(t ~ u) d¢ dT), (A5)
ds*=a(t)[~ du? + 2du dt — (1 + 160)2(t - w)? dE dE), (A6)

respectively. If we now introduce the coordinates v and
v’, defined by

v=u, v =u-24 (A7)

then Eqs. (A4)—(AB) become

ds*=a? (%)[— dvdv’ - (1+1£¢)-? sinh? (2;;-—1)—)@ dt],

(A8)
ds*=a? (v; v )[— dvdy’ ~ (1 +3£8)7 sin? (v ; Y >d§ dZ],
(A9)
— 7\ 2 —
dst= az(v ; v )[— dvdy - 1+ %§§)'2(2%-v~) dg d!], (A10)

respectively. It is clear from Egs. (A8)—(A10) that v
and v’ label null hypersurfaces.

It will be useful to define the functions H and 7 by the
equations

e=(1+ 1) MV?, (Al11)
(1 + 1£2)"2a? sinh®(f — u),
h={(1+L£0)2a? sin(t - »), (A12)

(1+380)2 e -w)?,
for models with negative, positive, and zero spatial
curvature, respectively,

In our discussion of radiation, we need the zero-
order values of the quantities that occur in the New-
man—Penrose formalism,’ i. e., the values associated
with the Friedmann backgrounds. If we use Hawking’s®
notation and definitions of field variables, as well as
his tetrad and coordinate conditions, then we find,
where the subscript 0 indicates that these are the zero-
order quantities,

U=a*/2, £'=i*=(2n"?, x*=x=0, (A13)
0 T 0 0
i il ke (A
y=- a'/2a, (A15)
_ 012,13 4
%— ™ Inpt/é + 9 37 Ik’ (A16)
__Y 2 122
;())_ 23 Ink -.Ef(%+2%/), (A17)
a=-F3= “*mg“_"‘ (A18)
0 o 42r)V+ 1Ty’
=¥, = = = =
O G 10
%’01 = %)02 = %’12 =0, (A20)
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a1
4 " 4qt
a’ 1
Y T a2 (a21)
a/’
443’
2(a')? a1
at & &
4 4 20’ a1
bp=g =g dn=\"F ~F*ta (A22)
2(a’)? _a
a® @

In the above equations, a prime indicates differentia-
tion with respect to ¢, and in Egs. (A21) and (A22) the
top, middle, and bottom lines are for models with
negative, positive, and zero spatial curvature,
respectively.

Finally, it will also be useful to define the function I
by

csch?[(v+v')/2],
I=gte*® = (csc?[(v + v)/2],
4/(v+v')?,

for models with negative, positive, and zero spatial
curvature, respectively.

(A23)

APPENDIX B

In this appendix, we study Friedmann backgrounds
that are subject to the equation of state (5.19),

The pressure, P, and density, p, of Friedmann back-
grounds can be expressed as’

a{(a')? - 2aa" + a*],

P=la*[(a’)? - 2aa” - a*], (B1)
ai[(a')? - 2aa”],
3a*{(a’)? - a*],

o=43a[(a’)? + a?], (B2)

3aa')?,
for models with negative, positive, and zero spatial

curvature, respectively. If we use Egqs. (B1) and (B2)
in Eq. (5.19), we obtain

[a3a-1/2q']) _ [(Bar + 1)/2]aB* /2=, (B3)
[a(Sa-i)/Za’]’+[(3a+1)/2]a(3a*1)/2:03 (BY)
[a(go,_-() /Zal ]I — O, (B5)

for models with negative, positive, and zero spatial
curvature, respectively.

If 3 +1#0, we define Y=a'3**V/2 Then Egs. (B3)—
(B5) take the forms

2
V" — 301;‘ 1) Y= 0’ (BG)
2
vt 30124-1) y=o, (B7)
Y' =0, (B8)
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respectively, The general solutions to Eqs. (B6)—(B8)
are

Y=A4 sinh(3a *+1 t+B>,

5 (B9)
Y=A sin(3‘”2+1t+3>, (B10)
Y=A(t+B), (B11)

respectively, where A and B are arbitrary constants.
We can always make B=0 by an appropriate time
translation. With this choice, we find

la|- !sinh<3a 1 t)

2
sin(3a+1t)
2
)A ‘ . ‘tIZ/(SaM),

for models with negative, positive, and zero spatial
curvature, respectively. Equations (B12) and (5.10)
immediately lead to Eqs. (5.20) for a210\.

2/(3a+1)

b

2/(3a+1)

?

(B12)

a=\|Al-

Finally, if 3¢ +1=0, Egs. (B3)—(B5) all reduce to
the form
(lna)” =0, (B13)

Again, one of the constants in the general solution to
Eg. (B13) may be eliminated by a time translation,
leaving us with the solution

a=e?, (B14)
where A is an arbitrary constant. Equations (B14) and
(5.10) then give us
(4% -1)/4,
a*A =4 (AT +1)/4,
0
A/4,
for models with negative, positive, and zero spatial
curvature, respectively.

(B15)
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A systematic study of the symmetry porperties of the Schrédinger equation u,, +iu, = F(x,t,u,u*) is
performed. The free particle equation (for F=0) is known to be invariant under the six-dimensional
Schrodinger group S,. In this paper we find all continuous subgroups of 5, and for each subgroup we
construct the most general interaction term F(x,t,u,u*), reducing the symmetry group of the equation from
S5, to the considered subgroup. Since we allow for an arbitrary dependence of F on the wavefunction u
(and its complex conjugate u*) the considered Schrodinger equation is in general a nonlinear one [the
ordinary Schrodinger equation with a time dependent potential is recovered if F(x.t,u,u*) = uG(x, t)]. For
each symmetry breaking interaction F the remaining symmetry group is used to obtain special solutions of
the equations or at least to separate variables in the equation and to obtain some properties of the

solutions.

1. INTRODUCTION

The purpose of this article is to provide a systematic
study of the group theoretical properties of the time de-
pendent Schrodinger equation

2

%\—sz‘+ig?:F(x, t, u, u*). (1)
Here x and ¢ are the space and time coordinates, u is
the wavefunction, a star denotes complex conjugation,
and F(x, t, u, w*) an interaction term which may depend
linearly or nonlinearly on the wavefunction (we assume
the absence of couplings involving derivatives of the
wavefunction).

The symmetry group of the free Schriodinger equation
[i.e., equation (1) with F(x, f, u, w*) = 0] is known to be
a six-parameter Lie group,!~® sometimes called the
Schrodinger group, and we shall denote it §;. We make
use of recently developed methods®~!! to find all conti-
nuous subgroups of §; and their invariants.

For each subgroup §; of §; we then find the most gen-
eral interaction of the type considered in Eq. (1) that
reduces the symmetry of the system from §; to §;. The
subgroup §; can be used to investigate Eq. (1) with the
appropriate interaction F, in particular to separate
variables in some specific system of coordinates and
in some cases to obtain general or special solutions of

(1.
Obviously, if the interaction is of the form
S(x, t,u, u*¥) =uVix, ), (2)

then V(x,?) can in general be interpreted as a time de-
pendent potential. More generally, we obtain nonlinear
interactions, e.g., the “nonlinear Schridinger equation”
Uy + iUy = Melul®, which is in itself of considerable in-
terest.'? Thus, the classification of subgroups also pro-
vides a method for generating soluble or at least par-
tially soluble models with nontrivial interactions, in
particular nonlinear ones. In view of the recently in-
creased interest in nonlinear problems in physics, spe-
cially in connection with soliton type phenomena, }3-6
we find development of group theoretical methods appli-
cable to nonlinear problems particularly opportune.
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Let us put the considerations of this article into a
somewhat broader mathematical and physical context.
The application of Lie groups to study and solve ordi-
nary and partial differential equations has a long history,
going back to the classical work of Lie himself.!? More
recently several books have been partially or completely
devoted to this subject.'®? Symmetry methods are very
useful for treating ordinary differential equations, but
their full power manifests itself best for partial differ-
ential equations. Thus, Lie theory provides a general
treatment of the separation of variables in partial differ-
ential equations.??=%" Indeed, separable systems of co-
ordinates for a given linear partial differential equation
can be characterized by the fact that the separated solu-
tions are eigenfunctions of certain first or second order
operators in the enveloping algebra of the Lie algebra
of the equation’s symmetry group. There is thus a cor-
respondence between orbits of such operators under the
symmetry group and different types of separable coordi-
nates. This correspondence makes it possible to extend
greatly the classes of special functions that can be treat-
ed by Lie group methods (the fact that essentailly all
properties of most special functions follow directly from
the representation theory of Lie groups is, of course,
well known®*-3%), For both partial and ordinary differen-
tial equations Lie theory provides methods for construct-
ing special solutions, for generating classes of solutions
from one known solution, for decreasing the order of
the equation or the number of variables, and generally
simplifying the equation that we wish to solve. On the
other hand, Lie theory makes it possible to establish
relations between different equations and their solutions.
Indeed, given a differential equation, we can find its
symmetry group and then construct other equations,
e.g., in quite different spaces, left invariant by the
same group.

From the physical point of view we have the following
situation. A physical system, described, e.g., by a
differential equation, may have a certain symmetry, de-
scribed by the symmetry group of the equation. Aside
from providing methods of solving the equation, group
theory allows us to approach systematically important
physical problems, in particular those related to sym-

Copyright © 1976 American Institute of Physics 1439



metry breaking. Thus the physical system can be placed
in an external field, previously ignored interactions can
be taken into account, the system can be placed in an
environment that imposes certain boundary conditions,
etc. All of these types of perturbing influences can be
classified with respect to their symmetry, by classify-
ing the subgroups of the original symmetry group.

Returning to the Schrddinger group §;, or more gen-
erally §,, as the symmetry group of the time dependent
Schrodinger equation in n spatial dimensions, let us
mention that it and its subgroups are also of interest in
some other connections. Indeed §, is a subgroup of the
conformal group Oz + 2, 2) of (r +1)-dimensional
Minkowski space; in particular §; is a subgroup of the
de Sitter group O(3, 2) and §, is a subgroup of the con-
formal group O(4, 2) of Minkowski space. This plays a
role in light cone or infinite momentum frame calcula-
tions in high energy physics.3* We also mention that
O(n +2,2) is the symmetry group of the Hamilton Jacobi
equation in » spatial dimensions and that §, is then re-
lated to a quantization prescription,3®

In Sec. 2 we discuss the group §, as the symmetry
group of the free time dependent Schrodinger equation
in » spatial dimensions. We explicitly construct the gen-
erators of §; as first order differential operators in x
and ¢ and consider some relevant properties of the
Schrddinger group and its Lie algebra. All subalgebras
of the Lie algebra LS; of §; are classified into conjugacy
classes in Sec. 3, Conjugacy is considered separately
under the subgroup /) of §; (the Galilei group extended by
dilations) and under the group §;. The results are sum-
marized in Table I and Fig. 2. In Sec. 4 we find for
each subgroup of §; the most general interaction
F(x,t,u, u*), left invariant by the subgroup. The results
are summarized in Tables II—-V. The conclusions and
future outlook are presented in Sec. 5.

2. THE SCHRODINGER GROUP

A general method for determining the symmetry group
of a given differential equation or system of differential
equations is due to Lie.'” His method is applicable for
general linear or nonlinear differential equations of
arbitrary order. For linear equations his method can be
simplified and cast into an operator form. The equation
that we wish to study in this section is indeed linear,
namely the one-dimensional time dependent Schrodinger
equation for a free particle. Its symmetry group is well
known, =% and we shall give only a sketch of the deri-
vation here. Since the number of spatial dimensions is
not crucial for the derivation, we treat the n-dimension-
al case and only later specify that n=1. The equation to
consider is thus

AU =ty Tiny =0, @)

where w, =9u/3t and u,, =3 ", 9%u/3x% is the n-dimension-
al Laplace operator in the Euclidean space E,. The op-
erator A acts in a space of functions ¥(x, f} (to be speci-
fied below) and the group G will be called its symmetry
group, if their exists a representation T(g) of G, acting
in the space of functions (x, #) in such a manner that it
transforms solutions of (3) into solutions. Without loss
of generality we can assume that the action of T(g) is
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(T@lx, 1) = uix, t, D", 1) + d(x, 1), (4)

Here i(x, £, g) is a scalar multiplier and the coordinates
x’, ' refer to the transformed point: (x’,!") = (x, 1) . g.
The inhomogeneous term ¢(x, #) simply takes into ac-
count the superposition principle for a linear equation
and will be dropped in the rest of this article. However,
some remnants of this symmetry for nonlinear inter-
actions could lead to quite nontrivial results (not con-
sidered in this article).

For G to be a symmetry group we require that

AlT(ulx, =0 (5)
for all u(x, ) satisfying (3), where
[T@ulx, 1) = p(x, t, Pux’, ). (8)

We can assume that u(x, #) is infinitely differentiable
in the underlying variables (x, {) and then make use of
an infinitesimal approach. Thus, we expand the operator
T(g) into a power series

TE@=1+eX(x,D+---, (7

where X is a first order linear differential operator of
the form

X(x,t)=a(x, )9 +b(x, 1), +c(x,1) (8)

and a,b and ¢ are functions that are twice differentiable
in x* and once in £. Equation (5) now implies the operator
equation

[a, X]=x(x, DA, (9)

Since A is a second order operator and X a first order
one, A(x,f) can only be a function (not an operator). In-
serting (8) into (9) and equating the coeificients multi-
plying 3,,., 0., 3, and 1, we obtain a system of differ-
ential equations for a, b, ¢, and A. These can be
solved* =% to obtain the Lie algebra of the Schrdinger
group S, for the n-dimensional Euclidean space. The
structure of the group is §,=[SL(2, A)® O |OW,,
where ® denotes a direct product and T a semidirect
one, with W, as an invariant subgroup. Here SL(2, R),
O(n), and W, denote the real special linear group in two
dimensions, the real orthogonal and real Weyl groups
in n dimensions, respectively.

We now restrict ourselves to the case n=1 (one spa-
tial dimension) where we have §; =§=SL(2, R) JW;. The
generators of this group in the considered (reducible)
representation (6) can be written as

Xi=H=K,+L,=3,,

X,=D =2K, =23, +x9, +13,
X;=C==K,+Ly=120, +tx0,+1/2 - ix%/4, (10)
X,=P=20,,

X;=B=-1t3,+ix/2,

X¢=E=1i.

We consider these operators to be acting on the space
C;(R® of infinitely differentiable functions of compact
support in x¥ and /. However, since the intersection of

CF(R?) with the null space S of A [solutions of the
Schrodinger equation (3)] is an invariant subspace of
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Cy(R%), we can restrict the generators (10) to the space
F=8n C;(R? and consider the time ¢ as a parameter.
Notice that on S we have 3, =i9,,. The generators (10)
have been constructed as skew-symmetric operators on
F endowed with the usual quantum mechanical inner
product

(W, %) = [ Jdx 9f(x, Dd(x, 1) (11)
for ¥y, ¥, € F. Moreover, all the generators can be seen
to be essentially skew-adjoint on F.

The above construction of a Hilbert space is quite
natural from the usual quantum mechanical viewpoint.
It is, however, in no sense obligatory, and in particular
the structure may be destroyed by introducing nonlinear
interactions, as in Sec. 4. If we drop the requirement
that the underlying coordinates (x, ) remain real, we
find that the generator X, is modified to

X,=D=2t3, +x3,+3 +p, p=real,
and the central element X, is replaced by an arbitrary
complex number, i.e., the group is extended to a seven-
dimensional group, generated by X;, X,, X,, ..., X, and
X;=1. We shall however restrict ourselves to the
Schrodinger group $;, generated by (10).

The nonzero commutation relations of the generators
are

(H,D]=2H, [H,C]=D,
|#H,B]=-P, [D,Pl=-P, [D,B]=B,

[D,C]l=2C, [P, B]=3E,
[c, P]=B.
(12)

Thus, H, D, and C generate SL(2,R), P, B, and E gen-
erate the Weyl group W the action of the algebra of
SL(2, R) on that of W is as given in (12). The action of
the differential operators (10) can be exponentiated to
give a representation!=5'% of the Schrodinger group §;.
The action of the Weyl group is given by the operators

T(w, z, @) = e“Be™F *F (13)
acting as
[T(w, z, a)d](x, t) = exp[(i/4)(2wx — u?t + 4a)
Xl —wt +2,8)]. (14)
The action of the SL(2, R) subgroup is
[T(AY](x, D) = exp (%%) (d+bp)-t72
Xy (d%bt , %) (15)
with
A= <"b> €SL(2,R), ad—bc=1.
cd
The adjoint action of SI(2, R) on W, is
TYA)T(w, z, ) T(A) =T(w', 2", &), (16)
where
w'=dw+bz, z'=az+cw, o' =a+wz-w'z).
(17)

Note that we have
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T(1 b) = exp[b(K, - L)), T(i (1))= exp[c(K, +Ly)]

01
%0 6 - sinf
T (% e'“) = exp(aky), T (:?:6 cos 9>: exp(6Ly).
(18)

A comparison of {(10) with (13)—(18) clarifies the nota-
tions of (10). Indeed, H (the Hamiltonian) generates time
translations, D dilations, C conformal transformations,
P space translations, B Galilei boosts, and the central
element E corresponds to the identity transformation
(and to a constant phase factor multiplying the
wavefunction).

Let us make some comments on the representation
(13)—(18):

(1) In view of the square root factor in (15) we have a
representation of the two fold covering group of SL(2, R),
rather than of SL(2, R) itself.

(2) The representation is not irreducible but becomes
s0 when restricted to the space S of solutions of Eq. (3).
By the extension of the restricted representation to the
Hilbert space given by Eq. (11) the representation is
unitary.

(3) The representation of the Schrddinger group §; is
irreducible on S; however, the representation (15) of
the covering group of SL(2, R) is the direct sum of two
unitary irreducible representations, namely Dj,,$ D; ,,
in Bargmann’s notations.*

(4) The Schriddinger group 5; has two invariant opera-
tors (Casimir operators). They are

CY=E,
C® ={4DBP + 4B°H + 4CP? - ED? + 4ECH} .,

(19)

where each term in C®’ must be symmetrized with re-
spect to permutations of all entries, e.g., {DBP}E,ym
=4{DBP +DPB+BPD+BDP +PBD + PDB}, In the rep-
resentation restricted to the subspace of solutions of

(3) both of these invariants have a definite value, namely

CWH=¢ Cc®=i/4, (20)
(5) The continuous group §; can be extended by the
discrete transformations T, X, and XT, related to time

reversal and space reflection in the underlying space
(x,8). Indeed, if we consider the reversal t—~—¢, x —x
together with the complex conjugation operator K, we
obtain the operator T. The operator X corresponds to
the transformation f~¢, x -~ —-x, Clearly X, T, and XT
are symmetries of Eq. (3) and a glance at the generators
(10) shows the following behavior under these
transformations:

T:K,~K;, Ky~~-K,, Ly~-L;, P~P B—-_-B, E~—_E,

X:K ~K,, K,~K,, Ly—L,, P--PB~-B, E~E,

XT:Ky~K,, Ky~-K,, Ly~-Ly, P~-P, B~B, E~-E,
(21)
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3. SUBGROUPS OF THE SCHRODINGER GROUP
5, AND THEIR INVARIANTS

We consider the algebra of §;, using the basis provid-
ed by the operators K;, K,, L,, P, B, and E of (10). All
conjugacy classes of subalgebras can be found using
known methods.” We shall consider conjugacy classes of
subalgebras, where conjugacy is considered with respect
to the Schrodinger group §; on one hand and on the other
hand with respect to a “geometric” subgroup /) of the
Schrodinger group, generated by H, D, P, B, and E.
This subgroup can be interpreted as a Galilei group,
extended by dilations; its transformations [see (14) and
(15) with 5=0, d=a] of the underlying (x, #) manifold
are linear, as opposed to the conformal transformations,
generated by C.

The algorithm for classifying subalgebras into con-
jugacy classes with respect to some group of automor-
phisms A (fo be identified with §; or /)) makes use of the
fact that the Weyl algebra LW :{P, B, E} is an ideal in
the considered algebra and that the factor algebra LS,/
LW is isomorphic to LSL(2, R) (if G is a Lie group, LG
will be its Lie algebra). The algorithm consists of the
following steps:

(1) Find all subalgebras of the factor algebra LSL(2, R),
i.e., construct a representative F; for each conjugacy
class of such algebras under A. For each F; find its
normalizer in A, satisfying Nor,F; -F;< F;.

(2) For each subalgebra F; find all invariant subspaces
N;, in LW, that also form subalgebras. Use the nor-
malizer of F; in A to simplify N;,. The algebraic sums
F;+N,, for all 7 and all a will provide us with a list of
representatives of all splitting subalgebras of ;.

(3) To find all nonsplitting subalgebras of §;, consider
separately a subalgebra F; of LSL(2, R) together with
an invariant subalgebra N;, in LW. To each generator
of F; add a linear combination of all generators of LW,
not contained in N;,. Use transformations belonging to
W to simplify the above linear combinations and then
further simplify, using the normalizer of F; +N,, in
SL(2, R). Finally, restrict the coefficients in the linear
combinations to ensure that we obtain an algebra. Run-
ning through all F; and N;, we obtain a list of represen-
tatives of all nonsplitting subalgebras of §;.

We shall first find representatives of all conjugacy
classes of subalgebras of LS, with respect to conjugacy
under the five-dimensional group /) and then show how
various classes collapse into one under the entire
Schrodinger group §;.

A general element of LSL(2, R) can be written as X
=aKy +b(K,+Ly) +c(K,- L,). If c#0, the term aK; can
be transformed into zero by a transformation exp[x(Kz
+L3)] with an appropriate choice of x. The transforma-
tion exp(vK,) can then be used to transform X into X,
(if bc>0), Ly (if bc<0) or Ky— L, (if bc=0,c#0). If
¢=0, a#0, then exp[x(K, +L,)] can be used to cancel
the K, + Ly term, yielding the algebra K;. If a=c=0,
we obtain K, + L;. Thus, we obtain five nonconjugate
one-dimensional algebras. Now consider each of the
algebras K,, K,, L;, K, +Ls, and K,— L, and add to it
a second generator X. We must choose @, b, and ¢ so
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as to obtain an algebra satisfying [4, B]=B{[A, B]=0
is not contained in LSL(2, R)}. We obtain two algebras:
{Ky, Ky + Ly} and {K;, K, - Ly}. On Fig. 1 we present the
subalgebras of LSL(2, R), classified in this manner and
also the well-known classification with respect to
SL(2, R). The trivial subalgebra {0} should be added to
both schemes of subalgebras.

For each subalgebra F; of SL(2, R) we must now go
through all steps of our classification algorithm. As an
illustration we do this for the subalgebra F,={K;, K,
+Lg}. Commuting K; and K, + L, with the element
pP +bB+aE, where p, b, and « are real numbers, we
find the following subalgebras of LW, that are invari-
ant under F,:

N2,1:{P, B, Ej, Nz,z_—“{Py E}, Nz.az{P}’ Nz,4:{E},
N, 5={0}. (22)

(Note that {P, B} forms an invariant subspace, not,
however, an algebra). All splitting subalgebras are
obtained as the algebraic sums F, +N, , with k=1, ..., 5,
Now let us find all nonsplitting subalgebras. Write two
possible generators in the form

Ky=Ky+bB+pP+aE, Ky+L,=K,+L,+b,B

+p,P+aE.  (23)

Consider the individual invariant subspaces. If we
add {P, B, E} to (22), we obtain a splitting subalgebra.
Adding {P, E}, we can put p;=p,=a =a,=0. The re-
quirement that we obtain an algebra implies b =0,=0,
so that the subalgebra again splits. The subalgebra
{Nm}:P will not in general be invariant. However, if
b, =0, then P - b E is invariant and the transformation
exp(2b, B) will cancel the term — 5, E, The requirement
that we obtain an algebra then implies a,=b, = b,=0,
and we can also put p; =p,=0. Thus we obtain a non-
splitting subalgebra: {k, +aE, K,+L,, P, a#0}, Taking
the subalgebra N, ,={E}, we put ¢, =a,=0. The trans-
formation exp(2b,B ~ 2p,P) will cancel the term 6,5 +p, P
in K,. The requirement that we obtain an algebra im-
plies b,=p,=0 and so the algebra splits. Finally, con-
sider the trivial subalgebra N, ;. We can turn b; and py
into zero by the transformation exp(2b,B - 2p,P). The

FIG, 1. (a) Subalgebras of LSI(2,R) classified with respect to
C(1) ~exp{K,,K,+L;}. (b) Subalgebras of LSL(2,R) classified
with respect to SL(2,R).
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TABLE 1. Subalgebras of LY classified under the groups/) and §,.

Symbol Fy Generators dimS; , Type of algebra Invariants Comments
Si,1 Fy ;Ky,K,,L;,P,B,E 6 LS, ct, ot of (19)
S1,2 EiKy Ky, Ly 4 A® Ay E,Ki+Ki—L}
84,3 1Ky,Ky,Ly 3 Ag,g Ki+K5~L}
Sy F, K{;K,+L;, P,BLE 5 §7)) E
Sy,2 E.K;;K,+Ly, P 4 AOAL;, k=% E,(K,+Lg/P*
Sa,3 Ky ;K,+L,, P 3 A%.s, h=3% (K, +Ly/P?
32'4 E,Kl;K2+L3 3 A1®A2 E
82,5 K(;Ky+L, 2 none
Sag K, +aE;K,+L;,P 3 Al g, h=% (Ky+Lg)/ P T=>a>0
a#®0
Sa,1 Ki+aE;K,+L;, a=0 2 A, none T=>a>0
1 F, K,;K;~L;, P,.B.E 5 ) E Sy:4 is conjugate to
~ 2,k
8,2 E K;K,—L, 4 A DAY, h=4 E,(K,-Ly/B? (k=1,...,7
- under the
22,3 Ky;Kp~Ly, B 3 Als, h=3 K,—LyB? group 5
Spne E,K;Ky~L, 3 ABA, E
S3,5 K ;Ko~Lg 2 4, none
S K +aE;K,~L,, B 3 Al h=} (Ky—Ly/B? T=>a>0
a#0
Sg1 K,+aE;Ky~Lg, a#=0 2 Ay none T=>a>0
85,1 7y K,;P,B,E 4 A E,2K/\E+PB+BP
Sy E,Ky;P 3 4,04, E
3,2 E,K;B 3 A DA, E conjugate to S; »
under § 4
83'3 KX;P 2 'AZ none
5%,3 K;B 2 A, none conjugate Sy 4
under },
53,4 K, ,E; 2 24, K,E
S3,5 Ky; 1 4 Ky
§'G K,+aE;P, a0 2 A, none T=>a>0
.6 K,+aE;B, a=0 2 A, none T=>a>0; conjugate
to 83,5 under §,
Sy.7 K,+aE; a=0 1 Ay Ki+aE Tor$;=>a>0
Ss.1 F, K,;P,B,E 4 Ay E,2K,E+ B’ — P 83,455 9 is conjugate
~ to( ! -
;"3”2 E,Ky;;B+P 3 A;DA, E 3,253, under §,
S E,K;;B-P 3 ADA, E (k=1,...,7
5;.3 Ky;B+P 2 A,y none
3,3 Ky B-P 2 A,y none
§3,4 K, E; 2 24, Ky E
ga,s 2 1 Ay 2
L6 K,+aE;B+P,a=0 2 A,y none T=>a>0
§§'6 K;+aE;B-P,a=0 2 A, none T=>a>0
L7 K,+aE;a#0 1 Ay K,+aE Tor$y=>a>0
Si1 Fy Ky+Ly, B;P,E . Ay, E(K,+Ly) ~P?
S4.2 K,+Ly, P,E; 3 34 K,+Ly,P.E
54'3 K2+L3,P; 2 2A1 K2+L3,P
4.4 K,+L,,E; 2 24, K,+Ly E
Si,5 Hy+Lg; 1 Ay Ky+Ly
Si6 K,+L;+€B, P;E, 3 As E Siorx=e=1
€=x1
54,1 K,+Ly+€E,P; 2 24, K,+Ly+€E,P
S, Ky+Lgs+€B, E; 2 244 Ky+Ly+€B,E Sior X=>e=1
e=%1
S48 Ky+Ly+€Bj€=211 1 Ay Ky,+Lg+¢B Sior X=>e=1
S4,10 Ky+Ly+€E;€=21 1 Ay Ky+L3+€E
S, 7, K,~L,, P;B,E 4 Ay, E{K,—Ly)+B° Syx is conjugate to
Sz K,-L;,B,E; 3 34, K,-L,,B.E Sy tk=1,...,10)
)3 Ky—Ly, B, 2 24, Ky—Ly,B under § ¢
S K,~L,, E; 2 24, Ky=Ly,E
94,5 Ky—Ls; 1 A Ky—Ly
Sie K,~Ls+e€P, B;E, 3 Az E Sior X=>e=1
~ e=x1
,7 Ky~L;+¢E, Bje=+1;2 244 Ky-L;+€E B
4,8 K2~§‘3+ epP, E; 2 244 K,-L,+€P,E Sior X=>e=1
~ €=t
5,9 Ky~Ly+€P;e=41 1 A, Ky~Ly+eP Syor X=e=1
84,10 Ky—~L,+€E €=41 1 Ay Ky,—L;+€E
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TABLE 1. (Continued).

L3;P,B,E

Ss,1 F, 4 Ag 10 E,~2L,E+P+ B?
55,2 Ly,E; 2 24, Ly,E
53 33 1 Ay Ly
5,4 Li;+aE;a=0 1 Ay Ly+akE
Se1 Fy P,B.E 3 Ay E
S5:2 B,E, 2 24, B,E
Se,2 P.,E; 2 24, P,E Conjugate to Sg
under 51
Se,3 B; 1 A B
S, 3 P, 1 Ay P conjugate to Sg 3
under §;
S5 E 1 A E
S6,5 0 0 0 0

condition [K;, K, + Ly]= - K, - Ly then implies b,=p,=e,
= 0. Thus we obtain the nonsplitting subalgebra {K1 +aE,
Ky + L, a0},

Proceeding in the same manner as above, we find the
representatives of all classes of subalgebras of LS;. The
results are summarized in Table I. Each algebra in this
table represents a /) conjugacy class of subalgebras of
LS;. In the first column we introduce a symbol Sy, S,
or S}, for each subalgebra. Leaving out all §;, and S},
algebras, we obtain the shorter list of §; conjugacy
classes of subalgebras. The second column gives the
subalgebra F; of LSL(2, R) from which S; , was produced.
The generators of §; , are in column 3; those to the right
of the semicolon are also contained in the derived alge-
bra of S; .. In some cases, e.g., Sy, Spq et al., the
algebra depends on a parameter. Its range as given in
column 3 refers to/) conjugacy classes. For §; conju-
gacy classes the range may be smaller (e.g., a>0
rather than a#0, or € =1 instead of € =+ 1), Such cases
are pointed out in the last column. In the fourth column

[k ,Kz L3, P .8 ,E |

[k, kL5, P B E]

we give the dimension of S; ,. The type of algebra is
given in the fifth column. The notations are those used
in papers® and are related to a classification of low-
dimensional real Lie algebras, due to Mubarakzyanov,®%’
Thus, A4; is a one-dimensional real Lie algebra, nA,
denotes a direct sum of » such algebras and 4, is a two-
dimensional non-Abelian Lie algebra (with a basis satis-
fying [X, Y]=X). Three-dimensional Lie algebras are
denoted A, 4, ..., 4, ¢ and a superscript, if present
(e.g., Ag's) indicates that the algebra itself depends on
a parameter 2. The four-dimensional Lie algebras are
similarly denoted A, ;, ..., A4,1,. The commutation re-
lations for each algebra are given elsewhere, ® and there
is no need to repeat them here, since they can be read
off from the commutation relations of the generators in
the third column. In the sixth column we list the invari-
ants of all subalgebras. They can be obtained using a
method described elsewhere.® Note that for subalgebras
of LS, all invariants are either polynomials in the gen-
erators (Casimir operators) or rational invariants, like
e.g., (K, +Ly)/P?for S, ;. The meaning of such invari-

K, Kasls, E Ls.P,B,E K. Kg#Ls, P,E

K,,P,B,E

K#Ls,P,B,E

<

K+bE
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FIG. 2. Subalgebras of LJ§{ classi-
fied under §; (@= 0, b>0, €=4x1).
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ants, as well as more general types of nonpolynomial
invariants, has been discussed, e.g., in papers.® In
the seventh column we indicate additional equivalencies
between various subalgebras, when conjugacy is con-
sidered under §;, rather than/). We also point out all
cases when the inclusion of §; or of time reversal T
leads to a further restriction on the range of the param-
eters a or €, figuring in the third column.

On Fig. 2 we present the lattice of subalgebras of
LS;, classified under §;. By convention we consider all
parameters a to satisfy - <a<%, a#0, whereas 6>0
and €=z 1. Conjugacy is considered under the continu-
ous group Sy, not including the discrete transformations
T, X, or XT.

4. SYMMETRY BREAKING INTERACTIONS

A. General invariance conditions

In Sec. 2 we found the Lie group leaving Eq. (3), i.e.,
Au=u,, +iu, =0 invariant, namely the Schrodinger group
S5;i. In Sec. 3 we found all Lie subgroups of §;. Here we
pose a different problem, namely, for each subgroup of
$1 we wish to find the most general interaction of the
form F(x,t,u, u*) such that the equation

Au=u,, +iu, = Flx, t, u, u*) (24)
is invariant under this subgroup.

Indeed, consider a one-dimensional subgroup g of §,,
transforming the space—time manifold as in

)y =(x,0-g (25)
and consider the representation
[Teul(x, 8) =[e**ul(x, t) = (g, &', Yulx’, £), (26)

where X is the generator of T,, @ is a real parameter,
and t{g, x',¢') is a multiplier. Expanding 7T, into a
Taylor series about the point a= 0 [we have g=g(a),
g(0)=1], we find

ar’ du(g %' th
= +2 2
Xu= {d Oy ia 0y T

={alx, t)o, + b(x, t)a, + c(x, Btu.

(27

Referring back to Eq. (10), we can expand the generator
X as follows:

6
X=2 a;X,, (28)
i=1

so that a(x, t), b{x,f) can be written as specific known
functions of the real parameters «;. Notice that ¢ and
b are real, c is in general complex.

The condition that Eq.
the subgroup implies

AlT(@ullx, t) = F(x, t, [T@ulx, B, [T(Qul*(x, £)). (29)

To obtain an operator formulation of invariance, we re-
member that g= g(a), take the derivative of both sides
of (29) with respect to @, and then set a=0. We obtain

AXu) = Xu)Fy, + (Xu)*F . (30)

Since X is a subalgebra of L§;, it must also satisfy (9),
i.e.,

(24) remains invariant under
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[4, X]=2x, 1), (31)
Formulas (30) and (31) imply

(X +NF=XwF,+ Xu)*F . (32)

Using (27) and remembering that F depends on x and ¢
both explicitly and implicitly via # and #*, we obtain a
first order partial differential equation for the inter-
action F:

a(x, )F, +b(x, )F, = CuF,~ c*u*Fyy = - (c + )F. (33)

To solve (33), we shall solve the subsidiary equations
(34)

and in general obtain F as some known function times
an arbitrary function of three variables, obtained by
solving the first three of equations (34).

Thus, for a given operator, or set of operators X,
forming a subalgebra of L$;, we find the invariant in-
teraction F(x, ¢, u, u*) by solving Eq. (33) (or several
such equations for higher dimensional subalgebras).

Specific solutions of the Schrodinger equation (24) can
then be found that will also satisfy the equation

Xu=au, +bu,+cu=0, (35)

The meaning of Eq. (35) is that the wavefunction u(x, #),
in addition to being a solution of the Schroodinger equa-
tion (24), is also an absolute invariant®® of the generator
X. It is precisely this additional requirement (35) that
allows us to simplify (24), in particular to separate
variables.

To simplify further calculations, we note that in Eqs.
{(33), (35) we have

alx,H)=a=ay +2a,t + ayf?,

bx, 1) =b = ayx + azxt + o, — agl,

(36)

c(x,t) =c=%a,+ a,(2t - ix?) /4 + Fiogx +ia,

clx, ) + Mx, ) =c + A= Fay + oy (10f - ix%) /4
+ 3o tiag.

We now proceed to consider each subalgebra of L§;
separately, making use of Table 1.

B. One-dimensional subalgebras

We have all together 15 one-dimensional subalgebras
in Table I. We shall run through all of them in this para-
graph; however, K, and K, +qE, K, and K, +aE, L, and
L,+aE, K,+L,and K, + L, +¢E, and K,~ L, and K,
~ Ly + €E will be combined together. We shall consider
one of the subalgebras, namely 2L, +aFE in some detail
(this is one of the more complicated cases) and then
only list the results for the other subalgebras.

(1) 2Ly +aE =X, + X, T aXg= (1 +F)a, + txd, + (2 — ix?
+4ia)/4: We take oy = a;=1 (all other o; equal to zero)
in (36) and write out the subsidiary equations (34):

at _dx_ 4dy Acy*
1T+2 xt ~ (4ia+2t-i®u (= dia+ 2t +ixd)u~
4dF
T T (4ia + 10f —iXPF - (37)
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The first equation provides us with the “similarity vari- dt  dx du _ du* dF

able” to be used, namely 1 0 iku iku* ikF
sz/(1+t2)1/2 (38) g:x, T':ty

(we shall always keep =1 as the other variable except

- U , _ )
for the case when £={ is the similarity variable; then F=uC (x, ek, u* exp(2 Kt))’ u=expl-i)o(x)  (44)

we put 7=x). From (37) we also obtain
P N ¢"(0) + kp(x) = B (x)G (x [912, (%) (45)
1-it\*
— 1+t e ( )
u=Q+O" RexpG &t/ D\ 777} (0 (39) (4) Kp+ Ly +€B=X, +€X,=0, + (- £3, + 5ix), e=x1:
and the complex conjugate equation. By construction at _ dx _ 2du _ 2dw* _ 2dF
the function u in (39) satisfies 1 —et ~dexu iexu*  iexF’
(2L, + aEu=0. E=x+ze, n=t,
Finally, the subsidiary equations (37) imply that the in- F=uG(x +Sef?, un*, l* expli(et - —};F)]) ,
variant interaction has the form: “
u - u= exp|- zit(e£ - 4]0 (), (46)
F(x’ t; u, u*) :mc(gr ¢(£)’ ¢)*(‘E)) " ¢
' R TICECI (s} )
u u ,
=1726 (g, | 2(1 +£2)? ’Z,Z;exp(— i£24/2) (5) P=X,=12,:
dt dx du du* dF
1+4t\° =T
X(l—it) ) (40) 0 1 0 0 0
Substituting (39) and (40) into the Schrddinger equation §=t, =%,
+iu,=F, find that b
o Fite = £, e find that ¢(0) obeys P=Fu ) =6 (1, 2, 2), u=60), (48)
¢"(D + (= /4 + () = (DG(E, ¢, 0/¢%). (41 i¢'(t) = (G (f, lol%, ?.Q ‘ 9
In Eq. (41) the parameter @, also figuring in the gen- (6) E=Xz=1i:
erator 2L, + aF and in the interaction (40), plays a role & dx  du_dut dF

analogous to that of an eigenvalue. For a general non- -0 —E~m: -F

linear interaction (40) the value of a is fixed. However,

if the interaction is linear, i.e., G=G(%), or even if F=uG(x, t,un*), u=ulx,t), (50)
the interaction is nonlinear, but does not depend on the L 2

phase of u, i.e., G=G(£, [ul?(1+#3)'/?), then a in (41) the T ity =G, 1, |u]?). (51)
can be considered to be a free parameter, and we obtain
different solutions of the same Schrodinger equation for
different values of a. In particular, in the linear case +4(= 2t +ix® + 4ia), —o© <a<co:
we can thus obtain a complete set of solutions.

(7 2K, +aE=X; - X, +aXg=(1- %3, — tx3,

dx  dx 4du _ 4du*
Thus, invariance under the one-dimensional Lie group 1-2 “ix (2f=-ix¥-diau (2t +ix® + dia)u*
generated by 2L, +aFE leads to several typical features,
namely the subsidiary equations (37), the variables :_____ééiF_.__,
E=x/(1+)!/2 and n={, the function u(x, #) in the form (10f - ix” - dia) F
(39), satisfying (41) and the interaction (40). Let us now x/(F- D2 2>1, n=t,
list the analogous features for the other one dimensional g:{ 172 .2
subalgebras. 2=, <,
__ u 2|42 12 W |EH1]E
(2) 2K, +aE=X, + aXy=2t3, +x3,+5 +ia, —© <qa<®: F=1Z -1 ¢ (5, lul?|-1] Tu¥ -1
dt_dc_  du ____du*x _ _dF ix%t > (52)
2% x G riou  G-iowt  GHiaF X P\ ES Y
x
E=-172, N=1, ia/2 20l
t e qlasa|l-t (zxt >
'52 u= ’t -1 1+¢ exp 4(t2_1) ¢('€’))
F=7G (5’ w7, ot exp (' %)) ¢
' ¢"() + G- a)p=9G (e, l¢>\2,5;)0 (53)
12
_ g-(lezia) /4 i£
u=t exl’(g ) (8, (42) (8) = K, + Ly + KE=X, + KXy =120, + tx0, + 5t = 3ix® + ki,
2 k=0 or k=+1:
¢”(£)+(%+g)¢<e>=¢(z>c (5, l¢|2,;f—*) (43)
di _dx _ 4du _ 4du*
(3) K+ Ly +KE=X; + kXg=103, +ik, k=0o0r k=+1: B xt T (Gt-iXi+4u (2 +ix = ddu*
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4dF
T T (10t -ix® +4i)F’

g:

F=5G (& lul®, exp[ 2’( gi)])
w=texpi(5+55) ot

" (8 + kp(8) =G (5, ¢ IZ,F) :

X _
7 1=

(54)

(55)

(9) =K, + Ly +eP=X, +eX, =120, + (tx + €)9, + 1(2t - ix?),

e=+1:
dt _ dx 4du 4du* 4dF
B ixte (B<20u (R +2ur @E-100F

X, € _
§=?+§tz, T)—t,
F=%G<£,|u}t exp[ t(gztz+<£—1—21tz)]>,

u=t'”2exp[ (£2t2+€£ —tz')]¢(§) (56)
6"(5) +heto(H = c(e,|¢lz,%)u (57)
(10) B=X,= -3, +3ix:
dt _dx _ 2du_2du* _ 2dF
0 -t “ixu ixu*  ixF’
g:t’ n:x)
ix?

peu (b uf2, exn (- 25)), u=exn(25) o) 0
i(¢'(t)+—1—¢(t))=¢>(t) <t |¢Lz—) (59)

3t px

Let us briefly summarize the results and make some
comments.

(i) For each one-dimensional subalgebra X we have
obtained an invariant interaction F(x, ¢, u, u*) that can
be written in the form

u U
F=2m56 (g, u [1(8), t>>, (60)

where £ is a quite definite “similarity variable,” f(f)
and h(, ) are known elementary functions, and G is an
arbitrary function of the three indicated variables.

(ii) The requirement Xu=0, i.e., that « be an abso-
lute invariant of the generator X (incorporated in the
subsidiary equations) in general implies a separation
of variables in the Schrodinger equation, and we obtain
a solution in the form

=R(x, ) ¢(%), (81)

where R(x, ¢) is a known elementary function and ¢(§)
is a function of the similarity variable only, satisfying
an ordinary differential equation.

u(x, £)

(iii) For all subalgebras except P, B, and E the func-
tion ¢(£) obeys an equation of the type

3"(5) + W(OB(8) = o (5G(E, ¢, %), (62)
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where W(£) is some specific simple function, namely
one of the following types of potentials: free particle
(constant), linear potential, repulsive or attractive
harmonic oscillator. Thus if G depends on £ only, we
obtain a linear equation in which W(£) — G(£) plays the
role of a potential in a stationary Schrddinger equation.
In general (62) can be called a nonlinear Schrodinger
equation.

For the subalgebras P and B we obtain an equation
of the type

H{o'() + at) o (D} = 0 ()G, ¢, %),
0 for X=P and a(t) =1/2¢ for X=B,

(63)
where a(f) =

The subalgebra X=E is exceptional in that it does
not provide a separation of variables. Indeed, the equa-
tion Eu =0 would imply #=0, and we obtain a trivial
solution. The symmetry corresponding to £ is, how-
ever, not trivial—it restricts the possible nonlinearity
of F=uG(x,t, lul?), i.e., G does not depend on u/u*.

(iv) I G does not depend on u and #*, we obtain a lin-
ear equation. The absolute invariant condition Xu=0
can then be replaced by an eigenvalue type condition
Xu=Fku with 2= const, and we obtain a complete set of
separable solutions, rather than a single one.

Actually the linear and nonlinear cases can be treated
on the same footing, The eigenvalue equation Xu=/rku
used in conjunction with a classification of orbits of gen-
erators of the factor algebra LS,/E is equivalent to the
absolute invariant condition Xu =0 used in conjunction
with a classification of orbits of the entire algebra L§;.
This is completely consistent for the subalgebras 2L,
+aE, 2K, +aE, and 2K, +aE; however, for K, + Ly + kE
and - K, + Ly + kE, k will play the role of the eigenvalue
and hence we must allow it to have arbitrary values.
Similarly the orbit representatives K, + Ly + €B, — K,
+L,+€P, P, and B must be replaced by the equivalent
representatives K, +L,+€B+aE, —K,+L,+€P+akE,
P+aE, and B+ aE. The parameter a then plays the role
of an eigenvalue.

Note that even if F is nonlinear but G has the form
G(&, lul?(?), i.e., does not depend on the phase of «,
we thus obtain an infinite set of different solutions for
different values of a.

(v) The separation of variables in the equation u,,
+iu, =0 has been studied® and related to orbits of gen-
erators of the factor algebra LS,/E. Our classification
of orbits is somewhat different (we classify consistently
under either J or §)—and the correspondence between
classes of operators and separable coordinate systems
that we obtain for the equation «,, +iu, = F is given in
Table II. For F=0 all listed systems are separable and
the operator E can be omitted from the list (and we can
put a=0 and x=0).

(vi) We have included in this section all one-dimen-
sional subalgebras listed in Table I. Each of them rep-
resents a class of subalgebras where the classification
is with respect to the group /) (Galilei extended by dila-
tions). Under the group §, the algebras — K, + L, + KE,
—-K,+L,+¢€P, and B become conjugate to K, + Ly + kE,
K, +L,+¢B, and P, respectively. Since the form of the
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TABLE II. Invariant interactions and separable coordinates for one-dimensional subalgebras (the range of parameters is

~ocg<o, €=x1, k=0,+1),

Diagonalized Coordinates F(x ,t,u,u¥%)
operator
= — = u 21+gyi/e, L1t i 1® _ k%
2L+ aE 13 W’" t mz‘G (5,‘14[ (1+29 e gy exp B
25,08 ¢, 6 (. a7, & e - 7
ia
9K+ aE _ X - L} ylpp_q|y/e, X £+1 _ _ixk
2ta £=qr—pire. =t |t?—1xc(5’|”“|t IR g o B el ey
€ [ .
K,+L,+€B g=x+ 312, n=t %G <§, lu|?, u—*exp[z(eg —%tz)])
_x € _ u 1
~Ky,+L;t+eP £_t+52’n_t p’G( ,lu’ tu*exp[ t(§2t2+€£—'—2—t'2->]>
Ky+L,+kE £=x, n=¢t uG<§,|u|2, Z—lu;exp(Zixt)
x U i
—Ky+Ly+kE g=7.m=t rzG<£, %, ul*exp[—zit(élmsztz)])
U
P £=t, n=x uG(t,lulZ, u—*>
u ix?
B £=t, n=x uGQﬁ,‘u!Z,FeXp[—Z—t]>
E t=x, n=t uG(x,t,'u‘Z)

corresponding interactions, solutions, etc., are quite
different, we find it worthwhile to list them separately.

(vii) The orbit representatives, separable coordi-
nates, and invariant interactions for one-dimensional
subalgebras are summarized in Table II.

C. Two-dimensional subalgebras

The results for all two-dimensional algebras listed
in Table I can be obtained by combining together the
results obtained for one-dimensional subalgebras. We
will thus obtain less general interactions but will be
able to obtain more solutions by imposing the condition
Xu=0 for different choices of the generator X.

Consider, for example, the algebra {2K; +aE, K, + Ly},
Invariance under 2K, +aE and K, + L; imply

:_G( |ulr—t'“exp( ﬁ»

and F:ué(x, 114‘2,5;) (64)

respectively. These two conditions are compatible if
and only if

u u {
F:?G(lqu,;;xz”)a

Nonequivalent solutions of the Schrodinger equation for
the interaction (65) can be obtained by requiring (2K,
+aE)u=0 or (K, +L,)u=0 and will thus be of the form
(42) or (44) with k=0,

Omitting the details, we summarize all two-dimension-
al algebras and the corresponding invariant interactions
in Table III. Inspecting the table we see that typically
F is of the form F=(u/x)GC or F=[u/f(t}]G, where f({)

(65)
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is a known function and G is an arbitrary function of two
variables, of which either one or both involve # and u*,

D. Three-dimensional subalgebras

The interactions that are invariant with respect to
three-dimensional subalgebras are obtained by com-
bining together results listed in Tables II and III. For
example, consider the algebra {Kl, K,, Ls}. Invariance
under {K,, K, + L} implies F= («/¥*)G(lu|?x, u/u*). In-
variance under L; implies

_u x 2, U X
F_xzc((1+t) ’I“""u*e"p<"2(1+f)>>‘

The intersection of these two conditions is F = (u/x?)
XG(lui%x), Similarly we proceed with all other subalge-
bras. The results are summarized in Table IV. The
function G will in general depend on one variable only,
the only exception being the Weyl algebra {P, B, E},
leading to F=uG(Z, {ul?

E. Four-, five-, and six-dimensional subalgebras

The results for algebras of dimension 4<d<6 are
summarized in Table V.

5. CONCLUSIONS

The main results of this paper are the classification
of all continuous subgroups of the Schrodinger group 5
and the construction of an invariant interaction for each
subgroup.

We should mention that the connection between sub-
groups and symmetry breaking interactions is not one-
to-one in the considered case. Thus, for instance the
interaction F=culul? is left invariant by the entire
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TABLE III. Invariant interactions for two~dimensional subalgebras (the parameters satisfy the conditions —= <@ <=, k=0,+1;
€=z1).
No. Generators Interaction
1. 2K +aE, Ky+Ly, F= 5:—‘26 Gulzx, ;u,;xz‘“
u u [ £\ ix?
2, 2K +aE, —K,+Lg, F=?G(‘u’zx,u—*(;) exp(——zt—
3. 2K,+aE, P, F=%G(}u|2ﬁ, ;“;t*")
u u ix?
4, 2K,+aE,B F= E_(; (’u,Zﬁ, theXp (_2_t)>
i "
___u 2] 42 172 % (i1 -1
5. 2K,+aE, B+P F= g6 (lul (Je2~1)) ,u*<t_1 exp (~ 55—
4a ")
o 2] 42 1z 2 [E+] _ i
6. 2K,+aE, B-P F—WGQuI (lt—l') ’u*(t—l exp\~ 5 )
7. Ky+Ly+KkE, P F=uG (]u]z %exp(Zimf))
_u el ] ’Zt N > x_z. %
8, —Ky+L,+kE, B F—;g ult, xexp| =il 5r+ 7
. K, E F=;ic(.t-;;,, |u|zn)
e (g fulli-1/2)
11. Ky+Lg, E F=uGW,|u?)
€
12, K,+L;+€B, E F=u G(x+ Etz,luV)
13 ~Ky+Ly, E F=§‘EG(’§, [ |2t )
€
14, ~Ky+Ly+eP, E F= }’%G(;Lr%,, luPt)
=X X 2 1/2
15. Ly,E F—m0<(-1—+—5m,]ul (1+£9) )
16. B, E F=uGlt,|u|?
17, P,E F=u G, |u|?

group Sy, but it is also the most general type of inter-
action left invariant by the two five-dimensional sub-
groups and the two four-dimensional subgroups gener-
ated by {Ky, K, + L,, P, E} and {Ky, K, - L,, B, E}. Similar-
IY the algebras {Kls Kz; Ls}’ {Klr Ka + La’ E}; {Kly Kz - Ls’
E}, and {K,K,L,E} all lead to the same type of interac-
tion, namely F=(u/x?)G(lu|%x) (other such cases can be
found in the tables). This is to be contrasted with the
results® obtained for the three-dimensional stationary
Schrodinger equation. For a free particle the invari-
ance group is E(3) and a one-to-one correspondence was
found between subgroups of E(3) and potentials of the
type V(r) +A(r)P [V(r) and A(r) are a scalar and vector
potential, P is the linear momentum operator), reducing
the symmetry from E(3) to the considered subgroup.
Quite concievably in the time dependent case more gen-
eral interactions, e.g., involving derivatives of u(x, #)
would be capable of distinguishing between all the
subgroups.

On the positive side, let us stress that for each sub-
group G; of 5; we have found the most general interac-
tion F(x, ¢, u, u*) breaking the symmetry from §; to G.
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The remaining symmetry can always be used to find a
solution or many different solutions of nonlinear
Schrodinger equations and a complete set of solutions
for linear equations. Thus, the algebraic approach used
in this paper is a method of generating solvable models.

It is of interest to notice that the equation
Uy iy = cteu)t

admits the same symmetry group as the free Schrodinger
equation and thus should provide a particularly tracta-
ble model (“a ¢° theory”). The term lul* is typical for
one spacelike dimension. For two spacelike dimensions
the interaction would be F=cul«|?, i.e., precisely the
right-hand side of the usual “nonlinear Schrodinger
equation.” More general powers can be obtained if the
skew-hermiticity condition on the generators is dropped
(as mentioned previously).

Let us make some comments on the future outlook.

(1) The one-dimensional heat equation admits a Lie
group isomorphic to $; and hence our classification of
subgroups is of relevance there. We plan to investigate
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TABLE IV, Invariant interactions for three~dimensional subalgebras (= <@ <%, € =31, £=0,:1),

No. Generators Interaction

1. K ,Ky,Lg F= f,a(lulzx)

2, Ky, Ky+ Ly, E F=2 6(|ul%)

3. Ky, K,~L,, E F= %5 6(|ul%)

4, Ky+aE, K;+Ly, P F=ulu|4G(u—1§;lu|'““)

5. K;+aE, K,—Lg, B F=ulu ]‘W(;Z‘;‘u | 4425219 oxp (— ‘;‘—:))
6. K,P,E F=%6u %y

7. K(,B,E F=%G(Ju|%Y

8. K, B+P, E F=W“?ﬁcdu[2[t2-1\‘/2)
9. K, B-P, E le—tzif_—iTG(luPIF—ll“z)
10, K,+L,+xB, P,E F=uG(|u|?

11. Ky,—L,+kP, B.E F=%6lul®

12, P,B,E F=uG(t,|u|?

symmetry breaking for the heat equation, where the
reduction of the symmetry may be due either to addi-
tional terms in the equation, or more interestingly, due
to specific boundary conditions.

(2) The results of this paper can and should be gen-
eralized to higher dimensional cases, in particular the
groups S, and §, are of interest. As mentioned above,
more general types of interactions can be considered,
e.g., of the form F(x, ¢, u, u*, u,, u¥, us, uf, *-+).

(3) We plan to make use of the existing classification
of subgroups of the Poincaré group to study symmetry
breaking due to external fields in the relativistic case.
Again this can be considered as a source of solvable or
at least tractable models for classical relativistic field
theories (that may also be quantizable).

(4) A question that has not been raised, still less
answered in this article, but which may be of consider-
able interest is the following. Given a specific linear or

TABLE V. Invariant interactions for four-, five- and six-dimensional subalgebras,

dim No. Generators Interaction

4 1 KKy, Ly,E F= 25 G(lul®)
2 K,, Ky+Ly, P,E F=cul|u|*
3 Ky, K,~L;, B,E F=culu|t
4 K.,P,B,E =’tia(lu]2t1/2>
5 K,,P,B,E F:szi—i—lc(‘tz_l‘llz‘ulz)
6 K2+L3: PvByE F=u G(]u,z)
7 K,-L,;, P,B,E F:’;—ZG(\u[zt)
8 L,,P,B,E F= 2oy G(lu| 21 +6917)

5 1 K, Ky+L,, P,B,E F=cufult
2 K, K,~L;, P ,B.E F=culul|t

6 1 K,,K,,L;,P,BE F=culul*
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nonlinear Schrodinger equation, in particular one of
those found in the present article, what is its complete
invariance group? Generally speaking the complete in-
variance group may be larger than the corresponding
subgroup of the Schrodinger group discussed in this
paper. We plan to return to this problem in the future,
specially for those nonlinear equations which promise
to be of definite physical interest.
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SU(2) x SU(2) scalars in the enveloping algebra of SU(4)
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We build an integrity basis for the SU(2) X SU(2) scalars belonging to the enveloping algebra of SU(4). We
prove that it contains seven independent invariants in addition to the Casimir operators of SU(4) and

SUQ2) X SU(2). We form a complete set of commuting operators by adding to the latter two linear

combinations of the former the operators Q and @ first introduced by Moshinsky and Nagel. We then
solve the state labeling problem that occurs in the reduction SU(4) D SU(2) X SU(2) by diagonalizing
simultaneously (2 and ¢. Their eigenvalues are calculated numerically in all irreducible representations of

SU(4) that are encountered in light nuclei up to and including the s—d shell. Finally we build the

propagation operators for the widths of the fixed supermultiplet, spin and isospin spectral distributions by

taking appropriate linear combinations of SU(2) X SU(2) invariants of degree less than or equal to four, and
we tabulate the averages of these operators in the above-mentioned irreducible representations of SU(4).

1. INTRODUCTION

The determination of a complete labeling for the
basis states of an irreducible representation (IR) of a
Lie group G, decomposed into IR’s of some noncanoni-
cal subgroup H, has given rise to a lot of studies in
which various types of solution have been proposed. =7
One of them consists in obtaining a complete set of
commuting Hermitian operators by adding to the
Casimir operators of G, of H, and of appropriate sub-
groups of H, some scalars with respect to H belonging
to the enveloping algebra of G. %67 The basis states of
an IR of G are then chosen as common eigenstates of
this complete set, and the eigenvalues of the additional
operators provide the missing labels. This type of ap-
proach of the state-labeling problem has the advantage
of leading to an orthonormal basis., However, Racah
has proved that it is impossible to define missing labels
which have integer values for all IR’s. ®

When this procedure is adopted, it is worth while to
study first the set ¢ of all the scalars with respect to
H, belonging to the enveloping algebra of G. In this way
we can determine all possible labeling operators, and
then make an appropriate choice among them.,

This problem has been examined in general terms by
Judd ef al., and a detailed application to the reduction
SU(3) > 0(3) has been carried out by these authors, ’
Their main result has been to show that the subalgebra
¢ is finitely generated, and that an integrity basis for
¢ can be built by studying first a similar problem
arising in the theory of polynomial invariants. In the
latter case, the construction of an integrity basis is
greatly simplified by determining a generating function
for the number of independent invariants of a given
degree. An alternative procedure for constructing an
integrity basis of ¢ has been proposed recently by
Sharp. ®

Subgroup invariants in the enveloping algebra of a
group also appear in another problem of physical in-
terest, the propagation of operator averages in the
spectral distribution method used in nuclear spec-
troscopy. *!° It has been shown recently!® that when
averaging over some IR’s of a chain of groups, the
so-called propagation operators can be written as
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polynomials in the members of an integrity basis for
the subgroup scalars in the enveloping algebra of the
group. For the purpose of numerical calculations, it

is necessary not only to write explicitly those poly-
nomials, but also to determine their averages in all the
IR’s appearing in physical applications,

In the present paper we are concerned with the chain
of groups SU(4) D SU(2) xSU(2) > U(1) xU(1), appearing
in Wigner’s supermultiplet model, in which the many-
nucleon spin—isospin states are classified according
to IR’s of the group SU@). !'=15 It is well known that
Wigner’s scheme, which rests upon a decomposition of
the many-nucleon states into their space times their
spin—isospin part, is a good starting basis for shell
model calculations in many light nuclei up to the s—d
shell,

However, the noncanonical nature of the chain of
groups SU(4) DSU(2) xSU(2) gives rise to many problems
when detailed applications of the model are carried out.
There are two missing labels to specify the basis
states of an IR of SU(4) completely, and indeed there
can be more than one state characterized by given
values of the spin and isospin quantum numbers S, T
Mg, and M in a given IR of SU(4). Moshinsky and
Nagel have determined a pair of commuting, Hermitian
labeling operators & and ¢, which solve in principle
the problem. B However, their eigenvalues and eigen-
vectors are not known, and, moreover, other possible
choices have not been explored. It seems therefore
worth while to re-examine the problem from a general
point of view.

Difficulties have also arisen when studying the fixed
supermultiplet, spin, and isospin spectral distribu-
tions. 16 It has been shown that the propagation operators
for the centroid energies can be constructed in terms
of the Casimir operators of SU(4) and SU(2) xSU(2), but
that this procedure cannot be used for the widths be-
cause other SU(2) xSU(2) invariant operators are needed.

In this paper we solve both problems by constructing
an integrity basis for the SU(2) xSU(2) scalars in the
enveloping algebra of SU(4). After reviewing our nota-
tions for the Lie algebras of SU(4) and SU(2) xSU(2) in
Sec. 2, we derive in Sec. 3 the generating function for
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the number of independent invariants of a given degree,
and determine from it the explicit form of the basic
scalars. We then restrict ourselves to the independent
invariants of degree less than or equal to 4. The proce-
dure used to compute their matrix elements in the
Gel’fand and Tseitlin basis is described in Sec. 4. Sec-
tion 5 is then devoted to the solution of the state-
labeling problem. It is shown there that the pair of
operators @ and &, introduced by Moshinsky and Nagel,
is only one among many other possible choices, but
that it is quite convenient from the point of view of
diagonalization. Their eigenvalues are calculated and
tabulated for all the IR’s of SU(4) appearing in light
nuclei up to and including the s—d shell. Finally in
Sec. 6, the propagation operators for the widths of the
fixed supermultiplet, spin, and isospin spectral dis-
tributions are constructed in terms of the SU{2) XSU(2)
invariants belonging to the previously determined in-
tegrity basis. The appropriate averages of these basic
scalars are also tabulated for all the IR’s of SU(4)
appearing in light nuclei up to and including the s—d
shell,

2. LIE ALGEBRAS OF SU(4) AND SU(2) X SU(2)

As is well known, !7 the Lie algebra {/{4) of the group
U(4) is generated by the operators (%, u,u’=1,2,3,4,
whose commutation relations are

L CE =0 - 8" . @.1)

In terms of them, the generators of §//(4) can be written
as

Ch =384 X Chn.
o
This basis of {//(4) is adapted to the canonical chain of
subgroups of SU(4), namely

SU@4) >S{U@B)xU1)]28[U@) xU@1)xU@)]
5S{U(1) X U)X U)X U)].

In this paper we shall consider the noncanonical chain
of subgroups

SU(4) DSU(2) XSU(2) 2 U(1) xU(1),

and use therefore another basis for the Lie algebra
S${/(4), explicitly reduced with respect to the Lie al-
gebra §//(2)X §//2). For that purpose, we replace
index u by a double index o7, where both o and 7 take
two values + 3 and — 3, that we shall represent by + and
- respectively, and we adopt the enumeration
convention:

2.2)

(2.3)

(2.4)

poomi =, 24— 3t 4~ {2.5)
We now define the following operators?®:
Si=3(M)° e C37 s
=2 (No)'w Cor 5 4,0=1,2,3, (2.6)

Qicx:%(Mi) o'( u) T :71.’7

where the M;, ¢=1,2,3, are the Pauli matrices asso-
ciated with index o, the N,, a=1,2,3, those associated
with index 7, and there is a summation over all dummy
indices. The operators S;, i=1,2,3, and T, o =1,2,3,
are the generators of §//{2)x §//(2), and, in physical
terms, can be identified with the spin and isospin opera-
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tors respectively. Operators (2, 6) form the new basis
of §//(4) that we are looking for. Their commutation
relations are

[SU SJ] :ieijksm [Taf TB] = ieaBYTw [Sb Ta] = 09
[Si, Qsal =61 4Qras [T Qual =t€asy@iys
(Qtas @] = 16{8agei 4Sk + 1y €apy Trl,

where ¢;;, and €,,, are the antisymmetric tensors. From
(2.7), it is clear that S;, T,, and Q,, transform ac-
cording to the IR’s Dy xD,, D,xD,, and D; XD, of

SU(2) xSU(2) respectively,

2.7)

Instead of the Cartesian components of 8, T, and Q
given in Egs, (2. 6), it is convenient to use their spheri-
cal components

Se=5MY o ) C37

=2’ W)= C3, a,k=+1,0,-1, (2.8)
Q= %(Ma)uu' (N) "o o;.,: s
where the M, can be written as
My =% (1/V2)[MyziM,],
(2.9)

MQ = M39
and the N, are given by similar relations. The com-
mutation relations (2. 7) are now replaced by the follow-
ing relations, written in terms of ordinary Wigner co-

efficients of SU(2):
[S,, S, ]==V2({11gr|1l g +%S

(t,, T]_ VZ{11kp |1 k + ) T,,,,

(S, Tl =

(S Qm]=— V2(11g7|1 ¢ +9)Qqup

[ - VZQ11kp| 1 K+ )@y aps
1

{2.10)
TK} qu]

[Qur @ro) =~ 5 75 [~ 1 b, -(11g7 |1 g +1S,,,

+(=1)%,, (11kp|1 k +p) T,,, ).

3. SU(2) X SU(2) INVARIANTS IN THE ENVELOPING
ALGEBRA OF SlU/{4)

We now consider the universal enveloping algebral®
A of §{{{4), and we proceed to determine the set ¢ of
elements of 4 which are left invariant under the action
of SU(2) xSU(2).

When considered as a vector space, the associative
algebra ¢ can be written in the form
9=2®4,, (@.1)
ms0
where ¢, is the space of all symmetric polynomials
P&y, ..., Xy5) in the §//(4) generators X;, i=1,...,15
[given for instance in Egs, (2.6) or (2. 8)], which are

homogeneous of degree m and are left invariant under
the action of SU(2) xSU(2).

Judd ef al. " have given general rules for the con-
struction of ¢ in the case where a connected Lie group
G is reduced to a Lie subgroup H. They can be applied
here if we make G=SU{4), and H=8U(2) xSU(2). The
main point of their study has been to show that it is
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sufficient to build an integrity basis of ¢, and that this
construction is always possible, Following their defini~
tion, an integrity basis of ¢ is a minimal generating
subset of ¢, or in other words a finite set of invariants
{i1, ..., 1, such that: (1) Each i, ¢ is homogeneous of
degree m;> 1 and symmetric in X,,...,X;, i.e., each
i€ m, (2) Everyic ¢ can be expressed as a poly-
nomial in 4y, ...,4, (3) No one of the %, can be ex-
pressed as a polynomial in the remaining ¢,, j#%. Let
us note that the condition of symmetry of each i; can
be relaxed, this giving rise to an integrity basis more
suitable to numerical calculations.

The construction of an integrity basis of ¢ is made
possible by establishing a link with a similar problem
in the theory of polynomial invariahts. Let us consider
column vectors X= (xy,...,%;), which form a basis for
the 1515 matrix representation of SU(2) xSU(2), which
is induced by the adjoint action of SU{2) xSU(2) on the
basis X,,...,Xq5 of §{/(4), and let I[X] be the associative
algebra whose elements are the polynomials in the in-
determinants x4, ...,%;; over the complex field, which
are left invariant under the action of SU(2) XSU(2). 1t is
well known'® that I{x] has a finite integrity basis whose
definition is similar to that of ¢, Judd et al.” have
shown that if {¢,(x),...,%,(X)} is an integrity basis of
I[x], then the set {¢,(X;,...,X15),..., 5, Xy, ..., X}
contains an integrity basis of ¢. In general the set
{4, ., X)),y - o 8., ..., X 5)} is not itself an in-
tegrity basis of § because the commutation relations of
Xi,...,Xj5 are responsible for some algebraic relations
between il(Xiy - 7X15)7 e 9ir(X1’ oo ,X15) ill_g’ which
have no counterpart in f}X}. Thus, to find an integrity
basis of ¢, it is sufficient to find first an integrity
basis {4, ..., 4.} of /[X], and then to form all possible
commutators [i;(X;),,(X,)] in order to determine a
minimal subset of the 7,(X;) which are independent. We
now proceed to implement this program.

Let us consider the space of all polynomials in the 15
indeterminants s;, ¢,,q;,, ¢, ®=1,2,3, which transform
under SU(2) xSU(2) according to the IR’s Dy XD;, DyXDy,
and D; XD, respectively. The subspace Py g c[S;, s, Gial
of homogeneous polynomials of degree A, B, and C in
the s;, f,, and g;, respectively, is clearly invariant
under the action of SU(2) xSU(2). Thus we can classify
polynomial invariants C*4 £ in terms of their degrees
of homogeneity A, B, C in the s;, f,, and q;,.

Following a technique developed in Ref. 7, it is possi-
ble to determine the number N, g . of invariants of de-
grees A, B,C in P[s;, t4,q;.] by deriving a generating
function for it. For thaf purpose, we need the charac-
ters yg, r(64, 62) of the IR’s Dy x D, of SU(2) XSU(2),
which are given by??

N

i expli (M6, + My6,)],

(3.2)

S
xs, (61, 62)= 25
Mge=S M

]

and satisfy the well-known orthogonality relations

2r 2r
. 20 . 20
L f dby s1n2—2—1 f dby sz_zg X%, (61, 02)x s, 7(81, 62)
0 0
=855 Opv. (8.3)
Let us denote now by x4, 5, c(81, 6;) the (compound)
character of the representation of SU(2) XxSU(2) whose
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representation space is the subspace Py g, c[S;,ta,¢4al-
It is clearly given by the relation

XA,B,C(QI’ 92)=a2 pem[iel(a—c+g+h+i—m_n_l))

+ibyd-fHg-i+j-l+m-p)], 3.4)

where the sum is taken over all nonnegative integers
a,...,psuchthata+b+c=A4, d+e+f=B, and
gth+i+j+k+1+m+n+p=C, From relation (3. 4),
it follows that
F[eXp(iei), exp(iez),x, Yy Z]
={[1 - exp@0y)x](1 - x)[1 - exp(-i6y)x |[1 - exp(i6,)y]
X (1= )1 - exp(=iby)y][1-exp(i6; +i8,)z]
x[1 - exp(i6,)z][1 - exp(i6; — i6,)2][1 - exp(i8,)z]
% (1= 2)[1 - exp(-£6,)2][1 — exp(~ i, +i6,)z]
x[1~ exp(- 76,)2][1 - exp(— 8, - 16,)z]}! {3.5)

is a generating function for the character x,, 5 (6, 02),
i.e.,
Flexp(i6;), exp(i6y), %, ¥, 2]

©

= 2

A, B, C=0

Xa, 5, c(641, O2)x 4y B2C. (3.6)

As N, g, ¢ is the multiplicity of the identity represen-
tation Dy XDy of SUR)XSU() in Py, 5, o[S4, 0y qial, We
obtain from Egs. (3.3) and (3. 6) that

27 0 27 6.
7 f d8, sin® = f d8, sin® 2
0 2 Jy 2

XF[exP(iel), exp(iOZ)’x’ Yy, Z]

= 2 NA,B,OxAyBZc (3.7)
A, B, Cs0

is a generating function for the number of invariants

Ny, 5, ¢- It remains now to perform both integrations

contained in Eq. (3.7). For that purpose, we set

» =exp(if;) and 1, = exp(if,), and convert the left-hand

side of Eq. (3.7) into two successive contour integrals

about a unit circle in the complex plane, that we can

evaluate by the calculus of residues. After straight-

forward, but lengthy calculations, we get the following

result?!:

©

Z; NA,B,CxAyBZC
Ay B, Ca0

=[(1-x1)(1 = )1 - 251 - xy2)(1 - 2°)
x(1-x%22) (1 - y%%)(1 - 24)(1 - x%2*) (1 - y224)]"!
x{1 + xyz? +xyzd + by +xy0)2% + 6Py +xyh)2t
+ ey +xy et + [ (3 +y0)28 + a2
- [x%y%28 + (xty +xy 2] - (3P +aly?)e?
— (3% +x2p%)20 = (32 + x2y8)z 10 — %y 3a 10
— x3y3z 1 =ty 4213}, (3.8)
The denominator of Eq, (3.8) is produced by all the
polynomials in the independent invariants
CO —¢ ..

c(ill)

2000 _
C =S$;8;,

002 —
C 00 )=qtaqiw _sitaqicx;
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C(003) C(ZOZ)

=€;jx€aprdiad 18Thrs =SiSiiadie (3.9)
(

CO —f taidis C =g, 000 104 iy

C = 5,5,0100;80radrs> CU =tolsdind sl ivd srs

which belong therefore to an integrity basis of
I[si:ta’qia]o
To explain the positive terms in the numerator of
Eq. (3.8), it is necessary to add to them the invariants
CMB =¢, € apSitad jsdrrs

c® =St o150 85

C 213 =€;;25:S18 a5 TRl 15

c1® =¢€apSilalsd 16 19565

cety =€0aySiSit ol i 1600180

C —¢, 8l oty ol 1 a1y .10
ces =€125:5t o9 287 19 i mys

125 =€amSif ol6q 169 i r6q j D res

CO® = ¢, 0815158 ;0@ 5871 0T mTnsTnys

and

c36 =€apd olol Qipd 196989 70 no-

It is easy to check that C1® C@® ang C1?, as de-
fined in Egs. (3.10), are independent of C111°C002)
CHDCOD  ang C2ICO) | regpectively, as they
should be. On the other hand, the product C‘!¥C11»
is independent of C202C DO 022003 200)
CUDCUIDEOR)  [CADREWID 0 €009 200 020)
xC% and thus gives rise to the term x%y%z° of the
generating function, without necessity of introducing

a new invariant C%%,

All the powers of the invariants given in Egqs. (3.10)
do not define independent invariants. The same is true
for the products of powers of the invariants given in
Egs. (3.9) with those given in Egs. (3.10). For instance
[C1DT can be expressed as a polynomial in the in-

variants (3.9) and CY'® which is of first degree in
C(iia):

[C(112)]2 :4[0(204)(:(020) + C(024)C(200)] - 8c(113)c(111)
+4c(202)c(022) _ 4[0(202)0(020) + C(022)0(200)]C(002)
- 2C(004)C(200)C(020) + 4[C(111)]2C(002)

+zc(200)c(020)[c(002)]2. (3. 11)

The existence of such a relation is exhibited by the
absence of a term x%y%z% in the numerator of the gen-
erating function. The other relations between powers

of invariants involve polynomials of degree greater than
or equal to 10, and are responsible for the negative
terms in the numerator of the generating function.
Owing to their high degree of complexity, we have not
explored them further.

When replacing s;, f,, and ¢;, by S;, T,, and Q;,
in the integrity basis of I[s;,?,,q;.] defined in Eqgs.
(3.9) and (3.10), we get a set of 20 SU(2) xSU(2) in-
variants belonging to the enveloping algebra of §//(4).
The Casimir operators Gy, Gy, G, of SU(4), and S%, T?
of SU(2) XS8U(2) are, of course, SU(2) xSU(2) invariants
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and can thus be written in terms of them. We find in-
deed that

82=C(200), T2:c<020)’

G2 :C(ZOO) + c(020) + 4c(002),

63:262 + 60(111) - 4c(003)’

and (3.12)

G4=4G3— 3G2 +4c(202) +4c(022) _ 4cf112) - gc(004)
4 %[C(ZOO)]Z +%C(200)c(020) +zc(200)c(002)
+%[c(020)]2+2c(020)c(002)+12[C(002)]2
— C20 4 Lot

We include therefore the Casimir operators in the

above- mentioned set of invariants by dropping C %9
( 004

Ccl O 0o gng C000

It remains now to determine which invariants remain
algebraicly independent when the commutation relations
(2. 7) are taken into account. It is easy to check that the
operators C19, 1429 CEO | cuzn T ots)  ouzs)
CB% and C9%) can be expressed in terms of the com-
mutators [CHD, @] [CHID @] [c@ ca)
[0 CUi] [ cUid] [c) cUID) [
CD] ang [CY9®, ¢ respectively, and lower
order terms. In addition to the Casimir operators
Gy, Gs, G,, 8%, and T?, the integrity basis for the
SU(2) xSU(2) invariants in the enveloping algebra of
$¢/(4), that we have built here, contains therefore seven
independent invariants, CM1 @2 02 ot
C(“‘3), C(204), and c(024)‘

In order to be able to apply this result to physical
problems, we need a method to calculate the matrix
elements of the basic invariants in all IR’s of SU(4) ap-
pearing in applications. As the matrix elements of the
Casimir operators are well known, we are left with the
determination of those of the other seven invariants.

In the next section, we study the properties of the
matrix elements of the four invariants of degree less
than or equal to 4, and show how they can be calculated.

4. MATRIX ELEMENTS OF THE SU(2) X SU(2)
INVARIANTS OF DEGREE LESS THAN OR EQUAL
TO 4 IN THE CANONICAL CHAIN OF SUBGROUPS
OF SU(4)

To calculate the matrix elements of C1V, @)
C9% and C'P) it is convenient to replace the
Cartesian components of S, T, and @ by their spheri-
cal ones, defined in Egs. (2.8). The invariant opera-
tors become

CUMD = 37 (= 1)7™S, T,Q —ques
qK

C(202) — E (_ 1)q+q'+KSquIQ_qKQ-q'-K7

aq’k

CO = 23 (= 1)T* ™' T, T @t »

qKkk?

112y _
cHn —_ %3, €aa'aExrtevSq Te@ g grogen
KiK'k

After expanding the sums in Eqgs. (4.1) and using Eqgs.
(2.10) to permute the generators of SU(4), we get
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CUD Z[S T, Qs = S.4To@1p + St Ti@st ~ (S + 1)T1Qn1
+h.e. ]+ (S + 1T, + 1)@,

C =[S (~ 2Q14Q11 + Q%) + 2(Sy + 1)S_ (@1 Q1.1
= QyQqp T @o-1911) + S.1S1(— @_4_1@41 + @.10%10
- Q1@ 3Sy+2) +hoc ]+ (S, +1)?
X (= 2Qu1Qo1 + QFo + 3To) + (S +1)
X(~ Q1-1Q11 + Q_10Q10 ~ Q1111 — §S0),

COD =[T2 (- 2Q_44Qy; + Q%) +2(T, + )T,
X (Q_11Q10 — ¥01Q00 + Q.10@11) + T4 T}
X (=~ Q11911 + Q1 Q01 — @-11Q1-1 ~ 55
= 3Ty +3) thoc, [+ (T + 1= 2Q4,@1 + Q%)
T {(Ty+ 1)~ Q14Q11 + @p1Q01 = @-1191-1
+3(S, - 2)T,),

4.2)

and

CM =— 2[S 4T _1(Q11Qu0 — Q01Q10) + S-1T5(Q01Q1-1 — Q0-1911)
+ 8.4 T1(Q0-1Q10 = @1.1Qq0) T (S + 1) T_1(@.41Q40
- @.40@y) th.c. ]+ (S + 1Ty + 1)(Q1-1911
= QuyQu) T 2(S + VQRT Ty - T~ Ty),

where h. c. stands for the Hermitian conjugate of the
preceding terms.

We want now to evaluate the matrix elements of these
operators between basis states of an IR [m]=[mmym;)
of SU(4). Here my, m,, and mg are any integers,
satisfying the inequalities my= my > my= 0. We shall
adopt the so-called Gel’fand and Tseitlin basis, %
corresponding to the canonical chain of subgroups of
SU(4), given in Eq. (2.3). The basis states are then
represented by the patterns

myy Mgg Mgy My

where m; =m;, i=1,2,3, my =0, and m,, are in-
tegers such that #; .42 1, = My, .

The basis states (4. 3) are simultaneous eigenvectors
of a complete set of commuting operators, consisting
of the Casimir operators G;, G;, and G, of SU{4) and
all the Casimir operators of the subgroups appearing
in Eq. (2.3). In particular they are simultaneous eigen-
vectors of (11, CiZ, (3, and (7, corresponding to the
eigenvalues myy, Mg + Mgy = Myy, Mg+ Mgy + Mg
= (myy +myp), and myy+mag+ mgy +myy = (myg+ myg
+mgy), respectively, Since S, T, and @,, are linear
combinations of them, they are also diagonal, and their
eigenvalues are equal to

Ms=myy +mgy = 3(myy+ mgy+mgy + myy), {4. 4a)
Mp=mqy— (myp + mgy) + myg +mag + msg
1
- §(m14+m24+m34+m44), (4.4b)

and

Mg =3[my — (M3 + g+ mgg) + 5(myy + nigy + gy + myy)],

(4. 4c)

respectively. However, the Casimir operators of
SU(2) xSU(2), 8% and T?, are not diagonal in basis (4, 3),

The matrix elements of C'!1D, %02 2 apq
CM2 3re easily obtained in basis (4. 3) when use is
made of Eqs. (4.2), the expansions (2. 8) of the opera-
tors S,, Ty, Qu in terms of CJ", and the well-known
matrix elements of (S in the Gel’fand and Tseitlin
basis. *»2* Proceeding in this way, we are able to com-
pute them numerically for all SU(4) IR’s appearing in

physical applications.

The calculations can be simplified by taking into ac-
count a symmetry property of the matrix elements. It

myg Mgy Maz (4.3) is indeed straightforward to show that the matrix ele-
VAR ments of the generators of SU(4) in a given IR are
myy related to those in the contragredient IR as follows:
Myg =My Myg= Mgy Myg= My 0 Myg=Myy Myg= Mgy W= My 0
Myy— My Myg=Mmis my=miz | )1 Myy— Mgy Myg— Mg Mg =My
My = Mgy Myy— Moy Q “ Myy—= Mgy Myy— My
ax

!
Myg— My

Myy Mgy Mgy My S Mg Mgy Mgg Ny

Mgy = My

4 -
= mis Mgz My e Mgy Mgz My @.5)
mis My Q - myy Moy
7}11'1 “a-K iqq
where ¢ is a phase equal to +1 for S,;, Q,, and -1 for §;, T,, @,. From this we deduce that
11y
Mg~ Mgy Myg— My My — My 0 C(m Myg= Mgy My~ Mgy My — My 0
)
myg— M3z Myy~ My My — M3 C( . Miyg— Mgy Migg— Moy Wyg— My3
Mg — M3y Myg— Myy C(Sizz Mg~ Moy Myg— Myy
Mg~ iy ¢ myg— myy
A1)
-1 My Mgy Mgy My C(m) Myy Mgy Mgy Myy
EDAS! mis mgg Mg c Mg Mgy Mgy 4.6)
= ’ p ©022) ) .
+1 g g C 20 7)222
+1 Wlh C(HZ) Wiy
1456 J. Math. Phys., Vol. 17, No. 8, August 1976 C. Quesne 1456



Finally let us note that the matrix elements of the invariants in any U(4) IR [m] = [mmymgm,] coincide with those

in the SU4) IR [m2q ~ my my = my mg—my).

We proceed now to review two applications of the invariant operators in mathematical and physical problems.

5. APPLICATION TO THE STATE-LABELING PROBLEM

Instead of using the canonical chain of groups (2. 3)
considered in Sec. 4, we are in fact concerned with the
noncanonical chain (2, 4), which is of greater physical’
interest. Basis states of SU(4), corresponding to the
latter chain, are simultaneous eigenvectors of G;, Gj,
G,, 8%, T?, S,, and T,. There are two missing labels to
characterize the states completely. Consequently, the
number d([m, m, m3] ST) of IR’s of SU(2)xXSU(2), speci-
fied by S and 7, in a given IR of SU(4), characterized
by [, m;ms], may be greater than one. This fact is
illustrated in Tables I and II, which give the decom-
position of all the IR’s of SU(4) appearing in s—d shell
nuclei, The tables were constructed from the corre-
sponding tables?® for the reduction

U(4)>0(4),
[m3 [RY7S]

(5.1)

using the following properties: (i) The IR [xpn] of O(4) is
an IR with respect to SO(4) when p =0, -and separates
into two IR’s of SO(4), characterized by [xu] and

[x — 1] respectively, when p+#0. (ii) The IR [au] of

SO(4) is an IR of the locally isomorphic SU(2) xSU(2)
group, characterized by S=3(x+p), and T= 20— ).

The two missing label operators should be commut-
ing SU(2) xSU(2) scalars in the enveloping algebra of
${/(4). Moshinsky and Nagel have shown that they can be
chosen as

Q=cit, (5.2)

and

QEC(ZOZ)_}_C(OZZ)_ C(HZ). (5.3)
From Sec. 3, it is clear that this choice is only one
among numerous other possibilities, The most con-
venient one, from the point of view of diagonalization,
corresponds obviously to invariants of lowest degree.

If we restrict to homogeneous polynomial invariants,

we could thus take any linear combinations of the type
0,Gy+ a,C11Y | and B,G, + B,GE + By8% + B, T + (B;S?

+ 36T2)G2 + B'ISZTZ + BS(C(ZOZ) + C(022) _ c(ll?)). The choice
made by Moshinsky and Nagel belongs to this class, and
is therefore well adapted to the numerical calculation of
the missing labels, that we now proceed to discuss,

TABLE I, Decomposition of the IR’s [m] of SU(4), with Yym; even, into IR’s of SU(2) xSU(2), characterized by S and T.

[m] (ZS'ZT)II(EI!]S T)

[o] (00)

[2] (00) (22)

{11] (20) (02)

(4] (00) (22) (44)

[31) (20) (02) (22) (42) (24)

(22} (00) (40) (22) (04)

(2111 (20) (02) (22)

(6] (00) (22) (44) (66)

[51] (20) (02) (22) (42) (24) (44) (64) (46)

[42] (00) (40) (22)2 (42) (62) (04) (24) (44) (26)

[411] (20) (02) (22) (42) (24) (44)

[33] (20) (60) (02) (42) (24) (06)

[321] (20) (40) (02) (22)2 (42) (04) (24)

l62] (00) (40) (22)2 (42) (62) (04) (24) (44)2 (64) (84) (26) (46) (66) (48)

(611] (20) (02) (22) (42) (24) (44) (64) (46) (66)

(53] (20) (60) (02) (22) (42)? (82) (82) (24)% (44) (64) (06) (26) (46) (28)

[521] (20) (40) (02) (22)2 (42)% (62) (04) (24)? (44)% (64) (26) (46)

[44] (00) (40) (80) (22) (62) (04) (44) (26) (08)

[4311 (20) (40) (60) (02) (22) (42)? (62) (04) (24)? (44) (06) (26)

[422] (00) (40) (22)2 (42) (04) (24) (44)

[64] (00} (40) (80) (22)? (42) (62)° (82) (10,2) (04) (24) (44)® (64) (84) (26)2 (46) (66) (08) (28) (48) (2,10)

[631] (20) (40) (60) (02) (22)2 (42)3 (62)2 (82) (04) (24)° (44)3 (64)2 (84) (06) (26)? (46)2 (66) (28) (48)

(6221 (00) (40) (22)% (42) (62) (04) (24) (44)2 (64) (26) (46) (66)

[55] (20) (60) (10,0) (02) (42) (82) (24) (64) (06) (46) (28) (0,10)

(541] (20) (40) (60) (80) (02) (22)% (42)2 (62)% (82) (04) (24)2 (44)2 (64) (06) (26)2 (46) (08) (28)

[532] (20) (40) (60) (02) (22)% (42)3 (62) (04) (24)° (44)2 (64) (06) (26) (46)

[66] (00) (40) (80) (12,0) (22) (62) (10,2) (04) (44) (84) (26) (66) (08) (48) (2,10) (0,12)

(6511 Ego)lé;x(z)z(fog (80) (10,0) (02) (22)2 (42)% (62)2 (82)% (10,2) (04) (24)2 (44)2 (64)2 (84) (06) (26)2 (46)2 (66) (08) (28)% (48)
3 ’ 0

[642] (00) (40)2 (60) (80) (22)° (42) (62)3 (82) (04)2 (24)3 (44)* (64)2 (84) (06) (26)3 (46)2 (66) (08) (28) (48)

[633] (20) (60) (02) (22) (42)2 (62) (24)2 (44)2 (64) (06) (26) (46) (66)
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TABLE II. Decomposition of the IR’s [m] of SU(4), with T;m; odd, into IR’s of SU(2) xSU(2), characterized by S and T,

[m] (28,27‘)"““‘33 V9]

[1] (11)

[3] (11) (33)

[21] (11) (31) (13)

[5] (11) (33) (55)

[41] (11) (31) (13) (33) (53) (35)

[32] (11) (31) (51) (13) (33) (15)

[311] (11) (31) (13) (33)

[61] (11) (31) (13) (33) (53) (35) (55) (75) (57)

[52] (11) (31) (51) (13) (33)% (53) (73) (15) (35) (55) (37)

[511) (11) (31) (13) (33) (53) (35) (55) .

[43] (11) (31) (51) (71) (13) (33) (53) (15) (35) (17)

[421] (11) (31)% (51) (13)2 (33)2 (53) (15) (35)

[63] (11) (31) (51) (71) (13) (33)2(53)2 (73) (93) (15) (35)2 (55) (75) (17) (37) (57) (39)
6211 (11) (31)2(51) (13)2 (33)? (53)2 (73) (15) (35)2 (55)2 (75) (37) (57)

[54] (11) (31) (51) (71) (91) (13) (33) (53) (73) (15) (35) (55) (17) (37) (19)

(5311] (11) (31)2 (51)2 (71) (13)2 (33)% (53)% (73) (15)%(35)%(55) (17) (37)

[522] (11) (31) (51) (13) (33)% (53) (15) (35) (55)

{651 (11) (31) (51) (71) (91) (11,1) (13) (33) (53) (73} (93) (15) (35)(55)(75) (17) (37) (57) (19) (39) (1,11)
{6411 (11) (31)2 (51)% (71)2 (91) (13)% (33)° (53)° (73)2 (93) (15)2 (35)3 (55)2 (75) (17)% (37)2 (57) (19) (39)
[632] (11) (312 (51)2 (71) (13)% (33)3 (53)° (73) (15)2 (35)% (55)% (75) (17) (37) (57)

We can get the missing labels w and ¢ if we are able
to diagonalize © and @ in the basis states of an IR of
SU(4), characterized by given values of S, T, Mg, and
My

Q| [y my mgJopSTM M) = w | [my 1y mglw@STM M),
(5.4)
& |[my my mylw@STM M gy = @ | [my my m3lw@STM M.
(5. 5)
They are, of course, independent of Mg and M.

From the theory developed in Sec. 4, we can obtain
the matrices of € and @ in the Gel’fand and Tseitlin
basis. By rearranging their rows and columns if neces-
sary, these matrices can be put in a block-diagonal
form, each block being characterized by given values
of Mg and M, [see Eqs. (4.4a) and (4. 4b)].

We first consider the block corresponding to the high-
est possible value of Mg,

P=3(my +my— ms), (5.6)
and to the highest value of M, compatible with this
value of Mg,

P'=é(m1-mz+m3)_ (5.7)

It corresponds to the highest weight state of the IR

[y mqy my] of SU4), and it is therefore one-dimensional.
We thus obtain easily the eigenvalues of @ and ¢ in the
state characterized by S=P and T=F’'.

We then consider the block corresponding to Mg=P
and M= P’ -1, and diagonalize it. The eigenvalues we
get are associated with states with S=P and T= P’ or
P'—1, As we already know the eigenvalue correspond-
ing to the highest weight state, we can see at once
which eigenvalues correspond to the states with S=P
and T=P' -1,

We then consider the block corresponding to Mg=P
and M,=P’—2, and proceed in the same way. When we
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have diagonalized all the blocks with Ms=P and M,

= 0, we consider those corresponding to Mg=PFP~1 and
all nonnegative values of M, starting from the highest
one. Thus by diagonalizing successively all the blocks
with Mg2 0 and M;> 0, we get the eigenvalues of @ and
& and the expansions of the corresponding eigenvectors
in the Gel’fand and Tseitlin basis:

| [1124 My m3|w@STM sM 1
= 23" a([mymy mg)m;;0@ST)
my
my my mg O
yg gy Mgy
Mlya Mg
Milqq

X (5. 8)

Here the prime on the summation symbol means that
the values of m;;, 1<¢, j<3, satisfy Eqs. (4.4a) and
(4. 4b).

The procedure described above is somewhat heavy
and redundant, but it has the advantage of producing a
simple method for checking the eigenvalues. Numerical
calculations were performed for all the IR’s of SU(4)
appearing in light nuclei up to the s—d shell. Tables
IIT and IV list the eigenvalues w and ¢ for those cases
where the multiplicity d ([ »zymqyms] ST) is greater than
1. Those corresponding to a multiplicity equal to 1 can
be deduced from Tables V—X In reading the tables one
has to take into account that w and ¢ are invariant
under a permutation of S and T,

Let us quote some cases where the eigenvalues w and
@ are equal to zero. First of all, from the definition of
Q and ¢, it is clear that
w=0 whenever Sor T=0, (5.9)
and

¢ =0 whenever S=T=0. (5.10)

On the other hand, the symmetry relation (4. 6) shows
that
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TABLE III, Eigenvalues of £ and & corresponding to IR’s [m] of SU(4) with ¥;m; even. For each set of labels [m], S and T, the
first row contains all possible values of 16, and the second one the corresponding values of 64¢.

[m] S T Eigenvalues
[42] 11 -~ 5,612497 45,612497 - -
— 304, 249939 720, 249939 - —
{3211 11 -16 16 - -
48 48 - -
[62] 11 —12.660606 60, 660606 — —
— 239, 854533 1519, 854533 - -
2 2 103. 337900 200. 662100 - —
1904.109594 4239, 890406 - —
(53] 2 1 —12.660606 60. 660606 - -
— 815, 854533 943. 854533 — —
[521] 11 —24 24 - -
208 528 - -
2 1 11.339394 84, 660606 - -
824, 072733 1703, 927267 - —
2 2 72 120 - —
1488 1296 — -
[431] 11 0 0 — —
-192 448 — —
2 1 ~27,712813 27,712813 - —
» -128 -128 - -
[422] 11 ~39.191836 39.191836 - -
448 448 - —
[64] 11 —4,249031 60, 249031 — -
- 310. 972868 1494, 972868 — —
3 1 —20.166378 76.166378 — -
- 1556, 658593 1140, 658593 - -
2 2 - 27,569776 83.569776 - —
— 2115, 953727 995, 953727 - -
[631] 11 -8 8 - -
~160 992 - —_
2 1 —42,973727 38.370868 100, 602859 —
92. 000387 680, 354199 2619, 645414 -
3 1 14, 568733 105, 431267 - -
1230. 824799 2321,175201 — -
2 2 8 96 120 —
864 2624 1760 —
3 32 84, 604569 163, 395431 - -
1805, 581725 1490,418275 - -
[622] 11 — 46, 754310 54,754310 - -
772. 982759 1179, 017241 - —
2 2 26. 569761 173.430239 — -
2218, 279044 2805, 720956 - -
[5411 11 -16 16 - -
368 368 - —
2 1 0 0 - -
—748.179617 588, 179617 - -
31 ~39,191836 39.191836 - -
-432 —432 - —
2 2 —48 48 - —
— 784 — 784 - —
[5321 11 —-40 40 - -
608 608 - —
2 1 —60,398675 0 60.398675 —
672 1280 672 -
2 2 —24 24 - -
992 992 — -
[651] 11 0 0 - —
64 960 - -
2 1 —27,712813 27,712813 - -
256 256 — -
31 0 0 — -
—~ 1556, 974301 660, 974301 - —
4 1 — 50, 596443 50. 596443 - -
— 864 — 864 - —
2 2 0 0 - -
- 2112 576 - —
3 2 - 67. 882251 67. 882251 - -
-1824 - 1824 - -
[642] 2 0 0 0 - -
71.527669 2104, 472331 - -
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TABLE III. (Continued).

-

11 - 53.065997 0 53. 065997 -
1088 -320 1088 -
2 1 — 53.065997 0 53.065997 -~
640 2048 640 -
3 1 —81.584312 0 81.584312 -
928 1760 928 -

2 2 -~ 99.918968 -0 ¢ 89.919968

448 1216 2112 448

3 2 -~ 39.191836 39,191836 - -
1120 1120 — —
[633] 2 1 - 87,635609 87.635609 - -
1792 1792 - —_
2 2 - 67, 882251 67, 882251 - —
2112 2112 -_— -

TABLE IV, Eigenvalues of £ and & corresponding to IR’s [m]
of SU(4) with $ym; odd. For each set of labels [ml, S and T,

the first row contains all possible values of 16w, and the sec~
ond one the corresponding values of 64¢.

ml ST Eigenvalues
(521 % % 36,128808 105,871192 —
434.833786  1969.166214 —
fa21) % % —19,083189 29,083189 —
145.168108 626,831892 —
23 15 55 -
498 418 -
631 % 2 —22.1056555 120,105555 —
- 934.744439  2762,744439 —
58 45 133 -
270 2558 -
fe21] 3§ % — 24.048349 38,048349 —
431.323109  1300,676891 —
33 21 71 —
1362 1666 -
s 3 65.297114 172,702886 —
2162,159591 3665, 840409 —
s 2 161 217 -
3282 2946 -
{5311 % 3 — 5.493902 35,493902 —
—~148.817046  1080,817046 —
33 - 27.249031 37,249031 —
183. 509690 828,490310 —
g g — 39. 660606 33, 660606 45
—145,890900  1173.890900 418
33 13.473891 80.526109 —
501. 052218 366,947782 —
[522] 2 % - 17.258640 91,258640 —
1045,482720  1262,517280 —
l641] § 3 — 22, 559468 40,550468 —
377.929582  1514.070418 —
g3 —6.612497 44,612497 —
—467.274884  1479,274884 —
¥ % - 35.447497 45,447497 —
213.525032  1022,474968 —
23 ~9.660606 27 63. 660606
—-969.818167 1474 1229, 818167
s 3 - 60. 588290 42,921131 58. 667160
-~ 678.294081 1564, 461078 27. 833003
3% 12. 352385 105, 647615 —
399. 295230 212.704770 —_
g2 7 119 -
—46 ~ 270 —
6321 2 % — 34. 559468 28,559468 —
1039. 356806 660, 643194 —
3% —43.754310 57,754310 —
1379.439658  2800.560342 —
23 —72. 635609 -9 102, 635609
804.186345 1378 1855. 813655
s 8 - 25, 808121 56, 686872 130.121249
1616.918762  2572,932601  1788.148637
28 35 91 —
2130 2018 -
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(C U1y g my=mg my-my 1M M 7 _ ¢ U1L )>>Tm1m2m3]MsMT’
(5.11)

i.e., the trace of C1V in the states of the IR

[my m; = my my— my), characterized by — Mg and — M,
is equal and opposite to that of C*'!? in the states of the
IR [mm,m,], specified by Mg and M,. Therefore, for
any self-contragredient IR, i.e., such that m;=m; +my,
the trace of C'' in the states corresponding to fixed
values of My and My is zero. In other words, for a
self-contragredient representation, the sum of the
eigenvalues w corresponding to fixed values of Sand T
is zero. In particular,

w=0 whenever m; =m,+ms and d{{m, mym;|ST)=1,
(5.12)

We also have explicit formulas for the eigenvalues
w and ¢ in three special cases. For the highest weight
state of any IR [m, mym;], characterized by values of
S and T given by Egs. (5.6) and (5. 7) respectively, we
get

w=3%P+1)(P +1)P" (5.13)
and
¢=3P+1)[(P+1)(P"?+P')-3P]

+ 5P+ 1)[(P' +1)P"* +3PP’), (5.14)
where

P" = 3(my - my—~my). (5.15)

For the state of the IR [m 0 0] with S=T=m/2 - a,
where a is any integer such that 0 <a <[m/2], wand ¢
are given by

w=(m+2)(m - 2a)(m - 2a +2), (5.16)

and
o =3 (m— 2a)(m - 2a+2)[m? + (4a+ 6)m - 44> +4a~4).
(5.17)

Finally, for the state of the IR [m m 0] with S=m —-a
and T=a, where a is any integer such that 0<a <wm,
we have
@ =— (2% + 2a +3)m? + (- 4a° - 2a* - 4a + 3)m

+2a*(a +2)), (5.18)
and w =0 owing to Eq. (5.12).
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TABLE V. Averages (16 C1#1)MIS T corresponding to IR’s [m] of U4) with F;m; even.

ST 11 21 31 41 51 22 32 42 33
{ml]
{2] 32 - - - - - - - -
[4] 48 - - - - 144 - - -
[31] 32 48 - - - - - - —
6] 64 — — - - 192 - - 384
[51] 40 72 - - - 168 192 - -
{42] 20 40 64 - - 72 - - -
411] 8 72 - - _ 72 - - -
[62] 24 48 96 - - 152 208 240 256
(611] 16 96 - - - 112 256 - 256
[53] 48 24 48 80 - 48 96 — -
(5211 0 48 96 - — 96 96 - -
(641 28 56 28 56 96 28 56 120 128
{631] 0 32 60 120 - 224/3 124 120 128
[622] 4 8 128 - - 100 128 - 128
TABLE VI. Averages (16 C{111)&IS T corresponding to IR’s [m] of U(4) with ¥;m; odd.

VT 11 31 51 11 91 11 33 53 13 93 55 15
[m) 22 2 22 32 52 32-2 2 22 32 72 22 52
(1] 9 - - - - - - - - - - -
(3] 15 - - - - - 75 - - - - -
[21} 3 15 - — - - - - — — - -
(5] 21 - - - - — 105 — - - 245 -
[41] 1 25 — - - — 85 105 - — - -
{32] 13 1 21 - - - 25 - — - - -
[311] -11 25 - - — - 25 — — - - -
l61] -1 35 - - — — 107 147 - — 287 315
[52] 19 -5 35 - - - 71 107 135 - 147 -
[511] -13 35 - - — — 47 147 - - 147 —
{431 7 19 -1 27 - - -5 35 - — - -
[421] ~5 5 35 — - - 35 35 - _ - -
(63} 5 29 —-11 45 — - 49 89 129 165 133 189
6211 ~7 7 49 - - — 49 119 189 — 189 189
(541 17 5 25 -3 33 - 29 -11 45 - 49 -
(531] -15 15 5 45 - - 13 47 45 — 49 -
(5221 17 -3 49 - - - 37 49 - — 49 -
[65] 11 23 3 31 -5 39 -1 39 -17 55 -21 63
[641] ~9 9 19 5 55 - 27 41/3 59 55 63 63
i632] 3 -3 7 63 - — 7 161/3 63 — 63 63
TABLE VIL. Averages (64 C?R)hIST corresponding to IR’s [m] of U4) with Tym; even. (a) T=0,1, (b) T=2,3,4,5,

$T 10 20 30 40 50 60 11 21

(a) [m]\ a1 41 51
f2] - - - - - - 32 - - _ _
f11] - 96 - - - - - - - - - -
(4] - - - - -~ -~ 192 - - - -
(311 -32 - - - - - 160 0 — — -
[22] - - 288 — — - — - 96 — - - -
(211] 96 - - - - - —-32 - - - —
(6] - - - - - - 416 — — — —
{511 96 - - - - - 368 432 — - —
[421 - ~96 - - - - 136 176 —64 — —
{411] 288 - - - - — 80 720 - - —
[33} - 96 - ~576 —_ - - — - 288 - — _
(3211 144 144 - — - - 56 ~144 - - —
le2} - 288 - - - - 320 672 768 — -
l611] 544 - - — - - 256 1440 - — _
[531 -32 — —192 — — — 480 128 160 - 160 —
(521} 304 624 — - — - 216 728 1216 — -
[44) - - 288 - - 960 - - - 96 - - 576 — —
[431] 352 96 192 - —_ - 96 32 - 320 - —
[422] - 864 - - — - 176 576 — —_ —
(64] - -96 - -320 — — 328 560 88 112 - 288
(631] 608 416 1088 — - — 240 960 1080 1840 —
[622] - 1632 - - — - 376 1232 3008 - -
[55] - 96 - - 576 - —1440 — - - 288 - - 960 -
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TABLE VI, (Continued)

[541] 464 464 -16 240 - - 216 24 -24 - 560 -
[532] 32 1376 1472 - - — 336 640 960 - —
{66] - - 288 — - 960 - -2016 -96 - -~ 576 - ~ 1440
[651] 736 480 576 -192 288 — 288 224 -112 ~112 — 864
[642] — 1088 1984 2240 - - 352 992 992 1440 -
[633] 544 — 3264 - - - 192 1424 2752 —- -
———— — —_—— . e t——
(&) [m] 12 22 32 42 13 23 33 14 24 15
{2] - - — - - - — — —_ —
[11] - - - — - - — - - -
(41 - 576 - - - - - - — -
[31] 64 - — - - — — - - -
[22] — — - - - - — - - -
[211] - - - - - - — - - —_
(6] - 1248 - - - - 2496 - - -
[51) 240 1200 960 — — 672 — — - -
[42] 240 48 - - 96 - _ — - _
{411] 144 144 — — - - — - - -
(33] ~96 - - - - - - - - -
[321] 0 - - - - - - - - -
[62] 480 1216 1760 1440 288 1472 1088 - 768 —
[611] 352 640 2752 - - 1120 1216 - - -
(53] 192 288 0 — 320 96 — 128 - -
[521] 216 600 192 — 176 240 — —_ - _
[44] —_ - 288 - — -96 — — — - -
(431] 96 -96 - _ 32 - - - - -
(422] 0 0 - - _ —_ _ _ N _
(64] 624 200 304 -~ 80 248 400 64 400 144 160
(631] 1024/3  2368/3 920 240 280 760 320 208 336 —
(622] 144 824 1984 - 288 352 448 — - -
[55] - 96 — - 576 - - - 288 - - 96 -~ -
[541] 152 88 - 256 - 136 —-48 - 64 —_ —
[532] 448/3 400 -64 - 32 96 - - - -~
[66] — - 288 - - 960 ~96 - ~ 576 - 288 ~96
[651] 288 96 48 - 480 208 144 ~192 176 0 96
[642] 288 608 592 -160 192 560 64 64 192 -
{633] 336 624 1728 - 32 96 192 - - -
TABLE VIII. Averages (64 C?®)®IST corresponding to IR’s [m] of U(4) with $;m; odd. (a) T=3}, 3. (b) T=3, ], 4, %
wCH W M B B # ou o# oW B H
fl -9 - - - - - - - - - -
[3] 39 - - - - - - 195 - - -
[21] 15 —-105 - — - - 3 - - - -
{51 111 - - - - — - 555 - - -
[41] 71 95 - - - - 59 515 315 — —
[32] 47 ~173 -~ 273 - - - 35 -85 - - —
[311] 31 295 - - - - 19 -5 - - -
61] 151 415 - - — - 139 979 1099 - -
[52] 111 135 175 - - - 99 507 739 459 -
[511] 95 695 - - - - 83 251 1491 - -
{431 87 ~33 —233 - 513 - - 75 —45 - 245 — —
{421] 63 303 511 - - - 51 219 - 77 — -
[63] 159 183 223 279 - - 147 747 707 987 627
(621] 135 663 1351 - - - 123 579 1499 2403 -
[54] 135 15 - 185 —465 - 825 - 123 3 -197 - 4717 -
[531] 103 503 423 783 -~ —_— 91 905/3 315 - 189 —
[522] 87 687 1687 - - - 75 387 1099 - -
[65] 191 71 -129 - 409 - 769 ~1209 179 59 - 141 ~421 - 781
[641] 151 743 663 551 1111 - 139 1433/3  1153/3 419 - 341
[632] 127 623 1983 2727 - — 115 2033/3  3673/3 1755 -
A T
(1] - - - - - - - - - -
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&) - - - - - - -

f211 - - - - - - - - - -

[5] - — 1295 - - - - - - -
[41] - 255 — - - - - - - -
[32] 15 — - - - - - - - -
[311] - - — - - - - - - -
{61l - 639 2359 2079 - - 1435 - - —_
[52] 79 679 399 - - 315 - - - -
[511] - 471 511 - - - - - - —
[43] 55 -85 - - 27 - - - - —
[421] 31 55 - - - - — - - -
[63] 127 647 959 567 99 843 483 - 375 -
[621] 103 599 1319 783 - 531 651 - - -
[54] 103 —-17 - 217 - 75 —45 - 39 - —
[5311] 71 311 7 - 43 115 - — - -
[522] 55 79 119 - - - - - - -
[65] 159 39 —161 —441 131 11 —189 95 -25 51
[641] 119 1213/3 439 -~ 81 91 403 91 55 175 -
[632] 95 1093/3 799 135 67 139 259 — - —

TABLE IX. Averages (64 C{12Y[®IST corresponding to IR’s [m] of U(4) with $ym, even.

‘T 11 21 31 41 51 22 32 42 33
{m]

(2] -128 — - - - — — - —

[4] —448 — - - - — 576 - - -
[31] 0 -192 - - - - - - -
[22] 128 - - - - - - - -
[211] -128 - - - — — — — -

[61 - 896 — - - — —1920 - - —1536
[51] -128 - 768 - - - - 384 - 768 - -
[42] 64 128 — 256 — — 0 — - —
(411} - 320 —-192 - - - - 576 - - -~
[33] — 384 — - — - - — -
[321] 64 -192 - - - - _ - _
(621 0 0 —1152 — - - 640 —320 960 - 512
[611] — 576 - 768 — — - -1728 ~768 - - 1536
[53] 0 256 320 —320 - 768 384 — -
[521] 64 —320 - 256 - — -192 - 768 — -
[44] 128 — 768 - - 1152 - - -
[431] 64 256 — 256 - - 0 - - -
[422] —96 -192 - - — — 576 — - -
[64] 64 128 544 576 —384 960 1728 960 1536
[631] 64 512/3 - 416 - 320 — -512/3 32 - 960 — 512
[622] - 224 — 448 — 256 - - — 864 — 768 - - 1536
[55] - 384 — 1280 - - 2304 —_ -
[541] 64 256 544 - 320 - 960 384 - —
[532] 64 —256/3 — 256 - - -192 - 1768 — -
{66] 128 - 768 - 1920 1152 - 3840 4608
[651] 64 256 544 928 —~384 960 2016 960 1536
[642] 256/3 512/3 -64/3 -320 - 160 32 — 960 - 512
{633] -576 ~32 — 256 — — — 864 ~ 768 —_ - 1536
TABLE X. Averages {64 C{112)[lIST corresponding to IR’s {m] of U(4) with $;m, odd.

NG T 7 B TR $ $1 8 1 i 3 I
[1] -36 - - - - - -~ - - — - —
(3] -132 - - - - - —300 - - - - -
[21] 60 - 60 - - - — - — — — - -
(5] - 2176 - - - - - —1020 - - - — 980 -
[41) 124 - 260 - - - - ~140 —420 — - - -
[32] — 68 196 -84 — - - 100 - - — - -
[311] - 36 — 60 — - — - —300 - — - — -
(61] 204 — 540 - - — — - 636 ~1596 — — —756 —1260
[52] -196 380 —420 - - - —-188 ~36 —540 - —196 -
[511}] -20 — 260 - - - — - 860 - 420 - - - 980 -
[43] 92 —-124 396 —108 - —- 740 420 - - - -
[421] 92 -32 -84 - — - -20 —420 - — - -
[63] 188 —388 732  —612 - — 580 - 60 132 - 660 700 252
6211 140 -80 - 420 — — — ~ 356 -816 —540 — —476 —1260
[54] —100 260 —180 660 -132 - —28 1572 900 — 1372 —
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TABLE X. (Continued) -

{531] - 68 128 -12 —-108 — — 364/3 192 —540 — -196 -~
[522]1 —148 —4 ~ 84 - - - —380 —420 — - -980 —
[65] 124 —188 492 — 236 988 —156 868 228 2692 1540 3388 2772
[641] 124 —64 276 24 —132 — 1132/3 484 516 —660 1036 252
{6321 172 -112 -12 -108 - — 28/3 —404 —540 — —476  —1260

TABLE XI. Coefficients ay, in fractional form Ny./D. The numerators N, are given in the table and the common denominator
is D=1152. )

-,
p,\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 1152 —2400 1680 —480 48 — - — — _ _ _ _ _
2 - 4608 —4992 1728 -192 — - - - - — _ _ _
3 - —7776 6264 —1656 144 864 —504 72 — - - - 1728 -1008
144 1728 -1008 144 ~— - - - - ~ - — - _
4 - — 864 504 ~-72 - 864 —504 T2 — — - — - 1728 1008
—144 -1728 1008 —144 — - - - - - - - - _
5 - 2592 —648 —288 72  —864 504 =72 — - - - 1728 —1008
144 -1728 1008 —144 =— - - - - - - - - -
6 - 2592 —648 —288 72 —864 504 =72 — - - - -1728 1008
~144 1728 -1008 144 ~— - - — - - - - - -
7 - 6144 —3584 640 -32 —1024 512  —64 — - - - —-2048 1024
-128 —2048 1024 —128 =— - - ~ - 2048 -512 — - -
8 - 1536 —512 32 — ~1792 576  —32 256 64 — - 2048 —1024
128 2048 —1024 128 — - - - - ~ 2048 512 — - -
9 - - 3072 512 320 —64 1024 —512 64 — - - - -1024 1280
- 256 2048 —1024 128 — - - - - -2048 512 — - -
10 - - 3072 512 320 —64 1024 -512 64 — - - - 2048 —1024
128 —1024 1280 —256 — - - - - —2048 512 — — -
1 - -1536 -128 128 =— 2048 — —-128 -512 128 — - -1024 —256
128 -1024 —256 128 — - - - - 4096 —1024 — - -
12 - 1536 512 —-96 —32 —1280 —64 96 256 -64 — - - -
13 - — 1800 738 =173 2 348 -162 9 16 4 -4 4 776 —300
24 776 —300 24 8 40 8 4 4 -1200 200 96 96  -16
14 - - 648 90 -3 - 828 —102 3 —192 12 12 — - 744 252
—24  —744 252 —24 —24 -72  —24 12 12 1008 —168 —96 —96  —48
15 - —72 6 — - 108 -8 — —40 - 4 2 -32 48
- -32 48 — 16 32 16 -16  —16 192 -32 — - 64
16— 1080 —-54 —111 9  —324 186 3 —48 ~12 12 -12 120 —420
72 —-888 300  ~12 24 —24 -2 12 -12 1200 -120 —96  —288 48
U A 1080 -54 =111 9 —324 186 3 —48 -12 12 -12  —888 300
-12 120 —420 72 —24 —24 24 -12 12 1200 -120 —288 —96 48
CI 648 162  -18 =~ —972 —180 18 360 — -36 18 504 144
-18 504 144 -18 — — - —36  -36 —1440 288 288 288 —
19 - 216 54 -6 — —-324  —60 6 120 12 -12 -6 96  —48
-24 168 24  -18 —48 24 48 48  —12  —480 -24 — 96 -48
20 - 216 54 -6 — —324 —860 6 120 12 -12 -6 168 24
-18 96  —48  -24 48 24 —48  ~—12 48 —480  —24 96 - —48
21 - - —24 4 4 —24 —24  -12 32 8 -8 8 —32 -
24 12 — -12 16 ~16 16 -16 8 - -80 — 192 -32
22 - - -7 —24 — 72 120 24 —96 -48 24 — 48 —
-12 -48 — -12 =48 — - 48 24 24 - 96 -192  —192 192
23— - —24 4 4 -24 -24  —12 32 8 -8 8 112 —
—12 -32 - 24 16 -16 16 8  -16 - -80 192 — -32
24— - - - - -24 -8 - 32— _8 8 32 —
~ —32 — - 16 32 16 -16  —16 — 64 — - —128
25 - —-648 —162 72 18 324 —144 -T2 72 72 —36 18 216 72
18 216 72 18 — 144 — —36 -36 —576 —144 288 288 - 288
26 - —216 -126 -18 — 396 180 18 —216 ~36 36 18 — -
- 216 -72 -18 — -72 — - 36 288 72 — —288 144
27 - —216 ~-126 -18 — 396 180 18 —216 ~36 36 ~-18  —216  ~—72
-18 — - - - -72 - 36— 288 72 -288 — 144
28 - 72 66 20 2 —132 -8  -12 72 16 —12 6 — -

6. APPLICATION TO THE PROPAGATION OF OPERATOR AVERAGES

In Ref. 10, it is shown that the construction of an integrity basis for the invariants with respect to a subgroup
that are contained in the enveloping algebra of a group is quite relevant for the propagation of operator averages,
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which is an essential concept of the so-called French’s
spectral distribution method in nuclear spectroscopy.®
We now proceed to illustrate this point for the case
SU(4) € SU(2) xSU(2).

Let us assume that n nucleons are distributed over
some finite set of A/ single-particle states, and let us
separate the spatial coordinates of these nucleons from
their spin and isospin coordinates. The n-particle
states can be classified according to the IR’s of the
chain of groups

U(N) 2 U(N/4) X U4), (6.1)
Shb} 3 [fh)
where U(A//4) is the group of unitary transformations
acting on the spatial part of the single-particle states,
and U(4) is Wigner’s supermultiplet group, containing
the spin and isospin SU(2) subgroups,

Uu@4)> SU(2) ><SU(2) S U)X U(1).
(m] Mg Mp

(6.2)

The n-particle states are denoted by |[m]u;
[mlweSTM M), where [m] is obtained from [m] by
changing rows into columns and u specifies the row of
the IR [m] of U(N/4).

When considering the moments of the fixed supermul-
tiplet (or equivalently fixed spatial symmetry), spin
and isospin spectral distributions, 16 5ne has to evaluate
operator averages such as

<O>[h]ST
={dim((M]) x2S+ 1) x 2T + 1) Xd((m]ST)}*
x 2 ([@]u; [mloeSTM M| | [f]u

uwwMSMT

(mlweSTM M),

where dim({fn]) is the dimension of the IR [m] of
UN/4). Average (6.3) is taken in the representation
space of the IR [m]xSx T x[1] of-the product group
K=U(N/4)xSU@2) xSU(2) xU[d(m]ST)], where
Uld([m]ST)] is a term of the direct sum of unitary
groups Yimysr® Uld((m]ST)], which is the trivial com-
plementary group of U(A//4) XSU(2) xSU(2). 1 In Eq,
(6. 3) and in the following ones, we drop the IR [1] of
Uld((m]ST)] because it is always the same,

(6.3)

Here () is some power H? of the Hamiltonian operator,
and is therefore an operator of maximum particle rank
equal to # =2p. The representation spaces of the IR’s
[M’']xS'x T’ x[1] of K, which are subspaces of the
0,1,...,u-particle spaces are called the defining sub-
spaces for the average (6.3). They form a set, that is
often called the elementary net, ® and that we shall
denote by ¢.

When d([m’]S’T*) =1 for all the defining subspaces,
the average can be propagated from them, i.e., it can
be expressed for any [Ex]ST as a linear combination of
its values in the defining subspaces!®:

(Oy™sr= %

(msrmes
From Tables I and II, we see that the condition of prop-
agation is satisfied for the centroid energies (p=1) and
the widths (p» =2). We shall restrict ourselves to these
two cases in the following.

Q“([m’1S'T7; [M]STX 0) BIS'T, (6.4)
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The coefficients @*([’]S’T’; [M]ST) of the linear com-
binations (6. 4) are the averages, in the representation
space of the IR [m]XSxTx[1] of K, of the so-called
propagation operators Q“([fh’]S'T’). These operators
are scalars with respect to K, which satisfy the system
of equations

Q)57 (7] T)
= 6&:]. [i"]bs'. s* 57w' T, {[ﬁl"]S”T"}E S. (6. 5)

In Ref. 10, it is shown that the propagation operators
can be written as polynomials of degree « in the mem-
bers of an integrity basis for the SU(2) XSU(2) scalars
belonging to the enveloping algebra of //{4), or, in
other words, as polynomials of degree u in the number
operator N and the members of an integrity basis for
the SU(2) XSU(2) scalars in the enveloping algebra of
${/(4). Their averages can thus be written in the form

QUm’]S'T’; [f]ST)

=[d((m ]ST)]‘.>3<[mw<pSTIQ" 187" [ [m]weST).

(6. 6)

For =2, we see from Sec. 3 that the propagation
operators are polynomials in N, 8%, T?, and G,, and
thus can be easily constructed. ¢ For u =4, they are
polynomials in N, S%, T?, G,, G, G C““’ c,
C9% and C(“Z’, and we can thus understand why it was
impossible to build the propagation operators for the
widths only in terms of Casimir operators. !* Now the
theory developed in the preceding sections enables us to
construct them explicitly,

Let us denote the IR’s [m]ST by a single index p, de-
fined in such a way that for the defining subspaces we
have the following correspondence:

p=1,2,...,28: [0]00, [1]33, [11]11, [11]oo, [2]10,
(2Jo1, [11133, [111]3z, [21)2, [21)%3,
[21)2%, [3)3z, [1111]22, [1111]11, [1111]00
(211]21, [211]12, (211]11, ([211]10, (211]01,
[22]20, [22]11, [22]02, [22]00, [31]11, [31]10,
(31701, [4]oo. 6.7)

The 28 propagation operators are then written as linear
combinations of 28 SU(2) xSU(2) scalars S, »
=1,...,28,

28
Q=2 5,57, p'e S, (6.8)

where

S y=1,2,...,28—1,N,N*, N3 N, G,, NGy, N*G,, G,
NG, Gy, G, 8%, NS?, N?§%, T?, NT?, N°T?, §%, §°T?, T,
SzGZ: TZGZ’ C““), (6. 9)

Putting Eqs. (6. 8) into Egs. (6.5), we get a system of
28 linear equations for the coefficients a,., correspond-
ing to any given value of p’ € §:

ain 202) 022) 112)
NCHD @) com) i)

28
Qa,.,(S‘”y": 6oy PUES. (6.10)

In order to be able to write explicitly Eqs. (6.10) and
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afterwards to use Egs, (6.8), it remains to calculate
the averages {(S)* for any p likely to appear in applica-
tions, For that purpose it is sufficient to determine the
averages of the basic scalars Il, N, G,, G;, Gy, S, T?
cHb ¢ | cO® apg CMD | For the first seven
ones, we get straigh&forwardly

<n>p=1’ <N>p: th
4
<G2>p: am3+3m1 +m2— Mg — 37ﬂ4,

4
(Gy)? = Em?+6m% + 3mf — 3m}
4

- é/; mgmy + 9m1 - My = 5m3— 3m4,

1
4
(G = ?31 m§+9mi +5m3 + m3 - 3m] (6.11)
! 2 2
- é}j (mym; + myml) + 27mi + 5m§ — 5m}
1
- 3mi - 8mymy - 6mymy - dmymy ~ dmym,
- 27}’127”4"' 27m1 - 11m2 - 13m3— 31’VL4,
(§%)P=S(S+1), (THy*=T(T+1).
For the other ones, we use the theory developed in

Sec. 4 to construct their traces in the Gel’fand and
Tseitlin basis states with fixed values of Mg and M,

«C(A B C)» (1M gM p

my My mg My my my myz My
=3 My3 May M3y | ~apey) Mg Mag My
mi; My Mgy Mg Myy
myy myq
(6.12)

Here the prime on the summation symbol means as be-
fore that the values of my,;, 1<i, j <3, are restricted
to those satisfying Egs. (4. 4a) and (4. 4b). We then get
the averages we are looking for in a recursive way,

(C(A B c>>[i]sr

=[a(m]sST)]* {((c(A BOYYy fMlMgaS Mp=T

- 27 d(m]s'TKcA® C))f'"”s'r}, (6.13)
S'=8; =T
(S'T#(ST)
starting from their value for the highest weight state
(C(Aac)>lfn1pp':(<c(.4ac>>>[iaJMs=PM,=p'_ (6.14)

Tables V and VI, VII and VIII, IX and X contain the
averages of CU11 C¥D  ang CM2 regpectively in all
IR’s appearing in s—d shell nuclei. In constructing
these tables we have used extensively the symmetry
relations satisfied by the averages in order to save
space. We now proceed to derive them,

Symmetry relations of the first type relate averages
calculated in the same U(4) IR but for different values
of Sand 7. From the definition of the scalars C'4 59,
we get immediately that

(C(111)> [®1S=g T=b _ (C(111)>[ils=b T=a’ (6.15a)

(C 200y B1S=a T=b:<c<ozz>>t§us=b Tea (6. 15b)
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and

(C(uz)) Gb1S=q T-b=<c(112)> f]Ssb T=a_ (6. 15¢)

In particular, Eq. (6.15b) shows that a1l the averages of
C9%® can be deduced from those of €%,

Symmetry relations of the second type relate averages
calculated in different U(4) IR’s but with the same values
of Sand T. First of all as the scalars C*“ 2 pelong to
the enveloping algebra of §//(4), their averages are the
same in all U(4) IR’s which are equivalent under SU(4),
i.e.,

(CA BCYyUiny iy i3 ST _ (C (4 B c>>[r2?-'7u4y;2\-r'n’4 mym 01T

(6.16)

Secondly for any pair of coniragredient IR’s, we get
from Eqs. (4.5) and (4. 6) that

11\ Ty g g IS T _ U11)\ Ly, 1S mySme 01S T
(CHyImymy mymgIST . _ (CUID N Tmy=my my-mgmy=my ,
(6.17a)

and
(C14 BOY iy iy g g ST (CVA B OYy ingomy gy gy fisT

(ABC)=(202), (022), (112), (6. 17b)

As a consequence of Eq. (6.17a), the averages of C!11V
in any self-contragredient U(4) IR are equal to zero:

<c<111>>m§$356]w:0_ (6.18)

Let us quote finally some zero values of the averages
of C'4 28X which result directly from the definition of
these operators,

(C(111)>t:”n]s=o T:<C(111)> 1S T=0 __ 0,

(202)\ [®15=0 T _ /(~022)\ [®]S T=0 _

and
(CMDymIs=0 T___<C(112>>t§;1s =0 _ g,

By taking into account Egs. (6.11), (6.15)—(6.19),
and Tables V—X, the 28 systems of equations (6. 10)
can be explicitly written and solved for the a,.,. The
solution is given in Table XI. Introducing it into Eq.

(6. 8), we finally get explicit expressions for the opera-
tors @“(p’), which in conjunction with Tables V—X com-
pletely solve the problem of propagating the widths.
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Canonical realizations of the Poincaré group. ll. Space-time
description of two particles interacting at a distance,
Newtonian-like equations of motion and approximately
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The physical meaning of the relativistic action-at-a-distance dynamics for two particles in a canonical
framework is investigated on the basis of a general formalism introduced in previous works. Starting from

the well-known prescription given by Bakamjian and Thomas in terms of “center-of-mass” (Q,P) and
“internal” (p,7) canonical coordinates, we show how to construct physical, i.e., covariant, position vectors

x, (Q, P, p, 7) (7 = 1,2) which approach the free particle coordinates in the limit p—oc for short range forces;
this procedure is actually performed by means of a 1/c? power expansion for any interaction potential
U(p,m). In force of the zero-interaction theorem the physical coordinates, which do satisfy the world-line
condition to any order in 1/¢? cannot play the role of canonical variables, ie., the “localizability,” {x,;,
%) =0 (r=1,2), and the “causality” conditions { x,;, x,;} =0 (7,7 = 1,2; 7547") cannot be simultaneously
satisfied. It is possible, however, to satisfy the former set of equations to any order in 1/c? by exploiting
the arbitrariness lying in the definition of x, and x,. By means of a suitable choice of a “gauge” for the
internal variables, the remaining freedom is then shown to consist of the appearance of a single scalar
function A(p,7). This function, entering the defining relations of x;, x, in terms of the canonical variables Q,
P, p, m, plays the role of an additional interaction potential which is effective for the space-time
description of the particles in the interaction region, but does not affect the scattering properties of the
system. On the other hand, assuming a static nonrelativistic limit of the canonical potential, U® = U(p),
the “causality” conditions are necessarily violated at the order of the radiation effects (1/¢*). In terms of

X,, X,, the equations of motion assume a Newtonian-like structure m,X, = F [x; —x,,v,,v,] (= = 1,2), of the
Currie type or a variety of manifestly covariant forms m,d*x*/ds? = S*,f” [x,(s)), %,(52), uy(5y), u(s;)], where
S*# , is the Lorentz transformation which connects the laboratory frame with the Lorentz frame in which
x,(51) and x,(s,) are simultaneous. A final point is the derivation of the Newtonian-like equations of motion
from a true Lagrangian variational principle 8L [x,,x,v,,v;]dt=0. It is shown in general that if
U9(p)=0, this can be done only up to the post-Newtonian approximation, essentially because of the
violation of the “causality” conditions at the order 1/c¢*. Then a general form of approximately relativistic
Lagrangian for two particles is derived which actually contains all the examples quoted in the literature,
among which the well-known Darwin-Breit and the Einstein-Infeld-Hoffmann Lagrangians. This
investigation appears to disprove the widespread opinion according to which the zero-interaction theorem
prevents the existence of invariant world lines and/or renders the relativity principle vacuous within a

Hamiltonian framework.

1. INTRODUCTION

In a preceding paper! we have classified the canonical
realizations®=* of the full Poincaré group and explicitly
constructed various examples of physical interest. In
particular, we have considered the nonirreducible
realization corresponding to a system of two scalar
particles and we have asserted that within our
formalism one is led in a natural way to introduce a
direct interaction between the particles according to the
well-known prescription given by Bakamjian and
Thomas, ® Having defined suitable “center-of-mass” and
“internal” variables Q, P and p, 7, respectively, this
prescription consists in assuming for the center-of-
mass energy an expression of the form

Mct= Ccmyg tCmyg + U

=cVmicT+ql+ cVmict + ¢ + U(p, ), 1.1)

where the “potential” U(p,w) is any rotationally in-
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variant function of the internal variables. In the pres-
ent paper we shall make the further assumption that
Utey,xp3(P, ) vanishes asymptotically for [p| —« and
possibly depends in a symmetrical way on k; and «,,
which represent two sets of physical parameters
characterizing the particles (masses, charges, and so
on).

The theory based on the prescription (1. 1) has re-
ceived mueh attention in the literature (see in particu-
lar Refs, 6—8, 30, and the bibliography there con-
contained) due to its simplicity and to the ability (al-
ready contained in Newtonian mechanics) that in princi-
ple has to treat problems of “microscopic” mechanics
without the need for any detailed microscopic picture of
the interaction. It is hardly necessary moreover to em-
phasize the importance of having a Hamiltonian (i. e.,
single time) description of relativistic particle
dynamics, Not to speak of the calculation of constants
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of motion, a Hamiltonian theéry is relevant for the
formulation of a relativistic statistical mechanics’ and
above all for the problem of quantization. The theory
based on the Bakamjian—Thomas prescription appears
to be the most general formulation of an instantaneous
direct interaction relativistic mechanics consistent
with a covariant formulation of the scattering problem?;
finally Foldy® has shown that it is the most general
solution of the Poincaré commutation relations for a
system of particles with finite rest masses (and finite
spin) for which an expansion in a series in 1/c? exists,

In spite of these formal appealing features, however,
a number of serious drawbacks of the theory have been
put in evidence since its appearance and its physical
relevance became substantially obscured, The difficul-
ties are mainly connected with the problem of separa-
bility of the interaction® 35 and with the consequences of
the well-known zero-interaction theorem extablished
in 1963 by Currie, Jordan, and Sudarshan, »3° The
essential point is that the so-called internal canonical
variables p, 7 cannot be truly infernal as in the Galilei
case and, if a direct interaction is present, they do not
appear to have a clear physical meaning, As conse-
quence there seems to be no natural basis in the theory
for the proper relativistic space—time description of
the interacting system. More precisely the situation is
as follows. In the free particles case, U=0, the co-
variant position vectors q,, q, of the particles and their
linear momenta p;, P» play the role of canonically con-
jugate variables. On the other hand, in the case U#0,
a system of canonical varaibles qf, qj, p{, p; such that
qj and g3 transform correctly as covariant position vec-
tors under the action of the Poincaré group cannot
exist (zero-interaction theorem). As a consequence it
has been argued that the theory is incompatible with the
existence of invariant world lines, 1%&7 At the same
time it is believed that if the variables used to describe
the configuration of the particles do not coincide with
the basic canonical variables they are necessarily use-
less from a physical point of view and the relativity
principle becomes vacuous, & 113

It will be shown in this paper that these difficulties
are more apparent than real and that the theory can be
given a definite physical content. Precisely we shall
show that it is always possible to construct dynamical
variables x,(Q, P, p, 1), X%{(Q, P, p, #) which at least in the
case of potentials U(p,r) which vanish fast enough in
the limit |p| —«, coincide asymptotically with the free
particle position vectors q;(Q, P, p,7), 0,(Q, P,p,7),
respectively, and possessing all the relevant relativistic
transformation properties do define invariant world
lines in the interaction region, Clearly, the price to be
paid for this result is that x;, X, cannot represent the
configurational part of a system of canonical variables, !
In other words, the equations

1, 24,=0, {xg,%,,}=0,

{xlhx2i}=0! isj:ly 2’ 3’ (1- 3)
cannot be all simultaneously satisfied. [See Bel!® and
Kunzle!® for interesting alternatives. ] It will appear that,
far from preventing one from giving a physical founda-
tion of the theory, this circumstance is strictly con-

2

1.2)
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nected with typical features of an action at a distance
relativistic particle theory in the Hamiltonian form

and essentially reflects the heveditary chavacter!® of the
dynamics. At the same time the construction of the
physical, i.e., covariant position variables within the
Bakamjian—Thomas scheme will lead to very interest-
ing connections of it with alternative formulations of
the relativistic particle theory throwing new light on
the inner mechanism of the zero-interaction theorem,
[For example, it is not clear from the literature if the
zero-interaction theorem does make any distinction
between Egs. (1.2) and (1.3).] Equations (1.2) and (1. 3)
will be called “localizability” and “causality” condi~
tions, respectively.

After showing the naturality of the Bajamjian—
Thomas prescription within our formalism (Sec. 2),
the first problem dealt with in the paper (Sec. 3) is just
the construction of the physical variables X;, x, starting
from the covariance or world-line condition®?

{Khxfj}= (l/cz)x-ri{x-rj, H};
1,j=1,2,3; 7=1,2. (1.4)

Putting
xf=Q+ET(P,p,”)’ T:l,z, (1- 5)

and replacing for H the expression H=c(M%c?+ p?)1/2
with Mc? given by Eq. (1.1), the world line condition
becomes a quasilinear first order partial differential
equation for the vectors §, whose solutions are deter-
mined by Cauchy conditions of the form

51(0;9,77)5501-(#3,77), T=1,2, (1. 6)

Then, assuming that the interaction potential can be
expanded in a power series in the inverse squared light
velocity

Uteyuug?(Ps M) = UL 3(p, 1) + (1/ UL o 1(p,m) + - -,
.m
the covariant position vectors X;, X, are explicitly con-

structed in terms of an expansion of the same kind (Sec.
4),

x1=x(19)(Q’ P, n, )

+1/AxP@,p, M+, T=1,2 1.8

At this stage the vectors &;,’s are clearly arbitrary ex-
pressions of their arguments, apart from very general
requirements. We show, however (Sec, 5), that the
vectors &y (p,m), 7=1,2, can always be chosen in order
that the “localizability” conditions (1.2) be satisfied at
any order of the 1/c? expansion, This determines the
£y+(p,m) order by order up to the r-gradient of two
scalar functions of the internal variables

{
£7(p,m)=E4""(p,m) + 24", 1)

or ’

1.9)
(n)
B (p,m) = £ (p, m) + LB,

Actually a more significant role is played by the
following functions simply related to those defined in
1.9), i.e.,

x(n) — )\(n) - K(")
1 2 (1510)
A= (m17\1(") + mzxz("))/M,
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where any Ag";,,‘z](p,w) must be antisymmetrical in «,,
k,. Precisely we show that the “relative” functions

A (p,n) possess a “gauge” character in the sense that
they can always be disposed of ovdev by ovder through
a suitable canonical redefinition of the internal variables
p, T and a renovrmalization of the interaction potential
U(p,w), a procedure which can also be viewed as a glo
global canonical equivalence on the whole realization of
the group. On the other hand no restriction on the func-
tional structure of the expressions A'Y(p, 1), A®(p, ),
oo follows from the “localizability” conditions. There-
fore we ask if there is any situation in which also the
“causality” conditions could be verified to some extent
by means of a suitable choice of the functions AV (p, ),
A®(p,m), ---. First of all it is obvious that Egs. (1.3)
can be verified at zeroth order, i.e., in the nonrela-
tivistic limit, for any interaction potential U(p,n). At
the first order in 1/c? (Post-Newtonian approximation:
PN) we find that they can be verified only under the
assumption of a static nonvelativistic limit of the in-
teraction, i.e., U =U"(p) by choosing for

AD(p,7) the structure AV =(1/2m)Q) ,1(0)- (p-7).
At the order 1/c?, the “causality” conditions can be
satisfied by a similar choice of A?’(p, ) and with

AP =0, only if U¥=0and UY =U(p). The procedure
can be easily iterated and shows that the “causality”
conditions can be satisfied at any order of the expansion
if and only if the interaction potential U [“1-“21( p,w) is
identically zero, a fact that appears as a new proof of
the zero-intevaction theovem, The result of this
analysis is that, apart from the choice of the “gauge”
A= (1/cHA P + (1/cHr® + ..+ essentially two-indepen-
dent functions of the intevnal vectors p,n, namely the
canonical potential U(p,n) and the function A(p,n)
=1/cHA P (p,7)+ (1/cHA P (p,7) + - -, enter the rela-
tions which define the physical position vectors xy, %y

in terms of the basic canonical variables. From the
point of view of the space—time description of the in-
teracting particles represented by the time evolution of
the vectors X;, X,, the particular structure of

Ay ,,‘23(p, 1) must therefore be considered as a part of
the specific dynamical theory in the sense that
Arxt.le(l” 7) plays the role of an additional infevaction
potential which, due to its symmetry properties, will be
called asymmetry or distinguishability potential. [In
particular for identical particles Ay, KZ](p,Tr) =0, ] From
the context of the discussion it will also be clear that,
while this asymmetry potential is relevant for the
space—time description of the system in the regions
where the interaction is important, it does not affect
the scattering properties which are completely ac-
counted for by the canonical potential Uu‘i'le(p,w),, The
same is true for the dependence of the internal energy
on possible “action variables” for the case of bounded
motions of the particles. In this way the original canoni-
cal scheme appears to play the role of an asymptotic
description as to an S-matrix theory.

The second problem dealt with in the present paper
is the derivation of the equations of motion for the
physical position vectors X, X, in a Newtonian-like form

mTiT:FT[xi-xzi}."l!*Z]7 7=1,2, {1.11)

where the forces F, are again explicitly given by means
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of an expansion in powers of 1/¢%. The equations ob-
tained provide a general explicit example of relativis-
tically invariant differential equations of motion in the
sense studied by Currie. %2 It is next shown that Eqgs.
(1. 11) can be rewritten in the manifestly covariant
form

dxt_ o, o,

st =Sin"y flnlx1(51),%3(s3), u1(51), s (55)], 1.12)
where s; and s, are the proper times which specify two
arbitrary points of the world lines of the two particles
sharing a mutual spacelike relation and S(,,*, is the
Lorentz transformation (which can be different for dif-
ferent 7’s) which connects the laboratory frame with the
Lorentz frame in which x,(s;) and x,(s,) are simul-
taneous. Equations (1.12) provide infinitely many possi-
ble representations of the equations of motion which are
dynamically equivalent and are fixed by the particular
assignment of the spacelike relation between x;(s;) and
x,(s;) or, what is the same, of the functions S.,,*,. Par-
ticular examples of this kind of description appear to be
the manifestly covariant equations of motion studied by
Havas and Plebafiski. 1°

The results achieved in Sec. 4, 5, and 6 allow one to
reach a deeper understanding of the status of the so-
called “approximately relativistic Lagrangians” which
appear to have been extensively used in the literature
and whose most famous examples are the Darwin—
Breit “Lagrangian”!® for electrodynamics and the
Einstein— Infeld—Hoffmann “Lagrangian” (E.I H.)
derived in the slow-motion approximation from general
relativity!” which are both of the order 1/c*, Equations
of the order 1/c? have been applied to few-electron
atoms and to two- or three-body motions of celestial
bodies. However many-body applications are also possi-
ble as well as applications in magnetism and in the
study of relativistic effects in statistical mechanics of
charged particles, ”!® The second part of Sec. 6 is
devoted to the discussion of a possible Lagrangian
formulation connected with our general canonical
scheme, The essential point is that while, as shown by
Hill and Kerner, *»? it is always possible to derive
equations of the form (1, 11) from a variational princi-
ple, the fact that the physical position variables cannot
play the role of canonical variables (zero-interaction
theorem) prevents the derivation of these same equa-
tions in the exact form from a true Lagrangian
L (X, %, %, %,). Therefore the possibility of construct-
ing a Lagrangian from which equations of motion of the
form (1.11) can be derived only up to a given order in
powers of 1/c? is divectly connected to the possibility
that the “localizability” and “causality” conditions (1.2),
(1.3) are satisfied to the same ovder. In particular if
we vequive having a nonvanishing intevaction also in
the nonvelativistic limit we can construct “Lagvangians”
which reproduce the equations of motion only up to the
PN approximation and fuvthermove only if the nonvela-
tivistic limit interaction is static. All the approxi-
mately relativistic Lagrangians discussed in the litera-
ture are just subjected to these limitations. It appears,
however, that they have not been clearly stated (see
for instance Ref. 21). (Curiously enough it is just this
kind of unawareness that prevented an earlier dis-
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covery of the zero-interaction theorem since the works
of Darwin and Breit, )

An exhaustive investigation of the approximately rela-
tivistic Lagrangians derivable from a generalized
Fokker principle has been recently given for a system
of N particles by Woodcock and Havas® (W—H) (see also
Ref, 23) who also discuss the interesting problem of the
conditions under which an associated “adjunct field”
theory (e. g., like the Feynman—Wheeler electro-
dynamics) exists. In order to make a comparison be-
tween our formulation and the W—H results it is con-
venient to vestrict the form of the canonical potential
assuming the structure

2 2
~ Yy p _m 0
U:‘)’Ur_xi.xz] [I(:._zy -l-’ uzch lzuzcz]
= U8 s (0) + 53 Z g3 (9 + 5y Bta ()
T Yikyskqel c2 ) = khkpd 2,2 Ekpxzilp

g? 1 mym
+ 2“2\P&1.k2](p)}+0<—c—4>, L= :n 2’ o=p-m,
(1.13)

where ZAI[H. «;1 18 a dimensionless function which con-
tains the minimum possible number of dimensional con-
stants besides the parameters Ky, k3, namely y and !
with the dimensions of an energy and a length, respec-
tively. On this basis we derive a very general approxi-
mately relativistic Lagrangian [Eqs. (6.39)—(6.41)] in
which four generalizedjnteraction potentials 9&;.,‘2](1’),
q>£“1' ](7/ kz}(y)z_ = [kgy xz](y)) (r= 1%y~ %Xy ) occur,
in adéltlon to t’he static Newtonian interaction
ng;mzl(r)n The “distinguishability” potential ng}‘; k2 ()
appears to have a particular interest in this context.
This potential follows directly from the validity of the
“causality” conditions at the PN approximation [which
impose A= (1/2m)9g{',‘2](7») - o] and is antisymmetri-
cal in the particle parameters k¢, k;. The appearance of
Q&L “23( ¥) shows in turn the dynamical role of Egs.

(1. 3). Our approximately relativistic Lagrangians es~
sentially coincide with the class obtained by W—H if we

set

1dU©®

U(O)( )1,- p

)= (1.14)
and make sgitable idenfifications for the potentials
U(‘);,,‘ 1), ®u,, k1) Viey 01 (7)y @ EKM (7). On the
other hand it is interesting to find that corresponding to
§u1table more general, choices of the potential

"‘[“v“ 1(7), our scheme actually contains just all the ap-
prox1mate1y relativistic Lagrangians for two particles
known in the literature, i.e., in particular also
“Lagrangians” corresponding to field theories which are
typically nonlinear at the PN approximation (and thus
cannot belong to the W—H classification; see however
P. Havas and J. Stachel, Ref. 23) such as the already
mentioned E. I, H. gravitational “Lagrangian” and that
given by Bazafsky?* which describes the general rela-
tivistic theory of two gravitating charged particles, Let
us remark moreover that, in force of our Hamiltonian
formulation in terms of the basic canonical variables
Q,P,p, 7w, the approximate constants of motion which
are characteristic of the approximately relativistic
Lagrangian formulations?®?® result in just the PN ap-
proximations of the exact constants of motion of our
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equations and the approximately relativistic Lagran-
gians themselves correspond to PN approximations of
exact variational principles.

As a final consideration, we recall that Hill and
Kerner!®20 have shown that equations of motion of
Newtonian-like form can always be put in Hamiltonian
form, while Kerner® (see also Ref. 20) has shown that
the integro-differential equations of motions associated
to a variational principle of the Fokker type can always
be reduced to a Newtonian-like structure provided their
solutions are assumed to admit an expansion in powers
of 1/¢* and possess some kind of analytical contiguity
to the free motions. Therefore our analysis establishes
in some way the essential equivalence and the definite
relations existing among the various approaches dis-
cussed in the literature. (It should be worth stressing
that the convergence of the formal expansion in powers
of 1/ c? is an open question despite the very popular use
made of it in the literature. Its nafuralness, of course,
is based on the fact that in the limit ¢ —« it is suffi-
cient to effect the transition from the Poincaré group
to the Galilei group. ) Precisely:

(a) the instant-form canonical approach initiated by
Dirac and Bakamjian—Thomas®®;

(b) the Newtonian-like differential approach introduced
by Currie!!

(c) the manifestly covariant equations approach dis-
cussed by Havas—Plebafisky!®;

(d) the variational approach based on generalized
Fokker principles which was first emphasized by
the Feynman—Wheeler electrodynamics and suc-

cessively generalized by Van Dam—Wigner and
others. 10r1%:20,22,26,27,38

Our approach allows in principle for a canonization of
these theories,

2. INTERACTION AT A DISTANCE BETWEEN TWO
SCALAR PARTICLES IN A HAMILTONIAN
FRAMEWORK

The canonical generators of a realization of the
Poincaré group corresponding to a system of two free
scalar particles can be written

IJ=qAp; t @ AP, K=- Ré‘ﬂch‘ ~=qy,

T=p; tpy, 2.1)

H=c(pyy +Pap),

where the variables qy, p;, 45, p, have an obvious physi-
cal meaning (see Ref. 1), Introducing the “center-of-
mass” variables

2

[Jm: vim;c +pi7 i:l,Z‘

P= p1 P2,
Q= bro(Mc*+ H) - cp; - P on(MCz“'H)— cps -
T Mc(Mc®+ H) 1+ Mc(Mc*+ H)
ol =) P
YTy MH(Mc? + H) (P2oP1 = P1oP2), (2.2)
and the “internal” variables
_ pu(Mc*+H) - cpy- P p1o(Mc® + H) — cpy - p
= Mc(Mci+H) P17 Mc(McE+ H) 2
M. Pauri and G.M. Prosperi 1471



P=q;-qy+(q—qy)- P

x[ P +_1_<_____ cr.P
M(McE+H)  Mc Tio  T20 Hﬂ'io‘"zoﬂ ’

where
M=(1/c)VAE=c™P? and 1y ="Vmici+7?, i=1,2,
Egs. (2.1) become [see Ref. 1, Eqs. (4.8), (4.9)]

J=QAP+5, K:'(g>Q+T/1%2/\TPE’
T—P, H=c/IEETTY, (2.4)
where
S=pAm, (2.5)
Mc?=c(myy +ma0)
=cVmict +a? + cVmict + 2, (2.6)

The physical meaning of the variables Q, P, p,7 has been
discussed in detail in Ref, 1,

According to Bakamjian and Thomas® an interaction
can be introduced between the particles by simply
maintaining the formal structure of Egs. (2.4), (2.5)
and replacing Eq. (2.6) by

Mc*=cVmIct T+ cVmict+ai+ U(p, ), 2.7)

where U(p,r) is a function which plays here the role of
the nonrelativistic potential and which is assumed to be
rotationally invariant,

{71, Up, =18y, U(p, m)}=0, (2. 8)
i.e., to be a function of p=1{pl, v=Inl, 0=p.7 only.

This procedure appears to be quite natural within the
framework of the formalism of the canonical realiza-
tions developed in Refs. 1—4 and it turns out to be
essentially unique under some reasonable hypotheses.

We assume first that the state of the system can be
always characterized by a set of twelve canonical
variables like q1, P4, s, P2 or Q, P, p, 7. Then the in-
troduction of an interaction clearly amounts to changing
the structure of the canonical generators as given by
Eqs. (2.1) or (2.4)—(2. 6) leaving invariant the trans-
formation properties of the quantities which are
physically relevant, With this in view the most natural
restriction appears to assume that qq, Py, qs, P2 Or
Q, P, p, 7 maintain their transformation properties
under the Euclidean subgroup of the space rotations
and translations

{Ti’ qU}'—'{Tu 6121}: =6y
(T, b1t ={Ts,p2i} =0,

{2.9)
{thfj}:eijkq‘rk
{Jiyprj}:(fijkp'rk’ 721’27
{T:'; Qf}: - 5;']:
{Ti’Pj}:{Ti, pj}:{Ti’ 771}:0, (2.10)

6t =@ 194, Pif=¢:5Pes
{Jinst=eiimpey 10,15t =¢ismpe
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On the other hand the zero-interaction theorem estab-
lished by Currie, Jordan and Sudarshan® prevents the
possibility of modifying in any nontrivial way the struc-
ture of the canonical generators leaving invariant the
transformation properties of q; and g, also under the
special Lorentz transformations, i,e., Egs. (1.4) in
addition to Egs. (2,9). Consequently q; and q, can no
longer represent the positions of the relativistic parti-
cles in the presence of a direct interaction and their
physical meaning will not be simple in general. On the
other hand variables like Q, P, p, r satisfying Egs.

(2. 10) appear more suitable to the present considera-
tions. Actually it will be always possible to choose

Q and P so that they coincide with the variables O and
P of the scheme A (see Ref. 1, Table A,) even in the
case of interaction, i.e.,

0=Q, P=P, (2.11)

This implies that Eqs. (2.4) remain unchanged and that
S and Mc are functions of p, 7 only. Equations (2. 10),
last line, are then equivalent to

{Si, pit=cimPrr 1St b =€isutrs 2.12)

which imply that S retains its standard form (2. 5).
Therefore only the quantity Mc as a function of the
internal variables p, 7 can be modified, Finally, in
order that the fundamental Poisson brackets among the
canonical generators of the group are preserved, we
must impose the condition

{8;, Mc(p,m)}=0, (2.13)

which limits Mc to be a function of p,n,0 only. This
condition coincides with the Bakamjian—Thomas
prescription if U(p,n) is suitably defined. We shall re-
quire in addition that Q, P, p, 7 transform under the
discrete operations of the full Poincaré group as in the
free case, i.e.,

ISQ:-Q’ IP=-P,

canonical space reflection (2.14)
Ip=-p, Ig=-n
HQ=Q, P=-P,  iicanonical time reflection (2.15)
Ifp=p, Ifr=-m.

Then Eqs. (2.4), (2.5), (2.7) do admit a realization of
the full group provided U(p,n) is an even function of ¢
[see Ref. 1, Egs. (2.17), and Sec. 3f].

Let us stress that the conditions (2, 10) and (2. 12)
chavacterize p and m up to a canonical tvansfovmation
which presevves theiv vectorial nature and consequenily
is genevated by a scalar function of the p, v themselves.
Since the interaction must become negligible when the
particles are sufficiently far apart, it is natural to
assume in force of the discussion made in Ref. 1 (Sec.
4a) on the physical meaning of p and 7 that these
“internal” vectors can be chosen in such a way that p
coincides asymptotically with the relative coordinate of
the particles in the center-of-mass system and the
expressions ¢y, d,, obtained from Egs. (2.2), (2.3) by
inversion, can be identified with the position co-
ordinates of the particles in this same limit. These re-
quirements are equivalent to assuming that the vectors
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p,n can be chosen in such a way that the interaction
potential U(p, ) vanishes fast enough for p — =,

U(p,o,7) =0,

p

(2.16)

This is a further hypothesis we shall generally make in
the present work.

3. PHYSICAL POSITION VARIABLES FOR TWO
PARTICLES INTERACTING AT A DISTANCE

As announced in the Introduction, we want to discuss
the problem of the space—time description of the in-
teracting particles in terms of physical, i.e., co-
variant, position vectors X, X,:

Xy :xi(Q’ P, o, ‘”)’
Xo ZXQ(Q’ P, p’Tr)=

We recall! that the transformation laws under space
translations, space rotations, and special Lorentz
transformations for a covariant position vector are ex-
pressed within a canonical realization of the Poincaré
group by the following relations:

6.1

{Pi,xi}:— Bijs 8.2)
{25t = €50 3.3)
{Ki’xj}:%xi{xf’H}- 3.4)

Similarly, the transformation properties under space
and tinie reflections are expressed by

3.5)
(3. 6)

Our problem will consist in finding appropriate solu-
tions of Eqs. (3.2)— (3.6).

IX=-X,

IFx=x,

Equation (3. 2) directly implies that
x=Q+E(P,p,n).

Then Eq. (3. 3) says that £ must be a vector under
space-rotations. Finally, introducing the expression
(3.7) in Eq. (3.4), after a few manipulations we obtain
the following quasilinear equation for the vector &:

8.7

0% _ _ 1 (SAP)
T H(Ei' W@:‘@) {e,, 8}

c? ey Py
- b m{sk, £}

c*(SAP)P;
H(Mc2+ H)?E®

%135k
H{Mc?+ H)

(3.8)

It can be checked that this equation is integrable, Then
its solutions are determined by means of Cauchy condi-
tions of the form?®

gi(oypyﬂ)zgoi(pyﬂ')c (3.9)

If we choose £y;(p,7)=0, Eq. (3.8) furnishes the ex-~
pression of the covariant center of mass X! in terms
of the basic canonical variables. On the other hand if
we assume U(p,7)=0 (free particles case), and consid-
er two different solutions &;, & of Eq. (3. 8) correspond-
ing to the Cauchy conditions
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£10,p,m) =[m39/ (w1 + 720)]p,

(3.10)
£00,p,m)=[~ TT10/(7710 +120)]0,
we obtain just the free particle coordinates
xi=q1(Q,P’p;7r)7 x2=QZ(Q,P,P,7T), (3011)

where

p-P Cmi0Tgp P+ L

u=Q- M(Mc+H) qyH+cn-P Mc

cr - P p-P 1 720 )
><(”ZO‘Mc2+1ar)‘°+ M (Mc2+H TapH+cr.p)™
(3.12)

p-P
=Q+ —
%=Q M(Mc*+H) qypH=cn-P Mc

CT1GT2g P - 1

CTT'P B-P 1 710
x(”1°+Mc2+H>‘°+ M (Mc2+H T rH-cr-P)™

which can also be obtained by inversion of Eqs. (2.2),
(2.3) [see Ref. 1, Eqs. 4.7)].

In the presence of an interaction, we shall charac-
terize the position vectors X;, X, by means of two
Cauchy conditions of the form

£1(0,p,m) = —2L

= +
7T10+1r20 P Xi(P,ﬂ’),

(3.13)

m10
fo) — 2 a4 .
£:(0,p,7) Tt P x2(p,m)

The vectors x; and x; will be required to satisfy a
number of general conditions:

(a) veflection conditions:

From Eqs, (3.5)—(3.7), (3.13), owing to Eqs. (2.14),
(2. 15), it follows that

XT(p,W):—Xr(_ p’ﬂ'):x-r(p’_")’ T:]-’ 2. (3.14)

These relations imply in particular that the vectors
X must have the form

XT(p,ﬂ)=a,(p,ﬂ,U)p+Bf(p,ﬂ,0)ﬂ, T:]-: 27 (3-15)

where o, and 8, are even and odd functions of o,
respectively;

(b) symmetry conditions:

We assume that the individual properties of the parti-
cles interacting at a distance can be essentially charac-
terized in terms of a finite number of parameters
{masses, charges and so on) which will be collectively
denoted by the symbols «; and k;, respectively; that the
interaction potential U [,‘1.,‘23( p,w) depends symmelrically
on k; and Ky; and, consistently, that {he wovld lines of
the two particles are left invariant under the exchange
of the positions, velocities, and values of the physical
parameters of the particles, made at a given time. The
last requirements implies that in a reference frame
corresponding to P=o0, Q=0 (e.g., at £=0), the values
of x; and X, must interchange under the operation

pP—=p

Pt At # (3.16)
Ky == Ky,
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i.e., a space reflection followed by an interchange of
the values of the individual parameters. This implies in
turn the exchange of x; with x,, or, due to the reflection
conditions (3.14), the symmetry condition

Xz(p,ﬂ', K1, K2):_X1(p,ﬂ”‘2!"1); (3=17)

(c) locally vanishing inlevaction and asymptotic
conditions:

The vectors x.(p,7), 7=1,2, are required to vanish
locally in those regions of the phase-space where the
interaction potential U(p,r) itself does, In particular,
according to the discussion made in Sec. 1 about the
asymptotic condition for p — =<, we shall assume that,
Jov shovt-range intevactions at least

[xT(Q’ P’p’ﬂ)_qT(Q7P’p?Tr)]p:;o’ 7:1727 (30 18)
with the consequence that
X(p,m) zo, T=1,2; (3.19)

(d) nonrelativistic limit:

Finally, the usual nonrelativistic expressions for x; and
X, in‘terms of the “center of mass” and “relative” co-
ordinates should be recovered in the limit ¢ — «,

Xy, o =Qur, + 013/ M)y,

%o, 1, = Quur, = 2/ mpy,,,, T (220
Therefore we shall require

XAp,m) z0, T=1,2. (3.21)

Once these general requirements have been taken into
account, the definite choice of the vectors xy(p, ) and
x2(p,m) must be consideved as a part of a specific
dynamical theovy for the particle world lines. As a
matter of fact, it is clear that, for a given intevaction
potential U(p,n), diffevent choices of the x.(p,T) cor-
respond to diffevent functional expressions of the physi-
cal position variables X, X, in terms of the basic canoni-
cal variables Q, P, p, 7 and thevefove in general to dif-
fevent wovld lines of the particles. Of course the most
simple possibility for making the requirements (a)—(d)
satisfied is to choose

X1(p, M) =x2(p, M) =0. (3.22)

This choice has the simple consequence that the physi-
cal coordinates Xy, X, coincide with the free particle
position variables qy, q, in the center-of-mass system, |

but it does not appear to have any clear physical motiva-
tion. On the other hand, we shall see in the following
that a very far-reaching program is to exploit the for-
mal arbitrariness of the x,(p, ) in order that the
“localizability” and “causality” conditions (1. 2) and
(1.3) are possibly satisfied to some extent. This point
is discussed in detail in Sec. 5.

It is convenient for later use to split the vectors
x1(p,7), x2(p,w) into “center-of-mass” and “ relative”
parts. We put [see Eq. (3.7), (3.13)]

X1 =X+ [ma0/ (myg +mo0) X,

3.23
X2 =X = [110/ (@10 +720) X5 ( )
or
+
X=Xg = Xp, X = ALK (3.24)

10 T 20

In the center-of-mass system (P=0) we have then

Q= T, F Tao¥ee o
m +TTz -X’
020 (3.25)
p:xic.,m,_xzcom.—x’

[where x, , means X,(Q,P,p,7)| p.,, T=1,2] which
clarifies the physical meaning of x and X. In terms of
these expressions, the symmetry conditions (b) [Egs.

(3. 17)] takes the form
X(P,W;Kh KZ):X(paﬂ; Ko, Ki)’

3.26

X(p,m;uy, k) == X(pym; K, Ky), ( )

with the consequence that in the case of identical pariti-
cles (ky=K,) we must have

X(p,m)=o, (3.27)
i.e., in the center-of-mass system
Q=(xy,  T% /2 (3. 28)

Note that, in the case of the simple choice x(p, )
=X,{p, M =0, Eq. (3.25) becomes
T, o, T T20%e
T1o ¥ T

p = xicom. - x2

which expresses in particular the fact that the inter-
particle separation in the center-of-mass system main-
tains its canonical character also in the presence of
the interaction.

Co Mo

- (2.34)

Com.’

4. EXPLICIT CONSTRUCTION OF THE PHYSICAL POSITION VARIABLES BY MEANS OF AN

EXPANSION IN POWERS OF 1/c?

We assume now that the interaction potential U"‘v"z](p’ﬂ) is represented in the form

UDcl,xz](py 77) = Uégi,xzj(py TT) + (I/Cz)U&;_,uzj(py TT) toe (4- 1)
and consider the problem of the actual construction of the vectors X, x,. We put

X=X+ (1/)x + (1/ehxP 4 = QD + 1/ + (1 chgP + -, T=1,2, (4.2)
and

Xr= /P + (/P +-0, T=1,2, (4.3)

where the nonrelativistic limit [condition (d)] of Sec. 2 has already been enforced by choosing =0, Then we have

H=mc> +H(0)+ (1/CZ)H(1) + (1/64)1'1(2) +eny, K:K(0)+ (I/CZ)K(1)+ (1/04)K(2) e,

where
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H(O):PZ/zm +TT2/2U~ + U(O)(p 11'),

1 p¢ P ) 11 1 ]
a _ ©) R S Y )
H - [8 m3 2m2( U' +U (ps") m%+mg T +U (p:")y
4. 5)
1 P° 3P4 nt )le(l 1 1]4
@ s ©) — =)+
" {16m5 8m4(2u+U (M) )+ 5. mi " mi)” amp?)”
1(1 1\ ol P2 o @)
e +
and
P? ) SAP
o _ _ w__(2 1, o CIAL S
K mQ, K <2m o U™ (p,m) ) Q om @)
P! p? (1 1) ] 1 p? ] )S/\P a
@_| P ) tlg_(1 0 )
K —[Bma + Zmz(zu' U (P,Tl')) 3 + m% T Q 9 zm ZIJ. +U (p,?l') U (p,Tr)Q,... 5
with m =my +m,, w=mm,/m. Then the Egs. (3.8), at the various orders in 1/c?, take the form
()
- mEBl =(K0,x ) =0,
: 4.7
3 ©) . (ny (rer) o ArY 171‘ (1) oom) pr(r)
m 2P, E{Ki X1, i5 = E{K s X5 Z)O ;;6 {x ,H }’ (T=1,2,; n:1’2,3)"')-
On the other hand the Cauchy conditions (3, 13) become in the same way
(n) {n)
(n) _ m2 (n) (n) — — 710 (n)
e, =[722] "ot i (em, 60,0,m) [ I Mot aio,m) @.9)
where
© (n) 2 1 1 1 4
_omy  _sv L[ mg :mz+i(i__1_)7r_ A1 | omaf1 ) _ o
1110+1720—§0?7[1r10+1r20] m  ci\my my)2m  cA\mimy, 2m\m} m3) mmli  2m} | 4m ! @.9)
“My A =m ) ﬂ+i<_1_ A\A_1f 1 omf1 1 1 _1]x*
7r10+7r20_12;'0 et [1r10+1120] TTm E\my,  my)em” ctlmmi  2m '75';‘+'n7§ T mants  2m} am "
Now, for U(p,7)=0, setting x1(p,m)=xs(p,7)=0, in agreement with the requirement (c), of Sec. 3, we obtain
from Egs. (4.7)—(4.9),
x:'"):q'(r")(QsP;p;ﬂ)a 721,29 (4-10)
where
=2 /™M, 1=1,2, (4.11)
n=0
with [see Egs. (3.12)]
(0) _Q+ (mz/m)P;
1 1\7#* =-P 1 2m;
a_ _ N S Y AN L A _ & .
qq 2mg(io P)P+l:(m2 m1)2m 2m2]P rym (1 ", (p-P)m,
4.12)
1 ([myf3 P2 7-P\.1/3 1 1P mm, m (
) _ 2 + Y LSS Ty} . +[(_—+ 4+ 222
% msi[ (2 2m1) 4(m1 m)”]“’ PP \a2m " 20) TP 5l md

1

2

p?
2m

1 1

1
i

)

m

1

iy

2

+21 2

et M LR (G

BNy
and analogous expressions for q;°’, qi¥, q5%’

In the case of interaction, the same procedure gives

(» &

1

AW 2 v 2 4. .
mi))-rr 2 P)](p P)w},...,
obtained from Eqs. (3.12) by means of the Z operation (3, 16).

X0 =g, =0 =qi= 2 (p. B 10 (5, m)
K0 =af + 202 . P)[U“”(p,m s (p. 222)]- Lep. x‘”}w;ﬁ—{( R (p, )
gm0 ()5 o ple- S n - )
BB o el BB Stz o
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2mim, ar 2mf

m§

2 3 [t
mi ) 3\ aU®  mi JoUY 1 ayil
(p-P) @m——apk) + oo (P P) TP = o (P P) n-ll—)

T

3p

m !
- ;;L-% (p'P){XI(D, U(O)(p’ﬂ)}— EB (p‘ P)? +X1(2)(P,7T), seey

and analogous expressions for x{’, x{V, x{*’

U™ (p,7) depends on the y, &, in a symmetric way!].

5. “LOCALIZABILITY” AND “CAUSALITY"
CONDITIONS FOR THE PARTICLE WORLD
LINES: THE ZERO-INTERACTION THEOREM

We shall discuss now to what extent the arbitrariness
in the choice of x; and y; in Eq. (4.13) can be exploited
for satisfying the “localizability” and “causality” condi-
tions (1,2), (1.3).

We start from the expressions derived in the preced-
ing section for the expansion of the covariant vectors
Xy, X, and write the Poisson brackets among their vari-
ous components in the form

{5ty % gt = (1N 1y 0}V

+(/MMoy xggtP oo, 7,7 =120 (5.1)
Let us consider first the “localizability” conditions
{xfi,x'rj}zo’ 7=1,2. (5. 2)

From Egs. (4.13), at the first order in 1/¢? and for
7=1, we obtain

{x“,x“}“’

_m} (aU“” _aU™ zn_z(ax{%) By
T\ om, P17 Tor, P T T o, T on,

2 ) 5 63} 1)
__mi13U? _ mz(ﬁw_ _ ix.i_z_)
== 37 an (pyms—pymy) m \ ar, ey (5.3)

The rhs of these equations is identically zero if we

choose

M (p,7)
on ’

m
xit’ == 28U (p,mp; + (5.4)

where 7\1‘“ is an arbitrary function of p, 7, ¢ subjected

only to the general requirements (a)—(d) of Sec. 3; in
particular A{" must be odd in 0. In a similar way the
“localizability” conditions at first order for the parti-

cie 2 give

m o (p,m
x§§)=7—n‘%U(°’(P,1r)m+—z—a—1(T&—)- (5.5)
It is then easy to see that the “localizability” conditions
for each particle can be satisfied to any ovder in 1/c?,
In fact, in the center-of-mass system, we must have,
for any n, by induction

{x“,xu}‘"’ l P:n:fi(")(p9 7, 0){(pymy — pymy)
(n)

_@(éxif.’_ixi._)

o e =y (5. 6)

where f{™(p, r,0) contains the choices previously made
for x{P, ..., xiV. Equation (5.6) follows from the fact
that p;m; — pyw; is the only antisymmetrical tensor of
rank two which can be constructed out of p and 7. The
equation
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obtained from Eqs, (4.13) by means of the 7 operation [recall that

(n) (n)
axu _ 8x11 _m
or, oy = g fi ")(paﬂ', 0)(91771_ Pjﬂ'i) 6.7

is obviously integrable and can actually be integrated
explicitly provided one succeeds in rearranging
(m/my)f*™ in the form

(m

m 139 n b
%fi(")(p,rr,q):—— 1()(p977’0)_—33 1 (p,n,O), (5-8)

7 o7

since in this case the general integral is simply

ax(ﬂ) ax(n)
X=X T = FiTp G (5. 9)
Of course any free shift of terms between 7{” and ¢ {"*

in Eq. (5.8) modifies the particular determination ¥{®

by a 7 gradient. Repeating the same calculations for
7=2 we see that x{’, x{’, ... can be chosen in such a

way that the “localizability” conditions are satisfied to
any order in the cenler-of-mass system. On the other

band let us consider the equations
{Kiy {x‘rh x'rh}}: (1/02)[{x7j,xfi}{xvh, H}— {xﬂnxﬂ}{xwa H}
+XT{{H,{JC”,XT;,}}], (5°10)

which follow from Eq. (3.4) and the Jacobi identity.
These relations imply that the “localizability” conditions
are satisfied in any reference frame provided that they
are in a particular one. Therefore, if Egs. (5.7) hold
true for every n, the “localizability” conditions are
verified also in the laboratory frame, For n=2 we can
write for example

{xibxii}(Z) I P9

8 : :
2 LA ) T uoin+ B,y

2 1) (1)
- ﬂ%[](1)(p’ ﬂ)_ 1 (g axi +ﬂ'2 axi + 1
m mom\ p 0op a0 mmy
2 oy () (EB) H
TN My M Ly s fmel oM
7 a0 " m a0 U (p, m) dolmPr 3

1 71 6)\{” 1 1)
5= - A
mmy 2w O  mym
mz_(axé%’ _ axﬁ))
m \ 0y ong

XU(O)(p, 7l')—

X (pymy = pymi) = (5.11)
and the general solution for x{*(p, r) results corre-
spondingly, i.e.,

1 2m 7l niy
2) _ anty  A\T_ 7o) g o 2
X1 —[mwz( - 1) 2 U™ (p,m+ 5 U™ (p,m)

()
_ o +[_l@1_ 0
o 10 (P,ﬂ')]P ' on U (p,m)
A %ﬁ)> 1 LD 1w
- . + +
m3 ('” a0 /P 2mi" om  mymy A gy i
(1) 2)
m {Am oM }J,_BM. (5.12)

Tom, 'Y bn or

while the expression for x;2’(p,7) can be obtained from
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(5.11) and (5.12) by means of the 7 operation [which in
particular implies A{’ == - x{!’ due to Eqs. (3.14),
3.17), (5.4), (5.9)].

It is clear from Egs. (5.4), (5.5), (5.7), (5.11),
(5.12) that this procedure determines x{™(p,#) and
x{™(p, ) up to arbitrary [apart from the conditions
{(a)—(d)] additive gradients

1 1% —-3(-1—)
X1=—[X1 (pym) + ]

+—la[x‘”* (p,m|2{") + ag; ]+
(5.13)

_ 1 a’*m]
Xz—cz[Xz (p,m) + =51

1 ak(z)
+ T[Xéz)*(P,ﬂ’l)\zm)"' —a—’z’_— Foeeey

being x{™*, xs™*, particular determinations of x{™, 3"
We shall wrlte shortly
a)\i a)tz ‘
= — + .
Xe=xt+3. Xe=xtgr, (5.14)

keeping in mind, however, that xM* depends on the
choices of A, A% ..., A{™D| Finally it is convenient

to introduce the functions

A=X = Ay, A= (myrg+mary)/m, (5.15)
or
=A+ (my/mIN, A=A - (mi/m)h. (5. 16)
Then [see Eqs. (3.23), (3.24)] we have
ox
X=x*+35,
(5.17)
dA o m -m ax
— y* 4 22 2710 129 OA
X=X am - mrggtmy) o’
and we can write ]

E)Y
Xy o =R, RTXTY el (5.18)
MoKy, T T20%2, o
16 T a0
=Q+x*+ 2 4 Ziamin s Humy 2 (5.19)

m(myg +my) O’

We want to show now that the arbitrary functions x
and A play very different roles. As we have already
pointed out, the explicit choice of the vectors x;(p,7),
x2(p,7) [or the functions A(p,7), A{p, )] must be con-
sidered as a part of a particular dynamical theory
together with the choice of the canonical interaction
potential U(p,n). On the other hand, if we take an
opposite point of view and assume we have assigned ex-
pressions of the canonical generators of the Poincaré
group in terms of physical coordinates x4,x, and v,,v,
and assign Poisson bracket relations among these
variables, the internal vectors p(x,x,,v;,?;) and
7(*%y,%,,V4,V,) are obviously determined up to a global
canonical equivalence which preserves their “internal”
character and Euclidean transformation properties (see
Sec. 2) and is compatible with the asymptotic condition
(c). (We sketch in the Appendix the structure of this
inverse problem which in turn sheds further light into
the physical meaning of the theory in the canonical
form, ) Clearly, any canonical transformation of this
kind amounts to a proper redefinition of the vectors
Xt(p,‘”) and XZ(P,W) [or >\(py 1[), A(pr TT)] and of the
canonical potential U(p, 7). Therefore there must exist
classes of diffevent assignments of the functions U(p,r),
AMp, ), A(p,w) which are physically equivalent, As a
matter of fact we will show presently that only fwo
among these functions ave physically essential for the
dynamical description of the interacting particles.
More precisely, we are going to see that the arbitrari-
ness connected with the choice of the function x{(p,7) in
Egs. (5.18), (5.19) can be vemoved by means of a
canonical redefinition of the internal vectors p, n and
of the canonical potential U(p,n).

The most simple way to exploit this fact is a step-wise renormalization to be performed order-by-order. Up to

the first order in 1/c? we can write

PR N (PPt T
Xoome ~ eum —p+cz[x N om *

CoeMo

{5. 20)

where the “localizability” conditions have been satisfied at this order with certain determinations yi1’*, xs1’*. Then,

performing the canonical transformation

' 1 1% 11
r_ - = ay .. —_ _
p —exp[ = {A®, }]p-p+ +c42

c? or
1w 1 1{

T .
’ 1w

' _ 2 — =2 ==
n—exp[ 02{7\ o Hm=n o op peis

4
,Ai)}_*_.'.’

and introducing correspondingly the renormalized canonical potential

U'(p',w')=Mc? - cVmict +a't — cVmic? + 772

1
=U(p 1)+ [U“’(p'nr’) +{ D, 7n), UV (o a0} + 1;#"

— U(Q)(pr’,’rl) + é [U(“(p',fr’) +{7x(“(p', ﬂl)’ (MCZ)(O)}] +

with
2
:U(G) r 2 +17
(p'sn") o’

(MCZ)(()) =H((l) (pl, ,n,l’ 0)
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o)) (5. 21)
33p ,x(1)}+..,’
e
o (AL
(5. 22)
(5. 23)
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Eq. (5.20) becomes
- —=p’ + l (1)x ol 1
Xme ™ R, =P T X (070 7 ) (5. 24)

In this way, due to the structure of Eq. (5.19), we have eliminated A’(p, ) from the expressions of x, _ and
X..m, S€Parately, up to the first order in 1/c? and therefore, via Lorentz transformation, from the exp(i:gs'sions of
x(Q,P,p, ) and X,(Q, P, p, 7) at the same order. At this point we can use these new expressions to solve the
“localizability” conditions at the order 1/c®. Denoting by x©*’ the corresponding new choice of x?’*, we can write

X - X, __:p:+_]_'_x(1)*(p( 1’,1)+l (2)*r(p/ ,n,f)+ 37\(2) Fenn 5. 95
Come ComMe c? ’ ct X ’ o’ ’ ( ) )
Then by performing the canonical transformation
w_ 1o ... 1 a® 1
. p —exp[- 6.4{7t ootk p'=p'+;—5r7+0 =)’
T@ .

o e 1 a® 1 (5. 26)

T :exp[— 04{)t ,} "l:ﬂI_ETp—’—+O;§ ’

and introducing the renormalized second order canonical potential

” ”n ”n n ” 1 n n 1 n " " "
Ur(p",a")=UP(p",n") + U (p", 1) + S[UD (0", 7") + D (0", 17), (Mch) O}

07, 1), () D (07,1, DO (07, 77), (MO R+, (5.27)
with
2y (1) Aygn n 1/1 1 " A At o1
M)V =H"(p", 7 ,0)=-3 ﬁfﬁg a4+ UD(p", "), (5. 28)
Eq. (5. 25) takes the form
” 1 " n 1 7 ” 1
Xtom ™ Xeem, =P+ X V(07,1 S P (0" )+O<;), (5. 29)

and, due to the structure of Eq. (5.19), we have succeeded in eliminating the function »®’(p, ) from the expressions
of Xomr Xegom i,e., of X;, X, at the second order. By iterating this step-wise procedure it is seen that by means
of the product canonical transformation 7=---T"™ ... T@. T " o by means of a redefinition of the internal
vectors p, 7 together with the introduction of a renormalized canonical potential T(p,r), the function A(p,7) can
always be disposed of,

Let us consider now the “causality” conditions [Eqs. (5.1) for 7" +# 7] assuming that the “localizability” conditions
are satisfied up to any order. From Egs. (4.13), at the first order in 1/¢?, we obtain via Eqgs. (5.4), (5.5), (5.15),
(5.16),

(1)_',”,_@ aU(O) ﬂi aU(O) _I‘L_ aZU(O) ﬂ 3 2(1) my P 1(1)
14,2058 = =4 p, - 4 - p-P)i——+ 2 ML 4 I TXE
e 3 amy md" omy me omyém; m om; m om;
_my o BUY g AUy BUD D (5. 30)
T mtt o, m P omy,  m? p omyomy  omgom; )

We ask now if there is any situation in which the rhs of Egqs. (5. 30) vanishes identically. Let us observe first that
the “causality” conditions are not automatically satisfied in all of the reference frames if they are in a particular
one, unlike the “localizability” conditions, Actually, this can be easily seen from the relation

(K, {xas, 2ontt =%0 1 %ond, HY + Gyy = 20 {xom, X451, (5.31)
since the Poisson bracket {xz,,,zél ,} fails to vanish already at zeroth order. Then, the rhs of Egs. (5.30) vanishes
identically if and only if

M, FYoalll my U + aZA(i)
= = = 5,32
m P on, T mtP on, T g om, ( )

and

2U
—o. 5.33
oy 0 (5.33)

This last equation implies that U’ has the form

U (p,m,0)=UD(p)+ U (p)-0, (5. 34)
while the invariance of U(p,r) under the anticanonical time reflection (see Sec. 2), imposes

U (p)=0,

ie.,
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U(p,m) = UL, kp1(P). (5. 36)

Finally, inserting Eq. (5,36) into Eq. (5. 22) and taking into account the fact that A‘Y must be an odd function of ¢ in
force of Eq. (3.6) [see Eqs. (3.14), (3.15), (3.24), (5.15), (5.17)], we can write

AV (p,m,0)=(1/2m)Q),,,1(p) - 0,

(5.37)

where Q&’ ko3 must be an antisymmetrical function of the parameters «;, k, in order to satisfy the symmetry condi-

tion (b) of Sec. 3.

Let us consider now the “causality” conditions at the order 1/c%,

We shall assume that the canonical transforma-

tion 71 [Eq. (5.21)] has been carried out so that we can put

AP(p,m=0

(5.38)

and the canonical potential U is actually the vernormalized potential up to this order [Eqs. (5.27), (5.22)]. The

“causality” conditions can be calculated using Eqgs. (4.13) together with Eqs. (5. 4),

(5.37), (5.38). We obtain

{x“,xzj}‘z’

1{1 1\14e%® 1
o TR T [
2m mzp dp m1 mz
1

1 1
A © 1 W
+L { 0O+ (o - &) p)}Pm

{(p P)[ UV (p)+ 3 (—,,171—;11—2)9“%;))]}6”

1 dU(O)
p dp

(5.5), (5.12), (5.186), (5.36),

1 1400
{p P)[W my m )P dp

1 m1 _ my\1 de?
(2 m3 %)p ap (P

{ U(O)( )_ ﬂ(i - _}_) Q(i)(p)}pﬂh

2u\my my
It 2 ) 277) @)
_ ﬂ ) U LM, U g U A
ms P om;  md7 By m? P) omy 0wy  Om;om;’ (5. 39)
In order that the rhs of Egs. (5.39) vanishes identically, [ A(")(p,n’) _ (I/ZW)Q&'LQ](P) .0, (5. 48)

it is necessary and sufficient that the coefficients of the
various independent tensors vanish separately, in
particular for P =0, The vanishing condition for the co-
efficient of 6,;, 3(p;r;+psm;), 3(pm;—pym;), provides a
system of linear homogeneous equations in the expres-
sions UV (p), @V (p), (1/m)(@U"/om), (1/7)

X (9°A® /37 90). Eliminating the last two expressions,
we obtain the conditions

U(O)(p) = 0’ Q(i)(p) =0,

Then, the causality conditions at the second order take
the form

(5. 40)

iy U(l) mi aU(I) a22A 2) _

m2 pf aTr 2pi a_n,j a'”i aﬂj _0, (5' 41)
aZU(i)
——=0 5.42
877,- aTTj ’ ( )

which are identical to Eqs. (5.32), (5.33) apart from
the replacement of U® A Y with U A®) respectively,
and give
U (p, M) =UL),e1(0),
A®(p,m)=(1/2m)R),,,1(p) - 0

[ g;vkz](p) -

(5. 43)
(5. 44)

‘<21K1](p)]°

The result can be easily extended to higher orders in
1/c? in the following way: If we assume that the “local-
izability” conditions are satisfied up to any order and
the corresponding canonical transformations

TO, 7D, T have been carried out, the require-
ment that the “causality” conditions are satisfied up to
the order » implies

UO =iz .= (5. 45)
, .

A(i)EA(z)E_”EA(n-l)_:_O, (5. 46)
T (p,m) = T (p), .47

1479 J. Math. Phys., Vol. 17, No. 8, August 1976

where U*' means the kth order (in 1/c?) potential .e-
normalized by the product transformation T¢"1 ¢«
T® .TW  The validity of such generalization can be

easily proved by induction. Actually if we write
x"=q +¥", (1=1,2), (5. 49)

and assume the above statement to hold true up to the
order n—1, we can easily see that we must have

\IILO)E\I/,'(_“E-”E\II:,"'DEO, (T=1,2), (5. 50)
while the expressions
D ogn o (r=1,9), (5. 51)

are obtained from the corresponding expressions for
n=2 [see Egs. (4.13) together with (5.12), (5.16),
(5.36)~—(5.38), (5.43), (5.44)] by means of the following
substitutions:

) _, 77(n=2) () _, frin=1)
U — 0 g e

QW . im)  A@ (5. 52)
, .

Therefore the rhs of the equations
s, 20} ™ =10, WP +{wfP, 59}
+Hafl, B+, 00)} (5. 53)

is derived from the rhs of Egs. (5.39) by means of the
same replacements and the statement is established up
to the order #. [Note that at the order »=2 one has

{xli,xZJ}(Z) :{q{g)’ ‘112( }+ {‘I’g); q23)}
+Haip, B, e+ {ep, v,

but if Egs. (5.36), (5.37) are satisfied, the last term
is identically zero. ]

In conclusion it is clear that the “causality” conditions
can be satisfied up to any order if and only if the canoni-
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cal potential is identically zero. If analyticity in 1/c? is
assumed for the theory, this appears in turn as a new
proof of the zero-interaction theorem. [Note that the
impossibility of satisfying the “causality” conditions
does not depend on the enforcement of the “localizabil-
ity” conditions. It is interesting also to make a com-
parison with the conditions imposed by Bel, 13 i. e.

{x4s = %94, %4; — %,} = 0. Assuming the validity of Eqs
(1.2), these conditions amount to requiring that the
antisymmetrical part (in 7, §) of Egs. (1. 3) be identical-
ly satisfied. It is seen, e.g., at the order 1/c%, that
these conditions are not satisfied in general (see also
the physically significant cases corresponding to the
restrictions (6.54). ]

We have seen so far that, after a suitable redefini-
tion of the internal variables, an arbitrary function
A(p,w) is left in the expressions of the physical posi-
tion variables X, X, once the “localizability” conditions
have been enforced. Even if we cannot dispose of this
arbitrariness in order to impose the “causality” condi-
tions, we can however try to reduce the deviations of
the theory from a strict “causality” as much as possi-
ble. This is actually feasible in the following particular
sense. We can write in the center-of-mass system at
any order in 1/¢?

- y a2A(Yl)
{xii,xh} " lP- 7’:;”(9»")“’ om, om;
i

(5. 54)
where v{?(p,7) depends on U, TV, ... U"D anq
AV AD L ATD Then we can write

VP =l PSP B+ D,

where [y{P]"! denotes a tensor which is irrotational in

both indices for what concerns the variables 7; [y{P]'
is a tensor which is irrotational in the first index and
solenoidal in the second index for the same variables,
and so on. The term [y;7]'" can always be assumed to
be symmetrical in 7,7 since it can be shown that its
possible antisymmetrical part must be independent of
7 and thus it can be absorbed in other terms, Then A ‘™
can always be chosen in such a way to cancel out the
term [y{7]'". Once this condition has been imposed,
A™ is just determined up to a term having the form
(1/2m)2™(p) - ¢ which amounts to a shift parallel to p
in the expression of the “kinematical” center of mass

(5.19).

Before concluding this section it is worthwhile to note
that it is also possible to give a compact procedure for
the canonical redefinition of the internal variables intro-
duced before on the basis of a step-wise method. First
of all it can be shown that, after having solved the
“localizability” conditions once for all at any order, the
expressions x™*(p,m), X *(p, ) can be given a typi-
cal structure of the form

x(n)*(p,,n,) (n)* [p, ﬂ,lU(O) oo, lNI""“lA“’, . ,A"“”]
+xg.)* p’,n,}U(O), e in-d lAm’
A= k AP D] (5. 56)
X(n)*(p’ﬂ)zxj(‘n)*[p,ﬂ, ’ [7«))’ e ﬁ(n-1)|A(1)’ . ,A(’"“]
+X§;")*[p,ﬂ(7(°),. , it IA‘“,
JAUD \ A D] (5. 57)
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where
U(O) U(O) U(i) U(1)+{)\(1) (AIC (0)}
U(Z) U(Z) +{>t(2) MCZ)(O)}+{X(1) MC )(1)} (5' 58)

+ E{)\(ﬂ {)\(1), (MCZ)(O)}} L

in agreement with the discussion given before, and
XE*, X §* display a recurrent structure expressed

only in terms of p, 7, A'0, A% . . A1 and

x(i)*’ x(2)* . (n-i)* X(l)* X(Z)* . ’Xxn-l)*,

respectwely, For mstance for n=2 we have explicitly

1 ax(i)
X(BZ)*: - {K(“, X,f;“*}‘ 5 {)\(1), A

ow

A
Xg)* [ {A(i),Xfai)*}_ {7\(1), _B;T_}

(
P 720 D
y + P
Tio T Mg

[Note for example, that the carresponding x{2’*(p, )
obtained in this way differs from the original choice
made in Eq. (5.12) through the addition of the 7
gradient

2
(1) Al = T
o [ fa } m1mz 2A :‘]

It is then easy to show that the canonical transformation
T® 7®D.oT® 7™ oliminates just all of the
x* o xPr, X X ®x with the consequence
that, due to Eqs. (5.19), (5.19), the functions
AP LA™ are removed from the expression of

X oome? xgc o and consequently of x;, X,. Finally, in
force of the well-known Baker—Haussdorft formula?®
we can introduce a single canonical transformation

f:exp[‘ {X’ e }]
- /AR, ) -

(5. 59)

(5.60)]

(/XD e e,
(5. 61)

where A is derived from A1, a ,A® in a def-
inite way. For example, up to the order 1/c® we have

@)
s e

PRSP CIINE

é{?\(l), )\(2)}.

The transformation 7 can then be interpreted as a
global canonijcal equivalence acting on the whole realiza-
tion of the Poincaré group. Any phase-space function
f(@Q, P, p,7) maintains its functional form invariant under
it apart from the replacement throughout of the original
canonical potential U(p,r) with its renormalized ex-
pression (7(p,1r) and the elimination of the function X,
This is true in particular for the canonical generators
of the group, We have

F® @ (5.62)

P=T-1p=pP, J=7T1J=7,

~ ~ ~ ~ 5.63
H=T-H=H[U], K=T"'K=XK[U], (5. 63)
with
U=T10=U+[e ) - 1]Mc> (5.64)
or
Mct=exp[{x, - - - Y]Mc?. (5. 65)
M. Pauri and G.M. Prosperi 1480



We have exhausted so far the discussion of the formal
arbitrariness left in the definition of the physical varia-
bles after the general conditions (a)—(d) of Sec. 3 and
the “localizability” of the particle world lines have been
taken into account. We have shown in conclusion that
only two among the scalar functions U(p,7), A(p,n),
Ar{p, w) can be physically significant. Returning to Egs.
(5. 17) and putting A=0, Eqs, (5.18) and (5. 19) become

X = Rem =P T X 0,7, U AL (5. 66)
719X, m, *720%eum.,
Ty T e
~ oA
=Q+X*[p, 7, U,A]+§ , {5.67)
with
A(p,n’)EO (a,nd X‘*EO), (5. 68)

in the particular case of identical particles k;=K,. In-
dependently of the further possible restriction on the
choice of A discussed above, we shall assume from now
on that the “localizability” conditions have been enforced
and we will consider the remaining arbitrariness with
emphasis on its physical meaning, Actually, the dynami-
cal significance of the interaction potentials U(p, ),
A(p,n) and the “gauge” character of the function r(p, )
will appear in an expressive way throughout the whole
discussion given in the following section, It is impor-
tant, however, to realize since now that, under rea-
sonable conditions, the function A(p,w) [and A{p,T)]
cannot affect the scattering behavior of the physical
system. In fact, let us consider a scattering experiment
and denote by ¢’ and ¢” two instants of time far away the
actual time of interaction, long before and after it,
respectively, Since the potential U(p, ) is the only
dynamical element which enters the equations of motion
of the basic canonical variables, the relations among
Q") P(t"),p("), w(t") and Q(#'), P(t'), p(t'), w(¢') can be
affected only by U(p, ). On the other hand if Eq. (3,18)
is taken literally and thus the asymptotic condition
(3.19) is assumed, the functions U(p,n), A(p, ),

(M p, 7)) disappear from the expressions which give

X (1), %), %,(t'), % (') in terms of Q(#’), P(¢'), p(’),
n(t') (% ("), %(t"), %(t"), %(¢") in terms of Q(t"),
P(t"), p(t”), w(¢")]. This implies finally that the rela-
tion among Xy(t"), %(t"), X(t"), %(t"), and X,(), %(t'),
X ('), %(t'), which are the relevant ones for the de-
scription of the scattering, cannot depend on the func-
tion A(p, ), (A(p, 7)) but are affected only by the
canonical potential U(p, 7). The point is now whether
Eq. (3.19) is consistent with the requirements subse-
quently made on the vectors x.(p,7), (t=1,2), namely
the “localizability” and possibly the “causality” condi-
tions, To answer this point we may plainly assume that
A(p,) [and A(p,7)] behave asymptotically as
(p-m)-U(p,7) [see Eqs. (5.4), (5.44), and Sec. 6].
Then a direct check of Eqs. (5.4), (5.12) and the rele-
vant equations of Sec, 6 shows that, provided U(p,#)
has short-range behavior, the asymptotic condition
(3.19) is satisfied to the orders in 1/c? which have

been worked out explicitly and it is very likely to be
satisfied to any order of the expansion. On the other
hand if the asymptotic behavior of U(p, ) is O(1/p),
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the same equations show that the vectors x.(p, 7),
(r=1,2), are simply bounded for large p values, More
precisely they are such that

X, ~a.QP,p,m)+01/p)p+00/p)(p -, (7=1,2),
(5.69)

A careful analysis shows, however, that even in this
case the relevant scattering parameters (the impact
parameter and the angles defining the scattering direc-
tion) as functions of the basic canonical variables are
not changed. An analogous situation occurs in connec-
tion with the possible bounded motions of the particles.
Assuming internal “action” and “angle” variables to
exist, the dependence of the intevnal enevgy of the sys-
tem on the action variables is affected again by the
canonical potential U(p,w) and not by the potential
A(p, ) land the gauge A(p,n)]. Thus, in a correspond-
ing quantized theory, the canonical potential U would be
sufficient to construct the S matrix and evaluate bound
state energies. * The “distinguishability potential” A

is relevant only for the space—time description of the
system in the region of the phase space where the in-
teraction is important and thus it selects a particular
theory within a class of theories having the same S-
matrix equivalent. 3

6. NEWTONIAN-LIKE EQUATIONS OF MOTION
AND APPROXIMATELY-RELATIVISTIC
LAGRANGIANS

In the preceding sections the canonical variables
Q, P, p, 7 were considered the fundamental variables.
From now on we want to discuss the structure that the
equations of motion and the whole canonical realization
of the Poincaré group assume when expressed directly
in terms of the physical variables X, X;, X;, X,. The
equations of motion can be obtained in principle by in-
verting the functions

X,=X%,Q,P,p,7), (7=1,2), (6.1)
and
X, ={x, H}=v,(QP,p,1), (7=1,2), (6. 2)

and introducing the resulting expressions into the rhs
of the equations

%, ={{x., #}, H}. (6.3)

In this way it is possible to derive equations which share
naturally a Newtonian-like form

m. &, = F'r[xl - X, Vy, v2]9 (= 1,2).
Alternatively, by introducing the proper times

ds,=V1=v/ctdt, (7=1,2)

(6.4)

and the space part of the 4-velocity
U, =dX,/ds,=v, /T <vL/c?
the equations can be given the “covariant” form

e

T = 6.5
ds? ®.5)

fT[xl’-x29u1’u2]x (T:I: 2)-
We shall presently give explicit expressions for the
functions F, and £, in terms of the interaction potentials
U, A and the gauge function X under some significant as-
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sumptions. To avoid complicated formulas we shall
limit ourselves to discuss the terms of order 1/¢* of
our expansion (Post-Newtonian approximation, PN). As
we have recalled in the Introduction, this order of ap-
proximation is already highly significant in different
contexts, What is more is that it will appear that éme~
portant features of the theory can manifest themselves
only at precisely this ovdev of velativistic
approximation,

We shall assume that:

(1) The canonical intevaction potential U(p,r)
possesses a static nonvelativistic limit

U (0, 1) = UR,ep(0);
@) U (p,7)

has the structure

(6.6)

U”)(p, 7 ~—.[k1,an(P) Zéfki,mz](p) o3 2}.&2 ‘I'Exl,le(ﬁ’):

6.7

where the functions E("le(p)’ é“‘xv“zl(p)’ \110(1’,(2](;))
have asymptotic behavior and a symmetry in x;, x con~
sistent with the conditions (b) and (c) of Sec. 2.

(3). The “localizability” conditions are satisfied up to
any order of approximation while the “causality” condi-
tions ave satisfied up to the PN approximation (1/c%).
This is consistent with Eq, (6. 6) and implies moreover
[see Eq. (5.37)]

AD(p, 1) =(1/2m)RL, 4,1(p) - 0. (6. 8)

(4) The PN gauge function x*’(p, 7) has the structure

AP (p,m) = (/Mo ,1(0) -0,

[Of course we assume that also Q‘1’(p) and w™(p) have
all the required asymptotic properties, |

We emphasize that Eqs. (6.6), (6.7), (6.9) are all
consequences of the general assumptlon that the caroni-
cal potential U(p,n) and the gauge function A(p,w) have J

6. 9)

the structure

2 2
- y o o
U(p,ﬂ):‘)’U[,("K2][ CZ’ZQ’ 102 22[.1.202] (6.10)
2 2
Y ki g
}\(pa'ﬂ) [.LCZ K[xi,xzj[ucz ’ f’; Hig) 12}1202] 0, (6. 11)

with (}D,MZJ, )\[,‘1,,‘2] dimensionless functions, i.e., a
structure which contains the minimum possible number
of dimensional constants besides the individual physical
parameters of the particles and the light velocity,
namely two constants y and ! with the dimensions of an
energy and a length, respectively,

Note: While a single dimensional constant is suggest-
ed by interactions of gravitational or electromagnetic
type, we consider two constants to describe also short-
range forces, typically the forces generated by a mas-
sive field, which in the nonrelativistic limit clearly
needs this number of dimensional constants, as the
Yukawa potential., The long-range case in which a sin-
gle constant appears is contained in our assumption as
a particular case corresponding to a structure of the
form

U(p,ﬂ’):ry—gf[ vl 3 1 02],

ne? p? et et

where y and ! are present only through the product 2.
An example of this can be found in the Table at the end
of the paper, case B, 3, where G =11/mm,, Assuming
the expansion (4.1) with U (p, 7) and U (p, ) given by
Eqs. (6.6) and (6.7), it is equivalent to assume that U is
an analytic function of the zero-dimensional quantities
a=vy/nc?, b=x>/pic?, d=0%/u?c’? in a neighborhood of
the origin, Then in particular we have

R N

~ alU

U9 () =y[0) 20y, E(p) =2 [ 7—*]
(P)=T)asaons Z(0) mlalr/uet da, ey’

-~

U
(p)= Zmz[a =y HZCZ)] /a0y
#(p)= sl
p 302/ 122D | (1 y ey’

Under the above assumptions, up to the PN approximation, we have

1
%(QP,p,mM=%x"QP,pm) "+ 5 xVQ,P,p,m)+"-

_o+M 1 1 _ 1
_Q+mp+cz{ 9m? (p PP+ [(m2 my

m(p)) }

2 0y 1 i
—(mzv ()= 520 (p) -

v1(Q,P,p,m=v{"Q,P p,ﬂ)+— viPQ,P,p,m) + -

=E+—’-’—+l2{ L (H‘°)+” P)p+——{m2
m  my C m? 2my m|mm

Bk ) ko)

_ _L[H(()) +
m

4

1 14a®
T [(va)———p—P“‘Qm(P)Tr +

My

-, (6.12)
1 1 4U®
-——;(mﬂ—;(pw)k a P
—"—+””[ @(p)n+ S (p- n)@(p)p]
iy
[(p rr)l-d—c*;-‘P+w“)(p)1r]}+“', (6.13)

and the corresponding expressions for the particle 2 obtained by means of the 7 operation (which implies in

particular 7o (p) =M (p), 79 (p)=- 2V (p), ZUV(p)=U(p), ZE(p)=
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Z(p), Z2(p)=2(p), Z¥(p)="¥(p).
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Then putting r=X; — X;, we obtain by inversion

Q=" ;mzxz c2{2 5 [(v = Vo) - (myVy + mpVp) = (my — mp) (V1 = V) ]r+———[r (my¥y =+ m¥2)J(vy =~ Vo)

R SN
-Zmn () e R

14U™®
P =mVy +myVy + 1{—[zm1v2+‘mzvz+UO)(T)](m1V1+m2V2)+—[("11 M)T e (Vi = Vy) = T+ (myVy +maVp)] = =2 7

o
+“[M(V1 V) + (myvy + ma¥y) = (g = my)3p (vy = ¥3)2)(vy = V) = 3RV @) vy - Vo) - 37 - (v, - V) r}+---,

- 1
p=r + 21'2'{7—];1- U(O) ('r)r - [mlmsz Tr. (m1V1 + mZVZ)] (V1 - Vz) +[—2W r. (m1V1 + m2V2)] (m1V1 + m2V2)

(6. 14)
_ %w‘“(r)r}+° .,
1 my—m
r=pV=-vy)+ E{[E,% (vy = vy) (myvy + mzvz)] (myVy +my¥y) + [——!m—zl T (myvy +myv,)
+£ 1409 1B v+ dmpvi + U ()] + (m L (v -
b R\ e Vz) 7 dr T [2m1 2y ) 1= my)p (V1= Ve
1 1
- (my - mz) 3 (Vi—Va)+ (m1V1+m2V2)] N\ Vz)"E‘b(?’)(vi—vz)—Zr‘(‘ﬁ—vz)‘l’(”)r
1 dw(l)
ﬁwm(r)(vt—vz)——r (vy - vz)r_&r_r}+
From Eqs. (6.3), (6.4), (6.14) it follows that
F, F1(°)+ 1 F{D +..
U(O)
= ')lfddr r+§{<[ (zm1v2+2m2v2)+ 2(m1v1+m2v2) + mzz(Vt—Vz)'(m1V1+m2V2)
my—mma=2mi o omy 1 gy my 1 do® 1 I ST § dw(“]ldU“”
M 2m? vy - V)" - i 2mQ ) n Zmr dr <I>(r) ur‘l’(y) 4 dr Jr dr
1 1
+[%%1"(m1"1+mzvz)r“(v1 vy) - 2(1‘ (myVy + myV,))? -—}-(r (vy=vy))? - U(O)("’)"’z
12 ](1 d\" o _@L(@)] [ﬁt _epld?  om ( )2 "
+ - rem |\ )+ o ) [T am Y T T g @ -G 57) 9w
Lav@) . 1de(r) 1ds(r) , p 1dew?®
2 Lt — w2l L 2 )_ _eel
+ (v = V) () +2(r- (v Vz)),r Ir z(V1 V),V o ar T ( V) r
d 1 1 14U
+ u(r (vi- Vz))2<7, d?) w‘“(r)]>r+<[—r-(m1v1+m2v2)+W(m%—m%—mimz)re(v1 Vz)]r ar
1 14Q 1 dw 1de(r
+[mr‘(vi—vz);7+“&r Vi) = Dr. (1-V)7‘%2]>(V1—V2)}+"', (6.15)

or, from Egs. (6.5), the expressions

0y Loy, ...
1, =1, +CZ£1 +

1aUv 1 <[rz ” ( (1 d\: my  dU® 1 deo 1
- = + =1 o = 2 ©0) 0y + i - = 1)
r WP =-U%0) 'r) U ) ( r L 2m2 — Q')

v dr c? mmy Ay @ m

o) ) - (
- Lep-Tuag )5 Lo 1——2d~(’]+(u1—u2)2[ ;(1+$—§(1-%)1—‘“’°’

2my  dr dr » dr my v dr

my 1490 | p1de® 11de@) wel1 (1 d) o ]
+2mr dr +m’r dr 2v dr @) [+(rw) ~ 2 '\rar )

4w~ @ [ 28 (LAY g (L LY awy)+ 11840, 4(14) w0
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dU(°’>> <m,1dn‘“ 1d9(r), 2p 1de®®
<(r ui)( v dr uz+{((r-u1)—(r~u2)) mr dr y dr m; ar

{()
‘%(H%Z) %dgr ]>(“‘—“2)}+“" (6. 16)

The corresponding expressions for F; and f; can be obtained by means of the / operation which implies in particu-
lar my & my, r——1r and v;{ <V, or 4; =u,, respectively.

A better insight into the structure of the functions £{*’,f{"’ ..., as given by Eq. (6.16) can be achieved if we in-
troduce the 4-forces

fE=lf 1), (1=1,2), (6.17)
where f{ is defined by
usf?=u.-t,, (1=1,2), (6.18)
and rewrite Egqs. (6.5) in the four-dimensional form
d*xt
e st =fE X, X, 0,W,), (T=1,2). (6.19)

As a matter of fact, in force of relativistic invariance, we must have
f'ru:(/’ryu—._ wﬁu#-"wﬂu;’ (7:1,2)’ (6- 20)
where v =x{ — x5 and @, ¥, ¥ (T=1,2) are relativistic scalars and thus functions of the independent invariants

2 a2 = o = —
g’—yu’ru_'r’ ME—r,uug =T-U4, 772——’}’uu2”—1‘-u2,

0= = (ug =), (g — )" = Uy = U)* = (1/cH)i @} - u3)? + O(1/c?), (6. 21)

where the rhs expressions are consequences of the fact that the points x; and x, (or sy, s;) on the world lines are
assumed to be simultaneous in the considered vefevence frame, Owing to Eq. (6.18) it follows in particular

1 1
bry== o+ 5 Py — 26010), o2 == Uy + 5 (N3P — 56%sy), (6. 22)
c c

and consequently

1
S =7t = Py luf —u2)+ 5 (Mg — 200)uf,

1 (6. 23)
f = o + by luf —ug) + = (mpa - 260Uy Juf
Then, for 7=1, by expanding ¢; and 5, we obtain for the space-part of the 4-force in the PN approximation
£0 = 07 ~ 4P (- w), 6.9
6. 24
£ = 000 + (08 = 209D + (000 - 3642 ~ B (uy - uy).
Finally, taking into account Egs. (6. 21) it easily seen that Eqs. (6.16) agree with Eqs. (6. 24) if
¥ip’ =0, (6. 25)
which is a consequence of the static nonrelativistic limit assumption, and
1 au®
90{0)(&9 T, M2, 9)= _T(g-s
2 ) )
) N RN ) ) my AU 1 do () 1 g
ot (8,00 =[ L £V - 0 <§»(g dg) U0+ (2 20 - L e quyy
1,4 14y 1dz 2m 1402
My dt £ dt £ d £ de
m11doP@E) | 2u1 dw‘“(g) 1de(E) ] 2[ 1(1 d ) 7o ]
iz + === -= + 2 === 6. 26)
me dg me ak a0 gag) U@ (

2\t d
+(n1-nz)2[ ZmZ(gdg) U+ (gdg) WD)+ 2 (ed ) an(g+ 3140
1400 14 1de
lbf:}.)(ﬁ,ﬂnnz,9)=-711[E—E'E'(‘§‘]+(772—771)[%E d§(§)+—é dg(g)

+Qldw“)(§) m1(1 + mz)l U(°’(§Z].
m £ dE dg
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It is hardly necessary to emphasize that the dynamical
variables of the two particles in Egs. (6.19)—(6. 26)
must be evaluated at the same time with respect to the
considered reference frame [recall Eqs. (6.21)!1]. 1t
is also possible, however, in force of the intrinsic co-
variant character of Egs. (6.19), to obtain a system of
equations of motion in terms of the dynamical variables
evaluated at two points on the world lines of the parti-
cles which share an arbitrary spacelike velation. This
system is simply of the form

d*xy
T dsi

m =s:‘vf:[xi(sl)’xZ(sﬂ’ui(sl),uZ(sz)], (6- 27)

where s and s; are the proper times which specify the
positions of the two points on the world lines and S% is
the Lorentz transformation which connects the consid-
ered reference frame with a second one in which the
two points are simultaneous, In this way we have at our
disposal infinitely many descriptions in tevms of
‘manifestly covariant equations of motion covvesponding
to the same physical theory, If we consider the sums of
all the series expansions assuming analyticity in 1/c?,
we find that Egs. (6. 27) are simply related to the
manifestly covariant equations proposed by Havas and
Plebaiisky. !* These equations correspond to a choice of
different S., for the two particles and thus to a different
space—time relation between x4(s;) and x,(s,) for the
equations of motion of particle 1 and particle 2;
precisely, the prescriptions given by Havas and
Plebafisky are

ny = [xf (1) = %5 (53) Jey . (54) =0,

for the equation of motion of particle 1,

= [0t (51) = 24 (5) ez (52) = 0 (6.28)

for the equation of motion of particle 2,

Note however that the Havas—Plebatisky equations are
not, strictly speaking, a system of closed equations.

We want to discuss now the interesting problem of
the construction of a Lagrangian function from which
our Newtonian equations of motion in the form (6. 4)
can be derived up to a certain order of approximation.
In this connection it is important to realize first that it
is certainly possible to derive Eqs. (6. 4) up to any
order from a variational principle of the form

2
Gf [;:1 ("{7' p'r(x'b X;, Vi, VZ) +‘}1'R -r(xh X3, Vi, Vz))

_W(xlyx2av1’v2)]dt:0 (6- 29)
(see for example Refs. 19 and 20). (We do not consider
here the possibility of constructing “Lagrangians” con-
taining infinite series involving v, and derivatives. )
Actually the variational principle (6. 29) can be im-
mediately obtained from the obvious variational princi-
ple in the canonical form

5[ [Q-P+p-n-HQ,P,p,m)]dt=0, (6. 30)

by re-expressing the variables Q,P, p, 7 in terms of
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X;, Xy, V4, Vo. It follows that
fi=P' aQ +7- '—a'&

0% 54 0%y’
-p- 22 .. %
Rey=P avﬁ+ 20,y (6.31)
W=H.

On the contrary, il is not possible to devive the same
equations from a ftrue Lagrangian, i.e., from a varia-
tional principle of the form

5 [ L(xy, %, %;, %) dt=0. (6.32)

Of course the essential difference between (6. 29) and
(6. 32) lies in the fact that while the frue Lagrangian L
depends only on the variables X, X;, X;, X,, the integrand
appearing in Eq. (5.29) depends in addition on the
variables v; =%, V,=%,. As a matter of fact, as noted
by Kerner, 1? the existence of a variational principle of
the true Lagrangian form would allow a Hamiltoniza-
tion of the Newtonian-like equations of motion along the
usual route given by the Legendre transformation, This
in turn, via the Noether theorem, would also allow the
construction of a canonical realization of the Poincaré
group in which the physical position vectors x;, X,
would play the role of canonical (configurational) varia-
bles, a fact which would contradict the zero-interaction
theorem.

The zero-interaction theorem, however, cannot
prevent the “localizability” and “causality” conditions
from being satisfied up fo a definite ovder in 1/c2 as it
is clear from the discussion of the preceding section,
This allows in fact the existence of an approximately—
relativistic Lagrangian in the following precise sense,
Taking into account the expressions (6. 14), Eqs. (6.31)
become (for 7=1)

L (o, 3QY ©
= h.. SRS
c? (P %1, 4

. ag(i)

=M Vq; +
Pru=my £

LpW. Mlﬂr‘“- M)%O(%) ,
a
ax“m x“m ’ (6.33)
_1llpm 29 w0y, 9P >+ _1_>
Ru=3z <P vy, T dvy, O\
1 2 1
=2 m{[MzQ“’ ~up]-vp}+0 (‘6—4) ’

and analogous expressions for [; and < ;.

On the other hand the fact that the integrand of Eq.
(6. 29) is obviously determined up to a total derivative
implies that the expressions P, R,, and/{/ are deter-
mined up to a transformation of the form

200
p'r_'pfrzp'r_ .a—x_, ’

00
/\)-r_’/{‘lr:R‘r—_aE, (6. 34)
O
— g — + ==
W' =t e
Therefore choosing
1
0= {mQM(r, vy, V) = po (¥, vi, v)1- v}, (6. 35)
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we obtain
11 2
Pi=myv + 23 {mi"%vi + [_mz‘i (myvy + mavy)
m
+ 2 vy oo + [ 224
m 1 me

- (myvy +myv,y)

1 dU(O)
—2(r°v2):|; 7

+[i ((my — my)(r - v) — 2my.(r- vi)]

r+ [% ((my = my)vy— 27’11"1)]9(“("’)
dﬂ(“
Tdr

4u 4u 1 do®
XP=" w v -vy)— mr-(v1 vz)y ot

= 20(r)(Vi—Vy) - 2r- (v, - V) \Il(r)r} +0 (i)

1 1
Pt =myv, + 75 {mzvzvz [2;;122 (myvy + myvy)

4,LL ng
- vy~ Vz)] UMy +[W T (myvy T myv,)

(6. 36)
140"

- 2(r- V1)] v dr

+ 2m2v2)]9(1’ (r)+ [Tln ((my = my)(r - vy)

+ [‘11; ((my — my)vy

1 do4
dr

om )L s ), - vy

)
+ 2 vy Eer 28 0) - )

v dr
1
+2r- (vi - v,)¥(r)rp+ 0 =)
Ri=o0@/cY,
Ri=0(@/c*),
W=y =H
We see in this way that the variational pvinciple (6. 29)
takes a true Lagrangian form up to the PN approxima-
tion, Stated in other words, the first two terms F,
(1=1,2), and F (7=1,2) of the Newtonian -like equa-

tions of motion (6. 15) can be derived from the approxi-
mately velativistic Lagrangian

Z[pf'vl"'pé"vz‘W]N,pN- (6.37)

We stress that the possibility of eliminating the PN
contributions to R; and R, rested on the fact that no
intevaction tevm does appear at this ovder in the ex-
pressions 3Q/3v,; and 3p/dv,;. This in turn is a divect
consequence of the assumptions made about the static
nonrelativistic limit of the canonical potential and the
validity of the “causality” conditions at the PN ovder,

Finally, let us note that from the discussion of the
preceding section and from Eqs. (6. 36) it follows in
particular that

{x“,x“}:{xz;,xw}zo,
{x1s, %2,k =0(1/ch),

{01, Prgt=18,08;;,+ O(1/cY),
{Pr, Prgt=0(1/ch).

These equations show that the expressions P, 2§ be-

(6.38)
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have as true momenta canonically conjugated to the
physical variables X;, X, up to the PN approximation,

Using now Eqs. (6.36), the approximately vela-
tivistic Lagrangian (6. 37) assumes the explicit form
L=~ mc? +/ (0)(1{1, X2, Vi, Vo)

1
+ EE/_(“(x'i’x'Z,VbVZ)y (6.39)

where
0y _
L V=
and

LV =5mvi+smyvi+ [(—ml—z (myvy + myvy)*

T myVi + 2mevi - UO(r) (6. 40)

+ ‘277“ (v~ V2)2> U®(r) +(# (r(myvy + myvy))

- 2(r-vy)(r- Vz)) 1 % - (;‘ln (V1= Vo) - (myvy + mﬂz))

1 dQ(i)
v dr

Xﬂm(f’)—(‘lm‘l"(ﬂ V)T (m1v1+m2v2))

- <(V1 -v) o)+ % vy~ Vz)zwm(T))

20 1 dw'?
- . - 25 () + 22 (p - _ 22
<(r (v = Vo)) ¥ (») " (r-(vi—w)) v dr
2r? ©) w4 14yt )]
—{ 2= + —— —- )

(2201 + Z w6y - 00021 422)] 6.4y
where, in particular, the gauge character of A
=(1/m) w'¥(p)- o and its connection with the renormal-
ization of the canonical interaction potential is directly
evident from the last three lines, Actually the renor-
malized canonical potential [see also Eq. (5.64) and Eq.
(6.7)] at the order 1/c? results

TV, v = Vo) = UL (x, vy — vp) + 1V, (McH) O}

=Z )+ 50, - V) (r) + 5(r - (vy - V)2 T ()
(6.42)
with

~ ()

Z0=20)- Zowpnidl?

() =)+ %w‘“(r), (6. 43)

~ 1)

) =ve)+ 2L T

It is a remarkable result to find that all fhe approxi-
mately velativistic “Lagrangians” fov two particles
existing in the literature belong lo the general form
summarized by our Egs. (6.39)—(6.41). A very general
class of approximately relativistic Lagrangians cor-
responding to a PN approximation of linear variational
principles of the Fokker type for n particles has been
characterized by Woodcock and Havas?® (hereafter
denoted by W—H), (see also Refs. 23). [When the pres-
ent paper had already been submitted for publication,
P. Havas has kindly brought to our knowledge the
existence of further related work going on by him and
co-workers, See in particular Ref. 35b,] The W—H
“Lagrangian” for 2-particles contains three additional
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Junctions of the instantaneous interparticle separation
Ir| =% — X, | besides the static Newlonian potential
[instead of our four QV (), E@), 3(), ¥(r)] and it can
be written

[ == mc?+{im Vi + myVi - 2182V (1)}

+ gi{%(mivl% + mz"%) + Iy} (6. 44)

where

1dVi2

IPN:%gigz((vl'VZ)Vﬂ('r) (x-vy)r- V)T ar

+ @ = ) V) + X ) + (0 (v = v)) Y o ()

+V - (V= V)W () + (- v) (X - (v — V)

x2 —dW12>.

v dr (6. 45)

It is easily seen that the expressions (6. 44), (6.45) can
be obtained from Eqgs. (6.39)—(6.41) by means of the
following identifications [W—H emphasize the absence
of contributions of order 1/c in their “Lagrangian,”
From our point of view it is clear that no odd power

of 1/ ¢ can appear in the theory merely because of

the form of the world line condition (3. 4) and the as-
sumption (4,1). ]:

g1g2V12 (’}") = U|(:2;,,¢2](7’),

4 = 1 0

gngWIZ((r): m [x1,1<2](7) - Ql(f}ci,nZ]('r),

218 XK p(r)=- ‘1‘&1,K2](7’) + 2 m Egi,kzl( - (1) ;)

Leja kg3

_21
Lo )

mi o m2 qty
¢Ex1,n ](’V)+ UD<1.:<2](’V)_ m n[xl,nzl(y)

m11dU[K 4 k01(7)

r—_E}'FZ_'_

2u 1 dw ()

mr ar

8182Y1207) = = Yoy, + (6. 46)

1,!(2]( )

_ml dﬂ&f.le(y)
m v gy ’

while the form of Z () is directly related to the choice
of the “gauge” function w ‘P (») because it must have the
effect of eliminating the tevms which ave nonlinear in
the intevaction UV (v} from the general “Lagrangian”
(6. 39)— (6. 41) since they cannot appear in the W—H
“Lagrangian.” The most simple possibilities are

wPry= UV (), E(V)E 0, (6. 47)

— 1du®
w®()=0, 201=- Zow L7 (6.48)
Of course in gauge independent terms we must have
E)=-Tyop 2 (6. 49)
o - d?’ a .
A further very lnteresting problem is to investigate
the conditions, if any, which the various interaction
potentials must satisfy at the PN approximation in order
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that there exist one or more of the so called “adjunct”’
fields, associated with the Lorentz invariant variational
principle, which mediate the interaction among the
particles. This problem has also been settled by Havas
et al. (see Refs. 22, 23, and 35) in the same context.
The conditions found in Ref. 22 amount to saying that
the “Lagrangian” (6. 44), (6.45) must be in general an
expression of the form

L ==me?+{3m e+ b+ ST onvt + mov}

= X ghOgh OV )+ 5 TP, (6. 50)
Ik vk
where each term I%¥ has the same structure as the
PN term in (6. 45) with coupling constants and potentials
depending on the nonnegative integer numbers / and k
and satisfying certain identities, The numbers ! and k
specify the powers under which the relativistic in-
variants 6 and n, (7=1,2), respectively, appear in the
generalized Fokker infegrand and essentially charac-
terize the structure of the source of the “adjunct” field
associated to each interaction term I%%; in particular
1 +k gives the tensorial rank of this f1e1d Woodcock and
Havas work under the further simplifying assumption
that the coupling constants and the functional form of the
V¥ (r)’s are all the same, independently of the values
of I,k, precisely

Vig(r) = 7‘ VipP )= zzka“'k)Vm('r),

(6. 51)

with ¢"'®) constants such that 3,;,,a'#*’ =1, The identi-

ties which the W—H “potentials” must satisfy are
Wik (r)=0,
XHpP@r) ==+ VEY @),

R(1-Fk) 1 dViE®
2k-1 v dr

(6.52)

Yoo =
Under these conditions the W—H “Lagrangian” takes
the form

i
[ == mct +{Em Vi + imevi — g, g1 Vin ()}
1),
t= {g(m1v‘1‘+m2v§)+ég1g2 IZ‘{: a'tr®
#

X (1 =1=R)vi= V)’ + (v;- Vz):’ Vi) = [(r V(- V)

+;‘k g ® kg:e_ll) - (v~ )2]1 dVip(r )}. (6.53)

Finally we can read this result in terms of our interac-
tion potentials, Taking into account Egs. (6.39)—(6. 53)
we obtain the gauge-independent conditions

(¢} L Sl S TN
Q[kaz](/r) . m U[xi,xz]('r)
2
jast 4 ( 1dU ‘s
E ey ) == — U . ) M
"2 1v %2 dv

) . 307 e (6. 54)
4)["1-“2](7)2[?&“ vk (Z+k) —1+7’l-] UEEI).KZJ(T)

0>
‘II(KPKZJ(T)—[ a(l'k) k(k i) + &]1 M ,
bk B mlr dr

where it will be noticed that all the “potentials” are

expressed only in terms of U“”(r), [Note: the first
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equation implies in particular that the “distinguishability
potential” SZ“) vy 4() must be symmetrical in its depen=
dence on all the individual physical parameters which
are not masses. | This might be an indication that,

in the case of the existence of “adjunce” fields, the
whole interaction occurring in the Newtonian-like equa-
tions of motion could be expressed as a functional of

the Newtonian static interaction,

The general “Lagrangian” (6.39)~ (6. 41) with the
conditions (6. 43), (6. 54) contains all the known approxi-
mately relativistic Lagrangians which have been used
in the literature for the case of linear field theories: in
particular the well-known Darwin— Breit “Lagrang-~
ian”!®18 for electrodynamics, the Bagge “Lagrangian”®
and a “Lagrangian” for a scalar field®®; we have listed
in a table the corresponding expressions for the interac-
tion “potentials” and the various parameters involved.

It is interesting to note in these cases the role played
by the “distinguishability potent1a1” Q“;'K ,(#) which,

as we have seen, comes from the * causahty” conditions
at the PN order. Woodcock and Havas discuss also a
further explicit example of a purely spacelike interac-
tion which in their language is asymmetric [Wy,(r) £0]
and does not correspond to the existence of associate
“adjunct” fields. Explicitly, in terms of their poten-
tials, it is defined by

W)=V (), Xp)=-1Vp(7),
Yio(r) 1dVu() .

=y dr

(6.55)

It should be noted that this example, corresponding to
being

2my e

Qu) KZ](T):— ["1"‘2](7‘)

[y, (6~ 56)
for our “distinguishability potential, ”” is not consistent
with the symmetry condition we have assumed in Sec, 3
[see Eqs. (3.17) and (5. 27)] if the masses only ave
allowed as charactevistic individual pavamelers for the
particles. It is interesting to observe, however, that
this example fits well with our scheme if it is viewed as
a particular numerical determination of a more general
theory in which the particles are characterized by,
e.g., two “chavges” n,,n; as additional attributes.
Assuming [compare with the previous Note following

Eq. (6.54).]

2m1”1 - 2m2”2 U(o)
m

[mp ’11; mo, 'nzj(/r), (6. 57)

QI2m1. nyimge gl )=

we have a theory which satisfies the symmetry condi-
tion (b) if U‘O’_,,bmz’,,z,(v) is taken to be symmetric
under the exchange m < mz, 1M1 < 12. On the other hand
the corresponding W—H ° potentlals” result in

8182 Wimgn1y, ()

my~my | 2w — 2myT ,
(e 2 2 g

g1g2Xm,n]12(7)

~ m? + 2min, - 2m MoT)
== B @)+ i 27 17270 o)

m

‘1), (6.58)
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£182Y tmyn1y, )
miQ -

) + 2mymang 1 dUbmny()

==Y, )+ - y

While Egs. (6.55), (6,56) are obtained through the
numerical determination 7,=0, n;=1, the theory is
symmetric in the sense of W—H only for the choice
M =12 = : these remarks should further clarify the
meaning of condition (b).

As we have seen, conditions of the form (8. 47),
(6.48), i.e., (6.49), which are necessary to reduce our
“Lagrangian” to the W—H “Lagrangian,” rule out all
theories which contain nonlinear terms in the Newtonian
interaction. This means that the general “Lagrangian”
(6. 39)— (6. 41) does contain theories of this kind, Actual-
ly there are two important examples of nonlinear the-
ories in the PN approximation which are well-known
in the literature and belong to our scheme, namely the
Einstein— Infeld— Hoffman (EIH) “Lagrangian” which is
deduced from general relativity in the slow motion
approximation!”?¢ and the “Lagrangian” derived in the
same approximation by Bazafisky!%? for the general
relativistic equations of motion of » charged particles.
[Recall that all the gravitation experiments concerning
the solar system can be accounted for by using a weak-
field limit of any metric theory of gravitation adjusting
suitable parameters. This corresponds to what is called
the parameitrized post-Newtonian formalism (PPN), ]
For two particles they are

mwzz }

+ 215 {%(mlv;1 +m,v5) + é [<3v§ +3vE - T(vy-Vy)

[ g1 =—mc? +{§mlv% + 393

_ (r.v1)(r.v2)) Gm;mz _ e nz,w;znz]}’ (6. 59)

72 s
€16,
o

+ %{%(WHV% +myvy) J{% ((V1 Vo) - vi)(r Vz)> "

t f}z (3V% 3= Ty vy) - TV ,,(zr : V2)>G m;;nz
_ le mymam

. m1e% + mw%)jl
2 2 272

eie 1)1 (r-v){r-vo)| €1e2
=/smt ;2+02{2[(V1°V2)++ v

me1e2 mle§ + H’Lze%
-G + 5 ,
¥? 27

and

L ym
/[ p=- mcz+{%m1v1 + 31,V +G——7L?L -

_ G(me%ez
¥

respectively.

In the Table we have listed the values of the param-
eters and the identifications of the various interaction
potentials which relate also these two “Lagrangians”
to the general form (6. 39)— (6. 41). The BazZadsky
“Lagrangians” provides an example of a nonlinear
superposition of field-related interactions with different
tensor ranks and different coupling constants. In par-
ticular the gravitational part of both the EIH and
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Bazafsky interactions corresponds to an “adjunct” field
which is a mixture of a scalar and a tensor field of rank
2 (see the discussion contained in Refs, 22, 23). 1t is
seen from the Table that for the BazZafisky case it is
necessary to enlarge the conditions (6. 54) [which cor-
respond to the W—H case with the assumption (6. 51)]
by allowing for superposition of terms corresponding

to the Newtonian interactions with different coupling
constants in &(») and ¥ (7).

In conclusion we stress the great generality of the
action-at-a-distance approach in the Hamiltonian form
we have discussed in this paper, In connection with the
existence of approximately velativistic Lagvangians for
the Hamiltonian theory we should again emphasize the
basic role played by the assumption (6. 8) of a static
nonrelativistic limit for the canonical interaction, which
allows the construction of PN physical canonical varvia-
bles. At the same time if the Newlonian intevaction
U () is not identically zevo, the “causality” avgu-
ments given in Sec, 5 prevent the existence of approxi-
mately relativistic Lagrangians veproducing also terms
of the ovder 1/c* of the equations of motion, i.e., the
terms containing the radiative corrections, This makes
clear the intrinsic limitations of the f»ue Lagrangian
formalism within the framework of relativistic parti-
cle dynamics, On the other hand it is always possible in
principle to calculate all the 1/¢? expansion terms of
U(p, ) and A(p,w) if a theory is given in the Newtonian-
like form. This should be possible for instance in the
case of electrodynamics by means of a Lagrange ex-
pansion in the sense of Kerner?® for the Lorentz force
term in the relativistic equations -of motion. This
procedure should provide in turn a canonical scheme
for the theory.

7. CONCLUDING REMARKS

We conclude the paper with a number of remarks on
the results obtained and some additional considerations.

Up to now we have discussed the “causality” condi-
tions having in mind their formal quantum analog., We
want now to show that the nonvanishing of the Poisson
brackets {x“,xzj} can be related to some peculiar fea-
tures of the Newtonian-like equations of motion.

From the formal point of view, the solution of Egs,
(6. 4) corresponding to prescribed values of X, X,, v, V;
given at / =0 does exist and is unique, just as it happens
in nonrelativistic dynamics. Therefore we can say in
this literal sense that the relativistic system composed
by two particles interacting at a distance has just six
degrees of freedom as its Newtonian counterpart and the
theory possesses the so called finitely predictive
character. [It is true that the number of degrees of
freedom of the exact relativistic theory is unknown in
general. ** We agree, however, with Kerner’s attitude
which is not to speculate about the whole set of possible
mathematical solutions but to consider as phaysical
motions those which are analytically contiguous to the
free motions (see also Ref. 34). Note that in the pres-
ent work we have also implicitly assumed that the solu-
tions became solutions of the nonrelativistic equations
as ¢ — <, 3] It must be stressed, however, as observed

1489 J. Math. Phys., Vol. 17, No. 8, August 1976

by Havas in a very lucid discussion, 3 that a relevant
difference exists between the relativistic and the non-
relativistic case, In the case of Eqs. (6.4) assuming
certain values of the physical variables X, X;, vy, Vo to
have been observed at time t=0, one can surely predict
the future behavior of the system (and also infer its
past behavior). It is not possible, however, to modify
the dynamical variables of either particle arbitrarily
without unavoidably perturbing also the dynamical varia-
bles of the other one at the same considered time if the
space separation of the particles is such that the inter-
action is appreciable. Actually, let us consider for
instance a situation in which the particles have been
prepared in a certain way in the far past and then they
have been allowed to evolve freely under their mutual
action. At the instant =0 they will assume positions
and velocities x{, %}, v{, vi. Then, let us try to modify
position and/or velocity of, say, the particle 1 leaving
the far past conditions unchanged. In the nonrelativistic
case this could be simply achieved by exerting a strong
force on particle 1 during a short time interval Af just
before ¢t =0; for instance by allowing a third particle
with very short-range interaction to pass near this
particle during Af. It is easily seen that this mechanism
cannot work in the relativistic case since it is not possi-
ble to modify Fy (or f;) without modifying simultaneously
also F, (or f;): in other words a situation in which a
thivd pavticle intevacts with particle 1 without inter-
acting also with pavticle 2 cannot be realized, inde-
pendenltly of the range of the forces involved, In fact,
once the equations of motion have been written in the
form (6. 27), it is clear that a modification of a certain
portion of the world line 1 necessarily induces a modifi-
cation of the world line 2 along the whole stretch which
is spacelike with respect to the points of the modified
part of world line 1. Therefore also F, {or f,} in Egs.

(6. 4) [or (6. 5)] must be changed.

The above situation can be better understood from the
canonical standpoint if we generalize our description to
a three-particle system, The Hamiltonian for this sys-
tem can be written for instance in the form

H=cV M+ P2,
with
Mc? = cVmieT+ g + cVmict ¥ m

+eVmicT ¥ 1%+ U(pyy, My, Py, T3)

(7.1)

= C\UW%ZCZ + 77:2; + C‘/mgcz +7T;23 + U(pﬂ: Ti2, P35 T3),
(7.2)

and

(7.3)

Here the variable P denotes the total momentum of the
system P =p; +p, +p3; 71, 7y, 73 denote the momenta of
particles 1, 2,3 relative to the center-of-mass of the
cluster (1—2); 3 reduces to the value of p; in the
center-of-momentum frame (P =0) for U=0; 7, denotes
the relative momentum of particles 1 and 2 and reduces
to the value of p; or - p, in the center-of-mass system
of the cluster (1—2) (p; +p,;=0) for U=0; ps and p,, are
the variables canonically conjugated to 75 and 7y,
respectively; (the remaining canonical variable Q, con-

RPN vy g 7 7
Myyc® = cvmic? + %, + cVvmic? + 13,
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jugated to P, is the usual canonical center-of-mass
defined in terms of the Poincaré generators). It is now
possible to choose U in such a way that particles 1 and
2 interact while particle 3 is free, As a matter of fact
if we set

Us=Up =cV[Myy + (1/cDhy (pga, mi5) JPc? + 2

- cVMbpc? + 13, (7.4)
we obtain
1‘402 = C\/[Miz + (1/62)h12]262 +1T.23 + C\/mgcz +ﬂ'§ . (7' 5)

Then the expression of the canonical generators turns
out to be formally identical to the free case for fwo
particles apart from the replacement of 7 with 73, the
first particle mass with the effective mass of the
cluster (1—2) My, + (1/c®)hy,, and the introduction of a
spin 84y =py5 Amyy for particle 1, Consequently the gen-
erators can be split in a sum of two terms, the first of
which depending only on the variables of the cluster and
the second only on the variables of particle 3. Should we
construct in this situation the physical variables

X,, Xy, X3 and the corresponding Newtonian-like equations
following the procedure used for two particles, we
would find ;=0 while {; and f, would depend on the
variables Iy =X{ — X,, Vy, Vy only, Corresponding to any
other choice of the form of U, the coordinates of the
three particles enter the canonical generators in such a
complicated structure that the forces £, f,, f; must de-
pend on the variables ry;, rys, ry3 and the velocities of all
of the particles. Therefore if we have interacting pairs
(1—2) and (1—3), particles 2 and 3 must also interact,
Thus, for instance, if we choose [according to Eq,

(7.4)]

U: U12+U13, (7. 6)

U,; affects the expression of f; besides that of f;.

In order to make clear the connection between the
above situation and the lack of “causality” of the theory
in the sense used so far in this paper, let us assume
that the perturbation of the world line 1 can be de-
scribed as the result of an infinitesimal canonical
transformation generated by a function G(xy, %5, vy, V).
This would be a realistic mechanism for instance if the
mass of the third particle in Egs, (7. 2) is very large
compared with m and m, and the perturbation is much
smaller than U;, or effective only for a short time in-
terval. If we now want that the perturbation modifies,
say, X; and v, without affecting X, and v,, the function
G must satisfy the relations

{e,x}#0, {G,vif#0, (7.7)

{G, %} ={G,n}=0, (7.8)
which imply in turn, via the Jacobi identity,

{G,{xar, vp k=0, (7.9)

On the other hand from the “localizability” conditions
and the Jacobi identity it follows that

{%ag, vat =Txg5, ik, (7.10)

with the consequence that the independent expressions
of the form {xu,vz,} are just six in number, Were now
these quantities functions of X, and v, only, as it happens
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to be for free particles and in the nonrelativistic case
(precisely funetions of only v, and constants, respec-
tively), the system (7, 8) would be Jacobian and would
admit six independent solutions, Conseguently it would
be possible to modify the components of x; and v, in a
completely independent way. In the actual relativistic
case with interaction, however, as it is apparent from
the expressions we have explicitly calculated, the
quantities {x,;, v,;} do depend on %,, v, besides X,,V, and
even more, for given values of X, v,, they are inde-
pendent functions of the former variables. Then from
Egs. (7.8) it follows that

{6, x}={G,v}=0 (7.11)

(i.e., also G=0), which contradicts Eqs. (7.7). That
this result rests specifically on the lack of “causality”
is apparent from the fact that the vanishing of the ex-
pressions {x“,xz,} combined with the covariance of the
vectors X, X, entails the simultaneous vanishing of the
mixed expressions {xy;, vy}, %, v}, {014, v2;}. These
last identities in turn, combined with Jacobi identity,
would imply that {xzu ) ,} are functions of only %, and v,
in force of the Poisson bracket relations

{xik, {xu, xzj}}= = {x2i’{v2j’x1k}}_ {Uzn {xikstI}}a
{Uik,{xzi,vz;}}: - {be {021, Uik}’}- {”21: {UlkyxZ{}}e

These considerations shed some light into the inner
physical mechanism of the zero-interaction theorem, If
we assume the point of view of looking at the Hamilto-
nian formulation as obtained from a Newtonian-like dif-
ferential theory in the form studied by Hill and Kerner,
as outlined in the Appendix, we should not forget the
circuitous route along which this latter can be deduced
from a manifestly covariant action at a distance theory
of the general Van Dam-—Wigner type,27 under the as-
sumption of analytical connection of the actual world
lines to the free particle motions, % It is apparent that,
while the physical limitations put on the initial value
problem by the keveditary character of relativistic
dynamics are obscured in the transition from the com-
plete integro-differential formulation to the instan-
taneous differential form, they reappear in a meaning-
ful way within the Hamiltonian formulation as a lack of
“dynamical independence” or “causality” of the parti-
cles positions, an effect which manifests itself neces-
sarily at the order 1/c?, i.e., at the order of the
radiation effects, % This “dynamical dependence” no
longer occurs for the canonical variables Q, p since
they are in some sense only mear variables in the re-
gion where the interaction is important. On the other
hand, as we have seen, it is always possible to save the
“localizability” of the particles positions, a fact which
in the spirit of the above discussion, should correspond
to the existence of an intrinsic meaning of the world
lines themselves. Since we have explicitly given a meth-
od for the construction of physical position variables
(in terms of the basic canonical variables) which satisfy
the world line condition to any order in 1/¢?, our re-
sults should apparently disprove the widespread opinion
according to which the zero-interaction theorem pre-
vents the existence of invariant world lines within a
relativistic Hamiltonian framework. 1% %57 At the same
time while we agree that the physical implications of

(7.12)
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any theory in which the world line condition would be
violated are rather obscure, 3»4! we can claim that
abandoning the identification of the canonical variables
as physical positions of the particles does not render
the relativity principle necessarily vacuous, 11+1%143

A second point to be examined is the structure which
the canonical generators of the Poincaré group assume
in terms of the physical variables X, X;, vy, Vo. From
Egs. (2.4), (2.5), (2.7), (4.4)—(4. 6), taking into ac-
count Eqs. (6.14) we have

P:P(O) + (I/CZ)P(I) 4o

1)1
={m vy +myvo} + P {E [2myv% + 2mpv + UV (7))

X (myVy + myVy) +|:__m17; 2 p. Wi-v,)
1 14u'®

-—p. + =z
po T (myVy mzvz)] P r

£ (my - my)

B -y, -
+[m (v = V) (myvy + myvy) om

W\ Vz)z] (v - vg) = 30V () (v - vp)

1140®
-3y ar T (Vy=v)rpt--.,

(7.13)

H=mcz + HO 4+ (I/CZ)H(I) o

=mc? +{zmvi +2myv} + U ()}
1 , 111 .
+t 2 {%(WH‘H +myvh) + 5 [ﬁ (myVy +myvy)

2 171
+ “"% v - Vz)z] U )+ 5 [ﬁ (r - (myvy + myvy))?

W Ly
y @ " om 1= Vg)* (myVvy

=2(r-vy)(r- vz)]

1
+mavy) - QP ()~ o T (V1= Vo)« (myVy + myvy)

(¢ ~ ~
x2 B 4y~ V)0 - 2 (v - V) )
+L ~7 U“”(r)1 dU )+i( )}+--- (7.14)

J:J(O) + (I/CZ)J(i) U

1
={mX A v+ myX A} + ] Fmyvix A vy

+ 5maVERy A Vg + % g%y Avy + max, Av,

+ur Ay - v) [UD () - [r N (myvy +myv,)
+ (my Xy + myXp) Ay — Vz)]ﬂ(“(f)
WP AWV = Vy)p+ee, (7.15)
K= K(O) + (I/CZ)K(D +.o.
== {myx; + myxo} - é {%mw%xl + amyvix,
+ % (myXy + maX) UV () - %Q“’('r)r} +eee. (7.16)
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These expressions also represent the fen approximate
constants of motion which follow from the approximately
relativistic Lagrvangian (6, 39)—(6. 41) via the standard
route of the Noether theorem (see Refs, 23 and 25). Of
course, from our point of view, they are but the first
approximation to the ten exact constants of the motion
which we knew from the beginning. We can see in
particular that the linear and the angular momentum do
not have their simple standard kinematical form in
terms of X;, X;,Vvy,Vy, a fact which is but another
manifestation of the zero-interaction theorem® and is
related to the physical circumstance that within the
instantaneous formulation there must appear terms
representing linear and angular momentum which are
being transferred between the particles at the given in-
stant. In this connection, moreover, it is interesting to
see the form assumed by the center of mass defined in
Ref. 1. We have

R= {m1x1+mzxz} { [“(vz vz)—Q‘“(r)]r}

m

=[% * (32 2m (“(Vz V) - Q&;"‘zl(y)]x‘
|2+ o (=D - 2

(7.17)

where the role of the “distinguishability” potential

Qi .x,3(r) should be noticed and the fact that R, at least
to tlhe PN approx1mat10n, does retain a Newtoman—hke
structure, 23

2
RN,PNZQ(M-I/M) x'r, (7.18)

with generalized masses given by

My_ my
M~ m

11
c? 2m

(k8- 20- 28,00, (7270,
(7.19)

Note also the different roles that the “potentials” play
in the expressions given above. In particular, the non-
linear term % () occurs only in the Hamiltonian, Final-
ly, it is apparent that in the asymptotic limit » — « the
standard free particle expressions of the generators in
terms of physical variables are recovered only in the
case of short-range forces even if, as we have seen,
the accelerations themselves vanish in the same limit,
In the case of long-range forces, asymptotic interac-
tion terms survive in general in the expressions of the
generators of the homogeneous Loventz subgroup
(relativistic angular momentum). For instance, under
the conditions (6. 54) for the existence of associated
“adjunct” fields, we find

(free) (int)
Jr i Jumnt + Ja.sympts

({ree) (int)
Kr“*=’ K +Ka.sy‘mpt’

(7. 20)

with
J(O) (int) _ 0,

asympt
U‘“’(r){r/\[(l -k 7‘ At +k)) (Vi - vy)

(1) lint)y _
Jumn
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iy — iy
2m?

(myvy + mzvz)] = (myX; +myX,)

=y ny ny
N=gE W= Vo) + X Avy + mxz/\"z},

0)Unt) _
Ka.smnt - 0

(1) tint)
Kumpt

- U () (%, + %),

which do not vanish asymptotically if U @) ~1/7,
These results are in agreement with the conclusions
drawn by Van Dam and Wigner and Cooke®® in the gen-
eral case of manifestly covariant theories based on
action principles of the Fokker type. In particular we
recover the fact that the asymptotic interaction terms
are a 1/c? effect. It is interesting to find that for long-
range forces the “causality” conditions themselves are
not satisfied asymptotically at the order 1/c?, a fact
which must be interpreted on the basis of our discus-
sion on the initial value problem. For example if Eqgs.
(6. 54) are satisfied we, find

(7.21)

SITIEY
I {(r. (mqyvy +m v))[3+ 2 ah® g +k)]}
m2 TR T

1 m
X Um)("’)ﬁu + pooc {(1‘ o (myvy + mzvz));

1
1%
><[2 y

m_3,m L ke = 1)] 14U
X[p. 2 ;1?,‘,, %-11f7r ar

R(e-1
ah® o 1)] =T (V)= Vo) (my— my)

A ymy—-mg Lo ey ] ©)
+m2{ o [2 L atbg+r)| U0)

1
X (w15~ v25) + 70y —v2)) pn

1 ln-m)  Bu (o m

X{z [ 2mymy * m +(2 “)

x E a(l,k)(z +k)] U(O)(’)’)} (7{(1)1, - ’021)
[N

1 924 )
p2 3(vyi— o)y 9(vy—

which fails to vanish asymptotically for generic values
of the masses no matter how A®(p,r) is chosen (for

an exact one-dimensional case see R.N. Hill). !? Clearly,
all of these asymptotic features are strictly related to
the fact.-that for long-range forces the physical position
vectors X;, X, do not approach asymptotically in a strict
sense the free particle expressions q;,q», as already
mentioned at the end of Sec. 5.

— 7y (W1~ vy)) + 2, (7.22)

A third point to be examined is the consideration of
possible superluminal velocities of the particles. It has
been observed by Currie!® that the relativistic invari-
ance of the differential equations of motion does not
prevent by itself alone the possibility that the particles’
velocity happens to exceed the velocity of light. It is
worth noticing that this possibility can be ruled out in
our context under simple regularity assumptions on the
interaction potentials U(p,w) and A(p, 7). Actually,
should the velocity of one particle, say vy, exceed the
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velocity of light, there would exist a reference frame in
which v, becomes infinite. On the other hand, since

vy ={x1,H}, this can happen only for values of p,7,P for
which X, or H are singular. Now the singularities of the
Xx.’s and H are related to the singularities of U and A,
If, for instance we assume that these functions are
singular only for p=0, v; may happen to exceed ¢ only
if a reference frame exists in which p vanishes at a
certain time, Since, however, the phase-space trajec-
tory of p as viewed in different reference frames differs
only for a change in the time scale and for a space rota-
tion [see Ref, 1, Egs. (4.30)—(4.38)], the vanishing of
p has an intrinsic meaning and thus must occur in
every reference frame if it does in a particular one,
Consequently the velocity of the particles may possibly
exceed ¢ for a set of initial conditions having zero mea-
sure at most, Let us note that the assumption on the
singularities of U, A are just met, at least in the PN
approximation, in all the specific examples discussed
in Sec. 6.

A final point is to consider the limiting situation in
which the mass of one of the particles, say m,, goes to
infinity, It is easy to find that x; and X, become causal
in this limit, independently of the form of the functions
U,A (and 2), and we recover the nonrelativistic
expressions

x=Q+p, X=Q (7.23)

In the same limit, putting P=0, Q=0, the Hamiltonian
becomes

2
_ 2 2, P1 0 1y 1 4
H=[myc?] +mye +{2m1 +U (7’)}"’ Cz{ 8m'f'p’

p1<I>(r)+ f(r py) 2\I/(r)}+--- (7.24)

It is mterestlng to d].Stlng'UISh here the various possibil-
ities which occur in the case of an associated “adjunct”’
field corresponding to different tensorial ranks. For
example if £ =1 =0 (scalar field) we have

:1;(1’)5— U(°)('r), E(T)EO, (7.25)

i.e.,
1
H= [mzc?‘] + m102 +{2—7;z; p% + U(O)(’i’)}
1y1 1
- ;{g;n—gpfﬂ‘ mpr“”(r)}Jr (7. 26)

which is but the PN expansion of

H=[myc?] + cV[my + 1/ UD () Pc? +pi, (7.27)

typical of an external scalar field. On the other hand if
=0, I=1 (vector field) we have

$(r)=0, ¥()=0, (7.28)
ie.,
1 ¢
H=[myc* +mct+ {_ir_n:p% +y® (’r)}
1 1,
= —=pi(T 7.29
+ c? { 87’}7.? pi} ( )
which is the PN expansion of
H=[myc?] + cVmic +p} + UV (), {7.30)
typical of a static external vector field.
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TABLE I. Approximately Relativistic Lagrangians

=—m +{3mw +3mv? - UV ()}
+ 0/ dmevy* +Ipy}

Post-Newtonian Interaction Terms
A, Linear case
1. Havas and Stachel “Lagranglan” for scalar field®

dU( )
Cev)@e vz); p ]

Ipy= i[(vi +vyf =V, V) UV () -

k=0, I=0:single “adjunct’” scalar field
QU ) = (g —my)/mUD (),

0
) =22 v«»()””’

jU e

30) =(Bu/m~1) UG,
E_l ay®
V) =L,
2. Bagge®
(0!
Ip % [(Vi 'Vz) U(O) (’r‘) 0V1) (r Vg) - dgy )]

k=0, 1=0:8ingle “adjunct” vector field
QW () =( ZL=T2)7 0 ()
2 " )
Ty =2 gy Lau™”
Z )= — Ut )

B0r) = Bu/m) UV @),

A particular case of 2 is the electromagnetic “Lagrangian”, 2a.

2a. Darwin—Breijt!6:18
U () = eyey/7,

B, Nonlinear case

3. Einstein—Infeld—Hoffmann!’

In=—3Gmomym/r?+4

(r-vi)(rwi)]
A

Ii3v12 +3 =TV *Vy

m
Gm1 2
r

?

k=0, 1=0,2, a'%"=—-1, a%"=2 :superposition of “adjunct”
scalar and tensor field of rank 2,

UO ) =~ Gmymy /7,

QW) E[(m1 ~mo)/mIUDP) = G lmy —mydu/7,

1 dU

1112

o) =~ U“”( ) =G (m +2p)mymy /272

= (1/m+1/2u)[U(°)(r)]2,

30) =301 +p/m)UO ),

~ (0)
S = LAUD
m v dr

4. Bazafisky?!

2 2
me;e. Mo+ MmMoey”
IPN=__.G2__1_2__ G 1 2, 2 2272 1 )

+3(8v 2+ 8wy — v o vy — (0 o v) (r o vy) /72| Gy /7

+3L60; W) + (o v) (X vp) /72l eyey/7,
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TABLE 1. (Continued)

k=0, [=1:q5"0=1,

k=0, l=0,2 :aG(°-°)=—1, aGQ,D):Z:

superposition of “adjunct” scalar, vector and tensor field of
rank 2

UG =UL 0) + UL () =CGmymy /7 + ejey/7.

Q(“(‘r)=

m:nmz UQ @) =~ Glmy —mpu/r + ejey(my — my)/mr,

E - ( +21—u) O Y

2 2
mo€q" — mye
+2 (.l_ _..1_4._.1.1__.1_2_.
m  2u

0) ) (7
5o, )Uo U o),

&0 =:fnﬁvg°>(r) +3 (1 +%)Ug”(r),

T =L 1y00) L g® e,

To conclude, we want only to stress that the results
obtained in the present paper tend to emphasize the
main significance of the fully canonical description
summarized by Eqs. (2.4), (2.5) and (2.7) as that of an
asymptotical description which gives only mean infor-
mation on the detailed space—time development of the
system and from which, for example, the “dis-
tinguishability potential” 2'"(») has disappeared. From
this point of view, if we are given a theory in the
Newtonian-like form, we are naturally lead to an
asymptotic canonical quantization along the standard
route or possibly on a more geometrical basis® in the
spirit of an S-matrix formulation of the quantum theory.
A less ambitious program could be for instance to
perform a Bohr—Sommerfeld quantization?’ in a given
approximation for some of the theories contained in our
general “Lagrangian” (6.39)— (6. 41), such as the gravi-
tational “Lagrangians” of EIH or BaZafsky.

APPENDIX

We assume we have a direct interaction theory in the
form discussed by Kerner and Hill (see Refs. 19 and, in
general, 14 and 20). Then the equations of motion for
the two-particle system are expressed as an analytic
first order system of differential equations in terms of
the physical positions ¥; and ¥, and velocities v; and 2,
which, from the present point of view, play the role of
fundamental variables, We pretend now that the state
of the system can be completely specified by a set of
canonical coordinates Q, P, p, 7. By means of the meth-
od of Hamiltonization proposed in Ref; 19, it is possi-
ble to prescribe Poisson bracket relations among these
variables in such a way that the transformations of the
Poincaré group are canonical transformations, Then
we can construct the infinitesimal generators as func-
tions of the variables ¥,,%,,%;,v; and, consequently, the
variables of the scheme B (see Ref. 1) for the given
realization. Taking into account Egs. (2.11), we obtain

Q=Q(x1,x2’vbv2)’ P:P(xI’xZ’viva)n (Al)
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Then we set by definition
PA(xlrxb vy, 02) = S:(xl,-xh vy, v2) STy

Sy(®1, %2, v1, ¥2)
Q4¢1, %5, v1,¥9) =arctan 2 2

S, (1, %3, 04,0)

cOS@ e~ sing cotdr,
- sin@ 74~ cosg cotbr,

Ps(xi’ %g,V1,Vp) = S(xiyxb Uy, ¥y)

=grctan

(A2)

2

2
=15+ =7
¢ Sin26 "¢

Q5(xl’x2’vbvz)
+f[s(x1, von ,UZ)’ Qs(xh L ’xZ)yPG(xiy s :02)]

4
= arctanlr-’;tsﬂ— y

where f is an arbitrary function of its arguments, By
comparing such equations with the scheme B of the
rotation group for the single particle realization (see
Ref. 3), we see that the expressions obtained by inver-
sion of Eq, (A2)

O=W&,%,V1,V;), T, =T, &,%3,01,2),

6= 0(x1,%9,V1,V2), To=mglW1,¥2,01,%2), (43)
are canonical variables and it follows that

S,=—sing my~ cosg@cotér,,

S,= cosg e — sing cotér,, (A4d)

S,=m,.

Finally, let us construct two quantities, A[SKy,...,s),
Q®y, ... ,02), Pgl¥y,...,0;)] and B[S(k,,...,0y),
Qel%y,...,0s), Pel¥y,...,v5)], which have zero Poisson
bracket with

Qs(x]_, s 702)
+f[S(x1, v ;UZ)y Qs(xla e ’02)9P6(x1a see ’UZ)]-

As a consequence, A and B have zero Poisson bracket
also with ¢, 6,7,,ms. Therefore we can set p=g(4, B)
(g arbitrary) and construct finally a canonically con-
jugate variable 7,=¥(A, B). In conclusion we have a
set of internal canonical variables such that

(A5)

(A6)
(A7)

p:p(xlngaviy vy), "zﬂ(xlyxbvi’vz)!
S=pAnm.

It is clear that in the above derivation there are two
elements of arbitrariness, namely the choice of the
functions f and g. Now, in order that the state of the
gystem can be specified by the values of the variables
Q,P,p,w, it is necessary that the system of equations
(A1) and (A6) is globally invertible, i,e., extablishes a
one-to-one correspondence between the two 12-dimen-
sional Euclidean spaces coordinatized by the Cartesian
variables Q, P, p, 7 and ¥, %,, vy, ¥y, respectively. This
must be compatible with the asymptotic conditions,
Precisely, in order that p and ¥; — %, can be identified
in the center-of-mass system for large separation of
the particles, it is necessary that Eqs. (2.2) and (2.3)
are satisfied asymptotically when q; and g, are replaced
by %; and x; and py, p; by their usual relativistic free
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particle expressions in terms of v; and v,. In conclu-
sion, starting from the Newtonian differential theory,
our basic assumptions would be satisfied if the above
conditions could be met for some appropriate choice of
the functions f and g. That this is not a trivial point is
shown by the following considerations, One could
directly identify the variables @ (&, %,,v4,,),...,
Pgy(x4,%,, 04, ;) with the corresponding rhs expressions
in the scheme B for the free particles,! Then, by in-
verting these relations, one could construct the varia-
bles p(x4, %3, vy, ?;y) and 7(¥y,%,,v4,?;) in such a way that
also the function Mc has the free particle expression

(A8)

However, were Eqs. (Al) and (A6) globally invertible in
this case, with the asymptotic identification of the
particle positions with q; and q, simultaneously satis-
fied, we would have a quite peculiar kind of interaction
without scattering effects and possibility of bound

states of motion. (We think of bound states as of trajec-
tories which are bounded in the variable |x;

Mc =119t Tp»

Colla = XQC-mo

and thus in p, ,, from f=-cto =+, Alternatively,

bounded motions can be defined in terms of an action-
angle variables formulation for the internal dynamics, )
This situations is strictly analogous to that of the
standard nonrelativistic Hamilton—Jacobi theory where
any system of interacting particles can be reduced to
the free particle form by means of suitable canonical
transformations; these transformations, however, are
defined only locally in the phase space.
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Asymptotic radiation from spinning charged particles
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A manifestly covariant expression for the asymptotic energy~momentum and angular momentum emitted
by a charged spinning particle in arbitrary motion is found. A center of energy theorem is discussed and it
is also shown that, for spinning particles, the radiation rate is not an invariant.

. INTRODUCTION

The purpose of the present work is, in part, to
correct a previous paper written by one of us,?! and to
extend the considerations of that work. The present
work is the first of a two part series dealing, first,
with primarily the calculation of the asymptotic linear
and angular momentum emitted by an arbitrarily moving
spinning classical (nonquantized) charged particle and,
in the second part, with a derivation of the consequent
equations of motion of such a particle.

The following discussion will deal, successively,
with the construction of the electromagnetic field tensor
corresponding to an arbitrarily moving spinning
charge—the evaluation of the corresponding stress—
tensor—and consequently, with the construction of the
expressions for the asymptotically radiated linear and
angular momenta.

Finally, a center of energy theorem will be briefly
discussed, and it will also be shown that the energy
radiation rate from a spinning charge is not an
invariant.

The discussion will be manifestly covariant
throughout.
1i. EM FIELD TENSOR

Here, we take as the starting point in calculating the
field tensor, F*"¥, the known expression for the 4-vector
potential A*, which is the sum of a nonspin part, A},
and a spin contribution A¥, given by?

eV

A‘x:,s. =- 'a—V (II. 1)
@
and
. e da (M"'R,
A =5 RE vV, dt ( RPV, )’ (1. 2)

where we are using the metric g,,=diag(1,1,1,-1),
and world length d78= - g,,dX*dX’; R® =X* - Z° is the
light vector, where X* denotes the field event, and Z%
the retarded particle event; V* =dX*/d7; M** is the
moment tensor characterizing the particle, where we
assume that the rest frame electric dipole moment of
the particle is zero (so that M**V, =0); m is the particle
mass, and we take the speed of light to be one.

Carrying out the above differentiation involved in A
and utilizing the nonelectric nature of M**, we obtain
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e e o M“YR, R%a M*“YR
AP =2V + ( uy v I v)
5 gt (MR, + t =),

(I1. 3)

where a dot over a symbol signifies differentiation with
respect to 7, @* =dV*/dv, and p=- R*V, and physically
denotes the 3-distance between the field event and re-
tarded charge event—in the momentary rest frame of
the retarded charge.

Now, we wish to calculate the field tensor, F*¥
=AY — 9¥A*, To facilitate this, we use the general
relation®

PCH =CH*r=—C*R*/p (I1. 4)
for any kinematical quantity C*.
We thus obtain
PAy ., =- (e/p*)a" R” + V¥)\) (IL. 5)
and
A = (e/mpY)EM U + LM** U, R*
— LMY+ MPR N + LM “ R RY)
- (e/mp¥) Gag M* U + tay M** U R”
+3dy M**U,R" — 3a*M**U,R" - sM**U,a"
—ayM*¥ - fay M**a R¥ - 3M*Y), (I1. 6)

where A\*=U®+a,R®, ay=a,U°, dy=d,U° and U*is
defined by the relation, R* =p(U* + V*),

Adding these results and antisymmetrizing then yields
FYY=F&, + Pl + Fis, (I. 7)
with
Py == (e/mp")[3dy MY U, R + 3ay MU, R*
+ L3y M2 U, R - 1@ Moy R
- La, MWVeq  R*1+ (ay/p) M¥*RR"
+(1/2p) M™*R R* + ma""R* + may, VR"],
(II. 7a)
Ft5 =~ (e/mp")[3(ay/p) M**U,R* + (1/2p) MU ,R¥
+2ap MY UL UM - AMPU g
+ayM*¥ +(1/p) MvaRaUu] MR mviry#),
(I1. Tb)
F&4=- (e/mpY)GM U, U + M*") (. 7c)

and where the lower index (- 1, - 2, — 3) indicates the
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order of p entering the expression—and further,
MY U R¥ =M™ U,R* - M**U,R" illustrates the mean-
ing of the bracket notation.

In passing, we note that the above expression for F*
is in keeping with a theorem of Goldberg and Kerr,*
According to this theorem, F"” must have the p-depen-
dence indicated above, and in addition F{},R, =0 and
Fl5R,=AR", A being a scalar. A brief calculation
shows that, indeed, these latter two conditions are
satisfied.

ll. VALIDITY OF MOMENTA EXPRESSIONS

Here we construct the general expressions for the
asymptotically radiated linear and angular momenta
and demonstrate that they satisfy certain necessary
conditions of definition.

We take the expression for the asymptotic radiated
momenta to be of the same form as for a nonspinning
charge. So we have®

Pta=tim |, 0", .

and

dJtg=lim f( N Adad’ A (11. 2)
for the asymptotically radiated linear and angular mo-
menta, respectively, where the limit procedure and
(A0) together denote the customary asymptotic space-
like anaular hypersurface. Also, ©"" denotes the sym-
metric stress tensor (to be considered in detail pres-
ently) and

JAV=_ (O%EXY @O XH) (I11. 2°)

is the angular momentum “density.”

In order for these definitions to be justified, however,
it must be shown that they are independent of the orien-
tation of the spacelike surface (Ao). We now turn to
those considerations while referring to Fig. 1. Now,
since ©"” and J “*” both have vanishing 4-divergence
in the 4-volume bounded by Aoy, Ac, and the light-cone
surfaces AC; and AC,, Gauss’ theorem implies that the
integrals of ©** and J**” over A0, and A0, are equal,
provided that the integrals over AC; and AC, vanish,
and this equality implies that the above definitions are,
indeed, independent of the orientation of (A0).

FIG. 1. Light-cone con-
struction related to mo-
mentum emission.
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To prove the point of concern then, we shall demon-
strate that, in the limit as p =, the relevant integrals
over AC, and AC, do vanish. We consider the linear and
angular momentum cases separately:

For the linear case we shall prove the point by show-
ing that

lim [ ©“'R,dw=0,

px

(III. 3)

where the integration is over either AC, or AC,, and
we note that the light-cone surface element is given by
Red*w, where d*w is the invariant 2-element associated
with the light cone, and is given by pdpdw, where dw

is an ordinary differential solid angle. Thus, R,d’w de-
pends quadratically on p.®

Now, ©*? is quadratic in the F *8, which in turn, de-
pends on terms of order p-!, p=* and p-* [see Eq. (II.7)].
Thus, we only need to consider that part of ©** which
depends on p~?—since we are taking p — «,

By a straightforward calculation we find that
0 =(/4n(F{ Folyy + 18" FC) Fopn)
and (for later purposes)
OL%) = (1/4mM(F {3 Folay + FER Folyy + 28" F&) Fopny)-
(I11. 4b)
Further, we find by a lengthy calculation, that'®

B —_
F&H Fapy =0,

(I11. 4a)

(111 5)

which then reduces ©(%3, to the expression [using Egs.

(. 7]
ory — L B°RY, (i_@_éﬂ).
0= 4g T pf 2m  2m 2 m

2m  2m 2

- Gzezlt/ MaBA}BGRuRB_ ;i__ MNBMBGRNRG]

242 o, LPL D
+ 280 1oL R Ry + S MM R 4Ry

2 2,2 25
e e *»
g Ryt (5 - S aesa,

2 2 o 2 .
+ 3"—;@ M**Uya, + 5 N1 *°R, a

petay B 2272
+=me R, Va+eip(ay,~a?) ¢ . (I11. 6)

We note here that ©¢}, consists of a scalar quantity,
call it A, times R“R".

Returning to the contribution that ©{}, makes in Eq.
(II. 3), we see that it is zero, as AR*R'R,=0. Thus,
Eq. (III. 3) has been verified.

The angular case requires more extensive considera-
tions, as follows.

We note that the expression
lim [ J*'R,d*w=lim [ (0%"X* - ©**X") R, d*w
e

P

may only have nonzero contributions from the portions
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FIG. 2. Asymptotic space-
like and timelike surfaces
involved in momentum
emission,

of ©* depending on p=? and p~*. Again, as before, ©2%,
makes no contribution, so that we only need consider
elh).

Now, it can be shown by direct calculation that

F& Fapiay =0 (111, 7)
so that ©{%, has the form
Oy = (1/47) * (FLS) Fola) + FEDFS ). (111, 8)

Now, recalling the statement at the end of Sec. 1I,
that F&Y, R, =0 and F/’5, R,=AR", we see that

©%4) Ry = (1/47) *(F &4y Ry Fyl gy ~ ARPFy{ 1)) = 0.

(111, 9)
Therefore,
lim [ J**'R,d*w=0 (I11. 10)
P -0

and our definition of angular momentum emission is
also independent of the orientation of (Ao) as it should
be.

In the next section we shall be interested in actually
evaluating the expressions for the linear and angular
momentum emission rates. To this end, we note here
that the expression for the momenta [Eqs. (III. 1) and
(I11. 2)] can be altered so that they are easier to evalu-
ate. Referring to Fig. 2, we see that by applying
Gauss’ law to the space—time volume v, and remember-
ing the above result just proved, the integral over the
annular region (Ao) can be replaced by an integration
over the timelike strip Ao,, which is constructed to be
parallel to V/,. This surface then has the components,
do* =p*U* dQXdT, where dQ denotes the differential of
solid angle in 3-space. The expressions for momentum
emission then become

Pl =-lim [ e**u,ptdQar (1. 11)

and

dJiy=-lim [ J**U, p?dQdr.

p-wo

(I11. 12)

Finally, we see from these expressions that dPy,, will
only depend on ©{3%,, and dJ}4 will depend on ©{%, and
possibly on ©('%,.
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IV. ASYMPTOTIC RADIATED MOMENTA

The asymptotic radiation rates for linear and angular
momenta can now be calculated. However, since the
general expressions turn out to be terribly lengthy, we
shall confine ourselves to the “small spin” case, which
means that we shall neglect all terms quadratic in the
M®8, in the final expressions.

We proceed with the linear momentum case first:
Beginning with Eq. (IIL. 8a)

dPty=~1lim [ ©**U,p*dQdr (I11. 11)
P

and recalling that only ©{%, contributes here, where
©/%, has the form AR"RY, we obtain

dP:ad_ : ® .3
T ——‘1’1_r2 ARYp°dS.

(Iv.1)

Taking the expression for A from Eq. (III.6) then
gives the relation

dPly _  lim f (___ _ _sg_a_q _ 3ea%,>
dar %77 anp® 2m 2m

.[(e_az — _eﬂ - 3eaU MO8y °R R
m 8 6

3ea ° e o
~ =20 MR, R, - = M“BMBGRO,RG]

9 242 o ° 3 2 ° .
+ S MO MR R+ S M **M R, R,
€ YraBpi 6 ) (e2d edy oB
+WM Mg Ry Rg—p 7—-—'—”’2— M**U,a,
392 2 pez

eta .
"'——m_qMaBUaaB""—n?MaBRaaB
pezaU "aBR V. + 202(n2 2 R* dQ 2)
+ =2 M**R, V, + ot (af - ) . v,

In order to carry out these integrations we must use
the relation R* =p(U" + V"), Inserting this relation into
the above equation and utilizing the well-known expres-
sion for the integral of a product of unit spacelike
4-vectors U® gives a terribly lengthy expression, which
is shortened by neglecting quadratic spin terms to the
form

2 2
dZ?:g:%(% M*ay - L 3ivoq

_2 M8V, a, V* + 242 V¥
m 8 ’

where the s.s. subscript signifies the small spin ap-
proximation made.

This is then the linear momentum emission rate in
the small spin limit,

We next consider the angular momentum case: We
start with the expression

dJih =- lim [ J***U,p*dQdT (I11. 12)
p -
and recall that ©}%, and ©}%, may contribute here, to
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give
d vy
f=-tnm | L0 X" -6k X”)

+ (e(o:g)Xu - e(c:g) Xv)]daa ’
where do, =U, p*dS.

iv.4)

The first integral above varies as p and the second
as p° and we shall indicate the corresponding contri-
butions to the total angular momentum emission with
subscripts 1 and 0, respectively.

Now, using the fact that R* =X* - Z*, we have

dJ‘-‘vll X
d(‘i)' = - 11m [(9(‘{12’) RU- (_2) RV)
T P
+(0%, 2¢ - 02}, 27)]ds,. (Iv.5)

Again, we recall that O£, = AR*R®, so that the first
bracketed term above gives no contribution. The surviv-
ing term which now varies as p° yields a very lengthy
expression, which we avoid by taking the angular mo-
mentum about the event, Z", of the retarded charge
(i. e., we choose our origin at this event so that we may

place Z* =0, for all y). With this proviso then, we
have that
dJ(U'V _
ar = 0. (Iv.6)

Later, we shall indicate another way of expressing
this term (in terms of the linear momentum) in the
case that Z* #0.

We now have to evaluate

ity dJi

ar ks av.7

——llm/ (0( 3)X“—G(°“§)X")d
In this expression, we may replace X* and X* by
R* and RY, since the contribution coming from Z* is
zero in the limit as p — <« (and also because in our
special case we are taking Z* =0). Further, ©%, may
be taken as just (1/4m)(F{$, Fot,, + FES F, (), since
F&%) Fupy=0. Then, in the small spin case we have

eivs.(s):‘ll {RuR‘( M®UgR, - —5M6 aU

+ € “U €y ppeg,U ) ¢! a” 230 (A *R,R” + M®RoR")
+ (AZI““RQR" +MY*R R")
<[ G - 5 - 5 +

2
+ (R“U"+R”U“)<—~—723ma” Ma,U,

3e'at, e'ad? ]
2mpt ~ 2mp!

2

¢ < Mq, U, + e—;}i’) +(R*V*+RVH)
ﬁez"” M™U,q, - ~—5"’ (M* =R R’ + M**R, R
2mp 8% amp @ o
_ izx . (Muaa R"+M"5a R*)
mp 6 5 .

Inserting this expression into Eq. (IV.7), with X* re-
placed by R*, and then integrating, then yields for the
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angular momentum emission rate in the small spin limit
the expression

dJ*? e? 1 -
Ba8e — (__ 7n_ M[uaaavu]_

l 'r v wl
ar 2 m M™ VoV

+m M["“aua“]—%a[”V“]+§n-1f/}“"> ’ (IV.9)

where we have taken Z# =0, for all g.

Before concluding this section, we now indicate how
the requirement, Z* =0, may be relaxed in the above
expression for angular momentum. Under a coordinate
translation let the origin go into Z* (#0). Also, let
the subscripts i and f refer to the initial and final
(translated) frames, respectively.

Then
XP=X}_-Zz" (Iv.10)
so that
(%) %)
ar /, ar /
- lim / (@*rz* - 9%z do,. (Iv.11)

The Z* are constant in these integrations, so we
obtain

dJ*r dJ‘“’) ( . dP* _, dP*
(d'r), (df1 28 %
Thus, using Egqs. (IV.3) and (IV.9), we can find the

angular momentum emission rate about any origin, for
small spin.

) . (Iv.12)

V. IMPLICATIONS

In this section we consider two implications of the
preceding discussion: the center-of-energy theorem
for accelerating charges, and the lack of invariance
of the energy emission rate for spinning charges,
respectively.

The fact that a particle may emit angular momentum
even if it is not spinning (or moving along a curve)
leads to a theorem concerning the location of the “cen-
ter of radiated energy” of an arbitrarily moving non-
spinning charge. ?

The center of radiated energy in the retarded rest
frame of a nonspinning charge is defined by the
relation

i-1s 1 odd 73 44 73
Ri=lim [ Xx'e“dx/[ e“dx (v.1)
where (Ao) denotes the usual spacelike annular hyper-
surface, d°X=-do,, and all quantities are evaluated
in the rest frame of the retarded charge.

Now, the above expression in the denominator can be
expressed as

lim [ O4dXx=-dw, .,

p oo

(v.2)

where dW, , is the energy radiated by the charge (in its
retarded rest frame) during the proper time d7, and the
above expression in the numerator appears as part of
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the expression for dJ*f for a nonspinning charge—i. e. ,
dJ34 (no spin) =lim f“m e, xt-et xYhY4x, (v.3)
The second integral above is given by

,}1}3 f(Aa) OtalX =~ dP}, = (v.4)

since the 3-momentum emission in the retarded rest
frame of the charge is zero [see Eq. (IV. 3)].

Thus,

lim Jiagy @4X X =dJ % (no spin). (v.5)
Using these results in Eq. (V. 1), we now have
; dJt dJ*t Tawy -
i _ Y = |2
Re=-"aw ) NPT W B V-9

Now, (dW/dT),, . is merely the 4th component of
radiated linear momentum in the rest frame of the non-
spinning charge and is given by Eq. (IV.3) as

Lo 8o
(%,) = %e’a.

re fo

v.n

Further, (dJ*/d7)“% is given by Eqs. (IV.10) and
(Iv.13) as

dJ“) B S, 2 o9y :
(d'r e =3et(a' -t Z%), ., (V.8)
Therefore, we finally have

Ri={- /&)@ - @2 ")}, (V.9)

so that the center of radiated energy only depends on the
particle’s retarded acceleration and location and is
therefore constant, unlike the center-of-energy theorem
for free radiation fields where the velocity of the center
of energy is constant,?

Finally, we consider the lack of invariance of the
energy emission rate for a spinning charge.

Now, for nonspinning charges, one has for the
energy—momentum emission rate the expression

(V.10)

from which one easily shows!® that dW/d¢ is invariant.

We will now show that dW/d¢ is not invariant for
spinning charges. !

We return, then, to Eq. (IV.3), which gives

(2r) - (e
dT 8, 8 dT 8, 9
2

2
e fa* | 4 1 .
5 (— MA8q - = M*Pq,

2

- MOV ,a,Vi+ 2a2V4\) .
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And this gives then

() 21
at ). 3

i
V. 12)

Now, the last two terms on the right-hand side here
comprise an invariant (when multiplied through by the
factor in front of the bracket), but the first two terms
do not—and this completes the statement,

2
m

IR <

1 .
4 4
M, Mg, —

- M8V a,Y+ 2a2‘/) .

To put this proof into perspective, however, we must
say a few words about the procedure of neglecting the
quadratic spin terms [Eq. (IV.3)]in its execution,
Neglect of these terms is tantamount to assuming that,
for given values of the linear kinematical quantities,
spin terms like M8 or M can be made arbitrarily
small, We assume this could be done with suitable
(perhaps nonelectromagnetic) forces. That is, in the
present development, we are not concerned with the
existence of equations of motion which would determine
quantities like M ®® or /7*® in terms of linear kinemati-
cal quantities, Thus, we must concede that it might
result that the proper equations of motion of an electron
are such that the above proof does not apply.

*This work is part of a Ph, D. dissertation submitted by H. W.
™Now at the Department of Mathematics, Wesleyan University,
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The exact Markoffian evolution equation for the electron density operator n(t) averaged over impurity
configurations (describing a grand ensemble of non-interacting electrons in the potential fields of impurities
fixed in space) is not closed. The interaction term, that is, the integral involving the electron-impurity
interaction and the electron-impurity density operator is analyzed with the aid of diagrams after its
evolution operator is expanded in perturbation and its initial density operators are expanded in terms of
correlation operators. A closed non-Markoffian equation for n(t) is obtained without introducing any
approximations. This equation contains infinite sets of collision and initial correlation terms which are most
conveniently represented by connected diagrams, and which can be expressed in terms of n(t) and initial
correlation operators arbitrarily given. The equation is found to be identical with the closed evolution
equation obtained earlier in the fixed-particle-number ensemble theory with the bulk limit.

1. INTRODUCTION

A system of noninteracting electrons in a potential
field of impurities fixed in space, is a simple model for
a conducting solid at very low temperatures, where
electrons are mainly scattered by impurities. In dis-
cussing various transport phenomena, the Boltzmann
equation can provide a good starting point.! This equa-
tion is an approximate closed equation for the single-
electron density operator n(¢) averaged over the im-
purity configurations. The exact Markoffian equation
(hierarchy equation) for »(t), see Eq. (3.24) [which may
be obtained by averaging the Liouville equation over
impurity configurations] is known to contain another
unknown, the electron-impurity density operator, and
thus this equation is not a closed equation. In the past,
many attempts have been made to derive and generalize
the Boltzmann equation by introducing approximations at
various stages; many interesting results are known.? A
fundamental question however is: Can the Markoffian
hierarchy equation be transformed into a closed equa-
tion without introducing approximations? The present
paper deals with this question and gives a definite af-
firmative answer.

In earlier works,3+* the present author showed that the
hierarchy equation, (3.24), can be brought into a closed
non-Markoffian equation, * see (5. 9. 27), rigorously in
the bulk limit: N (number of electrons)— «, N, (number
of impurities) — =, Q (volume)— «, while N/Q
and N/ remain finite. This was established in the
theory dealing with an ensemble of systems with
fixed numbers of particles (electrons or impurities),
called a fixed-particle-number ensemble hereafter. In
the course of the analysis quantities like

SRR R) — [ [ PR £ R)IFPRY)

= (N, - 1P ®) -, DR

= _f(le)(R'l)3

where f41’ and f§2) are one-impurity and two-impurity
s s
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distribution functions defined in the N -impurity ensem-
ble, were dropped against the individual integrals;
while this is a neglect of a quantity of the order 1/Ns,
the accumulation of infinitely many such terms could
contribute a finite amount even in the bulk limit; this
may possibly destroy the final result.

In order to overcome this difficulty, we will present
a new theory, utilizing a grand ensemble of systems
with variable numbers of particles. We will show that
the hierarchy equation, (3.24), for the grand-ensemble-
averaged electron density operator can rigorously be
transformed into a closed equation, (7.9), without in-
voking the bulk limit. The resulting equation is formal-
ly identical with the result obtained in the fixed-parti-
cle-number ensemble theory with the bulk limit, Thus,
the present theory not only removes any doubt about the
previous result but also establishes an exact transfor-
mation, The latter fact immediately implies that the
closed equation accords a reversible motion just as the
original hierarchy equation, This is a significant con-
clusion since the bulk limit which was used in conjunc-
tion with the fixed-particle-number ensemble theory has
clouded the question of the reversibility with respect to
the said closed evolution equation, The present theory
is developed for a system with arbitrary impurity con-
figurations characterized by many-impurity distribu-
tion functions; the usual assumption of the uniform dis-
tribution can be obtained as a special case.

The theoretical development of the present paper
partially parallels that of the earlier work® dealing with
the same problem in the framework of the fixed-particle-
number ensemble. In particular, the expansion of the
evolution operator into a perturbation series is the
same. The specification of the initial condition in terms
of grand-ensemble correlation operators is newly
prescribed, however. For part of this development, the
author draws materials from the book by Yvon.® The
diagram representation and analysis proceed in a par-
allel manner except that Theorem C, which concerns a
special class of non-contributing connected diagrams,
is used in the grand ensemble theory.
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In Sec. 2, the Liouville equations for many-electron
and single-electron density operators are discussed.
In Sec. 3 a grand ensemble of systems with variable
numbers of particles is introduced. Correlation opera-
tors are introduced in Sec. 4. In Sec, 5 the reduced
density operator averaged over the impurity configura-
tions is expanded, and terms in the expansion are
represented by diagrams. These diagrams are analyzed
in Sec. 6. In Sec. 7, the interaction term which appears
in the hierarchy equation, is analyzed in a similar man-
ner, and a closed evolution equation is obtained. Re-
marks on the nature of the closed equation are given in
Sec. 8.

Throughout the text the units are chosen such that %
=1,
2. THE LIOUVILLE EQUATION

Let us consider a system of free electrons in inter-
action with static impurities, characterized by the
Hamiltonian

N N N
H=2 h+1 22 254 2.1
i=1 7=l a=1
= 4= T, 2.2)
)
. 1
hé”zho(rjpj)Em [p_’ +eA(r,)]2—e¢(1‘,), (2.3)

7 =9(r, -R,),

where m and — e are respectively the mass and charge
of a spinless electron; & and A are scalar and vector
potentials.

We assume that the impurities are fixed in space, and
we thus neglected their kinetic energies in our Hamil-
tonian H in (2.1), The impurity configuration may be
specified by giving the positions of N impurities R,,

R,, .. .,Ry_ in a probabilistic manner.

The density matrix in position space for the total
system is denoted by

playz = E ey T RRy Ry ). 2.0

The (density) operator corresponding to this matrix
changes with time according to the Liouville equation
.0p(2)

i ——=[H,p(t)]= Ho(t) - p(t)H.

5 (2.5)

Since our Hamiltonian H is the sum of single-electron
energies, no correlation is expected between electrons
except that coming from the (Fermi) statistical origin;
in the case of a grand canonical ensemble the latter can
simply be handled by the Fermi operator technique, Al-
so see below. The correlation between impurities [which
remains constant in time if ever present] can be handled
in a standard manner. If no correlation and the invari-
ance under translation are assumed, the impurity con-
figuration is specified by a single constant, i.e., the
impurity density n,= N,/§. This is the case for which
the great majority of works have been done.? The cor-
relation between electrons and impurities can, however,
be created in time by the interaction 7Y’, and must be
treated with care.
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In second quantization, the Hamiltonian corresponding
to (2.1) can be written as

H= [ By, &r, (x| k|28 (1)0(r,), (2.8)

where ¢ and y' are annihilation and creation operators
in position and satisfy the following anticommutation
rules:

{o(r), ¢' (@)} = ()t @) + o' e)eE) =6 (r - 17),
[w(r), @)} =yt (@), g x")}=0;

8 denotes the three-dimensional Dirac delta function.
The position density matrix is defined by

n(r,, T, RR, -RNS, B=Tr{y'(r )t Do} = (¢, |n(D)| ),
(2.8)
where the symbol Tr means the trace with respect to
the N-electron states, It was shown in our earlier work®
that the single-electron density operator n(¢) defined

through (2. 8), which in general depends on the impurity
configuration, obeys the following equation:

2.7

1%7% =[h,n()]=[hy,n(®)] + AZG; [Dq,n()].
In the present paper, we will be interested in the be-
havior of the (electron) current density only. The latter
can be obtained through the single-electron density
operator #(¢) with the impurity-configuration-average
completed: ’

2.9)

E)- = <n(t)> impurity average . (2 10)

The () can be sought from Eq. (2.8). However, the
impurity average of Eq. (2. 8) does not give a closed
equation for n(¢) since the interaction term, that is, the
second term of the third member gives rise to

A(%:[T)&,n(t)]),

which generates the dynamic correlation between the
electron and impurities.

(2.11)

3. THE GRAND ENSEMBLE

Since measurable thermodynamic quantities are the
so-called intensive quantities, that is, densities of
some sort, the precise numbers of electrons and im-
purities, N and N, do not enter into the final expres-
sions for these quantities. We may well consider a
grand ensemble of systems with variable numbers of
particles.

Let us denote the probability that the system contains
N electrons and N, impurities by Ow,wg, where both N
and N can take any nonnegative integers 0,1,2,--.
The set of H”-”s will be subject to

2 2my, =1 (3.1)
N=0 NS=O
The average numbers of particles contained in the
volume can now be expressed by
(Ny= 22 Ny 4, (3.2)
NN s
s
(Ny= 20 NJlyy . (3.3)
NoN s
When the system contains N electrons and N im-
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purities, the corresponding density operator will be
denoted by

=0y,n R, Ry, o o ’R”s)' (3.4)

with the subscripts denoting the N and N, dependence.
We may assume the following normalization condition:

Tr’,NS Tr,N{pN,Ns}

1
N /. . ./ d*R,d°R, + °d3RNs Tr,N{pN,Ns}
_ HN,NS ' (3.5)

We introduce the single-electron density matrix by way
of Eq. (2.8):

nN,Ns(rlyrz;Rl,Rz, e ,R

Py
s

=Tr N{Z/)' Yoy, N A

Summing over all N, we obtain

nN (r,, 1R, Ry, L . RN )
= Z CF (r,r;R,Ry, . . ’RNs)' 3.7
N=1

This matrix depends on the electron variables, (r,,r,),
as well as on the positions of impurities, (R;,R,, . . .,
RNs) The corresponding density operator Ny obeys
the L10uv111e equation of the form (2. 8) just as the
operator ny N, The diagonal sum of 7y , denoted by
tr{nN }, gives’the distribution function for N, impurities:

tr{nNs} _st(Rl,Rz, o Ry (3.8)

If we further take the “trace” with respect to the im-
purities {in the sense defined in Egs. (3.5)], we obtain

Tr',Ns{fN;f :NZ=0 HN,NS EHNS

The II y, can now be interpreted as the probability of
having N, impurities in the system.,

(3.9)

Let us further introduce reduced quantities by

nﬁ,"’s’(rl,rz;Rl,Rz, . ..,Ry)

_ 1
A I .0 f @Ry d’Rysp "Ry

ans(rl,rz;Rl,Rz, .. ’RNs)’

M=0,1,2,...,N,-1. (3.10)

For M=0, n(r,,r,)= ny gives the r, —r, element of
the electron den31ty matrix averaged over impurity con-
figurations. More generally, »‘’ corresponds to the
reduced density matrix for one electron and M impuri-
ties. These quantities are interrelated as follows:

fdaRl (rl!rZiR )_Nsn (rlyrz)
fdaﬂ,.,nﬁ,{’le,Rz, R
=(N,-M+1nf-"(--;R,,R,, .. ,R

M-l)'

(3.11)

In normal applications of the theory, the density
matrices with small M, say, M=0,1, are needed. It is
therefore tempting to approximate the factor (W, -~ M +1)
by N,, which is quite large, that is, of the order 10%°,
We, however, reject this temptation [as we explained
the reason in the Introduction]; we develop a grand-en-
semble theory and proceed in a rigorous manner.
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Let us introduce reduced quantities for the grand
ensemble by

©

A= 25 nOR,, . ..,R,),
Ng=H s
fW =ty = [@ra(r,r5R,, . .., Ry (3.12)
= Zf“”’(Rl, R : N (3.13)
Ng=M

By simple calculation we can show the following
relations

M) =tr{n @} =tr{n},
(Ny= [@R, f PRy = [ @R, tr{n (R}

We further note that there are no simple relations like
(3.11) which as in the case where the number of im-
purities is fixed, allow us to pass from n'#’ to n'#-1
by integration.

From (3.10) and (3.12), we can write a general ex-
pression for ¥’ in terms of {n, } as follows:
S

(3.14)
(3.15)

= 1
M) = [ —
nWR,R,, . . "R”)_NSE;M W=

I .,”deMﬂdRM*zn--dRNans(Rl,Rz, .. ,Ry). (3.16)

Likewise, ny_can be obtained in terms of n)

Ryg R,R,, . .. RNs)

fLZ%) 1 f deN wdRy ot dRy

XnWI(R, Ry, . . . (3.17)

The correspondence between {#*’} and {,, } is therefore
one-to-one,

N*L)'

A physical quantity A of the system depends in gen-
eral on the dynamical variables describing electrons
and on the configuration of impurities. Its average with
the N-electron-and-N -impurity ensemble is given by

<A>N,Ns:: Tr,N{AN,NspN,NS}XH;VI,N (3.18)
Its average with the grand ensemble is defined by

(A = E Z)n” WDy, x, wZZTrN{A”p”}

N=0 N =0
= TR{Ap}, (3.19)

where the new symbol, TR (grand trace), indicates the
diagonal sum in the grand ensemble. In particular, if
A is the sum of terms depending on the single-electron
variables only, and is given by

A= E a P = [ [ @y, &, |a|r)ytr)ux,), (3.20)
then its average with the grand ensemble is given by
A= [ [@r,dr,(x,|a|ryn(r,, 1) =tr{an}. (3.21)

By a similar calculation one can show that the grand
ensemble average of a double sum of the form

BE?bej’Effd%l dBr, 20 (x| bR, | T )9t (T, )y(r,)
(3.22)

can be expressed in terms of one-electron—one-impuri-
ty density matrix »'V(R):
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(B)= [ @R [ [ & d®r,(r,|b®)|rynV(r,,r:R). (3.23)
In a system which neither gains nor loses particles
both Iy y and Ily are constants, and each py , satis-

fies the L10uv1lle equat1on (2.4). It follows that each
one-electron density operator ny , satisfies Eq. (2.8).
Integrating the latter with respect to R;,R,, ..., Ry,
multiplying by (Ns!)‘l, and subsequently summing with
respect to N and N, we obtain

conlt)
Ly

= (g, 0]+ 1 f FR[3(r -R),n DR, 1]  (3.24)

This equation explicitly shows that the evolution of the
electron density operator n(¢) is connected with the one-
electron—one-impurity density operator »'"’(R, f). This
equation is sometimes referred to as the hievarchy
equation of the first degree. Since it contains two un-
known # and #‘!’, it cannot be solved in the present

form. We will later derive a closed equation for n(t)
from this equation.

4. CORRELATION OPERATORS

Since our system contains similar impurities, density
operators nNs(Rl,Rz, “e . ,RNS) must be symmetric, that
is, invariant under the permutations of impurity indices.
It follows that reduced density operators n‘’(R,,R,,

R,) are also symmetric. We will now introduce
correlation operators which satisfy the same symmetry.

The correlation functions x; involving impurities only,
are defined through the following equations:

FOR) AR,

FP R, R) =R f(R) + X, (R, Ry),

Wmﬁﬂﬁmummﬂﬁw&m
+ f{R) Ry Ra) + SR (R, Ro) + X (R, B, o),

aoo

Note that the suffices on ¥ indicate the numbers of
impurities. The correlation operators involving elec-
tron and impurities are defined as follows:

4.1)

=g,
DR, =R+ v, (R,),
n®(Ry, R,) = f(R,) flR)n + IRV, (R,) + fIR) v, (Ry)
+ X (Ry, Ry)n+ v,(Ry, Ry),

4.2)

By taking the electron trace of Egs. (4.2), using Egs.

(3.13) and comparing the results with Eqs. (4.3), we
obtain
tr{v“(R,,R,, . . .,R,)}=0, M=1,2, (4.3)

It is clear that correlation functions x, and correlation
operators v, can be expressed in terms of f#? and #*,
e.g.,

X:(Ry, Ry) =@ (Ry, Re) = f(Ry)f(Ry),
v(R)=n"(R,) - fR)n.

(4.4)

The correspondence between correlation operator v,
and reduced density operators #‘# is therefore unique.
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Since the reduced operators {n‘#’} are related to the
density operators {nN } by Egs. (3.16) correlation
operators {v,} can be ‘expressed in terms of {n~_}. The
converse is also true. We can show (by the cumulant
method, also see below) that

fo=exp[- [@°R,fR)+3 [ [ @R, &R, x,(R,R,) —++ -],
ny/fo=n— [ @R, v(R)+ 4 [ [ @R, d°R,v,(R,,R;) =,
ny (R fo=nfR)) + v, (R,) (4.5)
— [ @R,[x,(Ry, Rn+ v,(R,) AR, + v, (R, , R,)]
+ [ [ @R, d®Ry[X,(R,, R)v,(R;)
+ 3 IR, )V5(Ry, Ry) + 3x5(Ry, Ry, Ry +
1v,(R,, Ry, Ry)] = oo

These terms can be pictorially represented by
diagrams as follows:

fo = exp[ - & + 34—~ ]
n,/fo = o — o——A + $ LN
n/fe = o & + o—-—a

+
ol—

f

A
=
b

The rules of representation are:

(a) The electron is denoted by a circle and each im-
purity by a triangle.

(b) The dot—dash lines, called correlation bonds,
denote correlation.

(c) If the particle variables correspond to the integra-
tion variables, the corresponding marks are blackened.

Important features of the diagrams for {nN }are
S

(a) Each diagram is a connected diagram whose com-
ponents are all connected to the open marks cor -
responding to fixed particle coordinates.

(b} Diagrams are assigned with alternating signs as
the number of impurities increases. In addition,
a numerical factor is assigned which can be
guessed from the diagram itself; if the inter-
change of blackened triangles brings back to it-
self, the symmetry number corresponding to all
possible permutations is given.
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A way of checking Eqs. (4.5) is to recalculate the
reduced density operators n'¥’ through the original def-
initions (3.12) and (3.10). This exercise is however
omitted here.

In normal applications of the theory, the impurity
distribution is, by assumption, invariant under transla-
tion. This assumption in particular implies that the
one-impurity distribution function f{R) is constant, and
is equal to n,. While this assumption may simplify many
formulas in the present section, we have proceeded in
a most general manner; our theory can be applied to
systems of arbitrary inhomogeneity and impurity
correlation,

5. THE DIAGRAM REPRESENTATION

Let us consider N_ impurity ensemble. The Hamil-
Hamiltonian
Ns

hy = o +A20 D,

a=l

(5.1)

is independent of time. So is the corresponding
Liouville operator £ y,. The formal solution of the
Liouville equation (2. 8) is

ny (t):exp(—iMNs)nN (O)Eexp(—iMNs)nN (5.2)
8 5
In general a function of an operator is defined by a

power series of a certain parameter, for example
Xp(— ith) = 1 —ith+ 5(~itPA % -
(5.3)

The same operator exp(- itf)= exp|— it(£,+ Av)] can also
be considered as a function of the coupling parameter

A, and can be expanded in a power series of A as
follows:

exp(— ith) = exp(—it4,)

o . .
><(1+Z)(—i>\)"f d‘rlf Ydr,eee
1 0 0

f;k'ldiU(Tl)U(Tz) o0 0u(T,)), (5.4)
where
U(T) = exp(iTA, )V exp(—iT£,)
=exp(iThy) 22 B, exp(— iThy)
: (5.5)

=2.0,(7)

We consider a grand ensemble which is characterized
by a set of density operators {"Ns} at the initial time 0.
Once these operators are given, they will evolve them-
selves in accordance with the Liouville equations (2. 9),
and each ny (¢) will be given in the form (5.2). The set
{ny } contains all the information about the initial con-
dition of the system. As we saw in the last section, the
same information can be given by the set of reduced
density operators {n‘*’} which are defined in (3. 186).
Alternatively, the same condition can be described by
the set of correlation operators {n, x,,uk}. The descrip-
tions by any of these three sets are equivalent. By choice
we will specify the initial condition by the set of cor-
relation operators. In terms of the latter, the N -im-
purity density operators are given in the form (4.4):
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nNs(Rl,Rz, c. ’R”s)

T AR+ (i ®) T AR,
1 a=2
+ similar terms obtained by permutations}+- -
- {terms involving the integration with respect to
R”s’1}+”. . (5.6)

Let us now consider the reduced density operator
averaged over impurity configurations

n(t) = @R, d°R, °°°d3RN exp(—ithy )

~=oN'

(5.7
We expand exp(— ithy, ) by means of (5.4) and ny_ by
(5.6). We then represent terms in the expansmn by
diagrams as follows:

We draw a horizontal solid line for the electron. Cor-
responding to V,(7) [see Eq. (5.5)] we draw a dotted line
line, called an interaction bond, connecting the impurity
a and the electron at 7, ¢> 7> 0, where the time is
measured from the right to the left (Fig. 1). The v, are
denoted by dot—dash lines connecting the right end of the
electron line with 2 impurities. The X, are denoted by
dot—dash lines connecting ! impurities. In this way, we
can represent all terms in the one-to-one correspondence.

Due to the fact that all v, and x; are symmetric, those
diagrams which have the same structure but are dis-
tinguished only in having different impurity indices,
contribute the same amount. We may thus stipulate
that a diagram without indices represents the sum of the
contributions of all impurity-indexed diagrams of the
same structure.

6. DIAGRAM ANALYSIS FOR n(t)

A general diagram is composed of a number of sub-
diagrams linked together by interaction and/or cor -
relation bonds; one subdiagram contains the electron
line.

Let us first consider the set of subdiagrams without
the electron line. These diagrams are naturally time-
independent, and are of the same structure as those
appearing for f, in Eqs. (4.5). It can easily be verified
that the totality of these subdiagrams is common to any
linked subdiagram with the electron line, and that it
contributes the factor

exp[ [ @R, fiR) -} [ [ @R, &R, X, (R, Ry) + =02 1= 1,
(6.1)
Ac a
L \ %(Rq)
—t NN
a b

FIG. 1. Diagrams representing terms in the expansion of the
time~dependent density operator n(t). Diagram a contains the
interaction bond representing €, «{T). Diagram b contains the
correlation bond representing Vl(R ).
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o— N\ L
flo S S V.

a b

FIG. 2. Connected diagrams with correlation bonds ending at
a blackened triangle do not contribute according to Theorem C.

which equals the inverse of £, in (4.5). This factor f;!
just compensates the factor f, which is common to all
the expansions (4. 5) of ny, (N 2 1) in terms of correla-
tion operators. By this compensation, we may say that
only the subdiagrams which each contain the electron
line, called the connected diagrams, contribute to n(t).

Let us now analyze these connected diagrams. Many
diagrams contribute nothing because of the following
Theorem C.

Theorem C: Any connected diagram which contains
a correlation bond ending at a blackened triangle, con-
tributes zero. Diagrams a and b in Fig, 2 belong to this
class of noncontributing connected diagrams. The theo-
rem may be verified by direct calculation. For example,
diagram a appears twice in the series; it appears with
the factor ~1 from the expansion of »n, and with the fac-
tor +1 from the expression », [see Eq. (4.5)]; the total
contribution thus vanishes. Such cancellation holds for
all connected diagrams of this class.

After disregarding diagrams which do not contribute,
we have yet to consider a large number of connected
diagrams. A diagram will in general contain several
free electron line segments. A line segment is said to
be free if the diagram containing it is broken into two
by cutting it. Free line segments are indicated by check
marks / in Fig. 3a. The diagram may contain a number
of those parts which consist of nonfree line segments,
interaction, and correlation bonds. Such a part will be
called a d-part or g-part according to whether or not it
contains a correlation bond. Diagram a in Fig. 3
contains a d-payt and a g-part.

If a diagram should contain a g-part suspended by two
free line segments or a d-part standing to the right of
a free line segment, it could be reduced by suppressing
the g- or d-part. In the process of reduction, the line
segment marked by the open circle on the left should not
be suppressed. With this rule, the reduction becomes
unique. For example, in Fig. 3 diagram a can uniquely
be reduced to diagram b. In fact, all connected diagrams
(except one) are reducible to the single diagram b. Con-
versely, reducible diagrams can be obtained from
diagram b by dressing its free electron line with g-
and/or d-parts.

[ / reduce
II \ I’ —_——
- o
a dress b

FIG. 3. Diagram a contains a g-part and a d-part, and it is
reducible to diagram b; conversely it can be generated from
diagram b by dressing with g- and d-parts.
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The contribution of the irreducible diagram b is given
by

(6.2)

Clearly, this is the reduced density operator cqrre-
sponding to the free-electron system. We have thus
found that the single irreducible diagram b corresponds
to n,,,,(¢) while this diagram plus all reducible diagrams
which may be obtained from it by dressing with g- and/
or d-parts, correspond to n(t).

exXp(~ ithyn =n,,,,(t).

7. DIAGRAM ANALYSIS FOR THE INTERACTION
TERM; CLOSED EQUATION FOR n(t)

Let us consider the interaction term

—ix [ @R[B(r -R),nV (R, 1)]

=(~i\) 2 Tr', {u, exp(~itgy Iy }, (7.1)
Ns=0 s s s 8
which appeared in the hierarchy equation (3.24). After
expanding both exp(-it4y,) and ny , we may represent
terms in the expansion by diagrams. These diagrams
will be different from those diagrams for n(¢) only in
each having an interaction bond attached to the open
circle, a bond representing v. Compare (7.1) with (5.7).

The diagrams can be analyzed in the same manner as
before by using Theorem C, concepts of connected
diagrams, reducibility, g- and d-parts, all of which
hold in this case. Typical connected diagrams (which
each contain open circles) are shown in Fig. 4,
Diagram b, which contains two g-parts, is reducible
to diagram a which has one g-part. It is easy to verify
that any irreducible connected diagram has either g-
part or d-part.

Let us first consider an irreducible diagram contain-
ing a g-part. Its contribution can always be expressed
in the form of a certain function g of Liouville operators
acting on the time-dependent reduced density operator
corresponding to the free electron:

Tr'{g(y)}ntree(t7) ’

where the symbol Tr’ means the trace (integration)
with respect to all impurities involved in the

structure v, and #, is the greatest time available to the
free electron line. For example, the contribution of the
irreducible diagram in Fig. 4(a) can be written down as

(_ ix)z f daRa l~)a exp(— itio)ft dTGa(T) exp(iT{o)nl’ree(T)‘

(1.2)

(7.3)
Therefore, in this example
g2V = (=i\)?0, exp(-ith,) ft dT0 (T exp(iTh,),
Q
tT =T. (7. 4)
A A A
[N [ "
/ \ / \ ! \
)/ N / \ o
a b

FIG. 4. Connected diagrams which contribute to the interac-
tion term (7.1). Diagram b is reducible to diagram a whose
contribution is given by (7. 3).
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FIG. 5. Two irreducible connected diagrams with d-parts.
The contribution of diagram a is given by (7. 7).

Consider now reducible diagrams which upon reduc-
tion give rise to the irreducible diagram. The former
can be constructed from the latter by dressing the free
line on the right. The structures of all possible sub-
diagrams which upon reduction give rise to the free line
can be seen to be identical with those of the connected
diagrams for n(#), which we discussed in the last sec-
tions. These analyses lead us to write for the total con-
tribution of the irreducible diagram containing a g-part
and the reducible diagrams generated from it

Tr'{g(Nn(z,), (7.5)

which is obtained from (7.2) by simply suppressing the
suffix “free.” The total contribution of all the irreduc-
ible diagrams containing g-parts and reducible diagrams
generated from them can now be obtained by summing
over all possible irreducible structures y:

Z,; Tr'{g(Mn(t,). (7.6)

Next, we consider irreducible diagrams containing
d-parts., Two such diagrams are drawn in Fig. 5.
Diagram a contributes

(-in) [ d°R, T, exp(- it )v,(R,). (1.7

We note that the contribution can be expressed in the
form of a function d of Liouville operators acting on the
initial correlation operator v. In fact, this feature is
true for all diagrams containing single d-parts. We may
therefore write the contribution of all the irreducible
diagrams containing d-parts in the form

2 Tr{dv}. (7.8)

In summary, the interaction term (7.1) can be de-
composed into the two sums (7. 6) and (7. 8). We can
thus reexpress Eq. (3.24) in the following form:

(8/3¢+ ikon(t) =22 Tr'{gin+ 2 Tr'{dv}. (7.9)

This is the equation desired. It is derived from the
hierarchy equation (3. 24) without introducing any ap-
proximation. Since the correlation operators v are to
be given as an initial condition, this equation contains
only one unknown n(¢}. It has, however, infinitely many
terms; it is a linear and non-Markoffian equation.

8. REMARKS

Equation (7.9) has two sums 3 Tr’{g}z and J Tr*{dv},
which will be referred to as collision and initial cor-
relation terms, respectively. These terms can be
written down by drawing, and reading off, irreducible
connected diagrams. The diagrams are precisely those
which defined the collision and initial correlation terms
in the earlier finite-particle-number ensemble
theory. 3 Thus, the present grand ensemble theory has
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led to the same closed evolution equation without invok-
ing the bulk limit, the use of which has clouded the
earlier result as mentioned in Sec. 1,

Equation (7.9) has been studied by the present author
and his coworkers. The main points in these studies
will be summarized below. Let us first consider the
collision terms. The operator g(y) depends on the im-
purity distribution. Let us suppose that this distribu-
tion is invariant under translation and without
correlations:

8.1)
(8.2)

AIR,)=const=n_,
X;=0, 122,

This is the case for which almost all previous theories?
were reported. In this case, the concentration depen-
dence of g(¥) is obtained by simply counting the number
of impurity triangles in y. [A similar consideration can
be extended to initial correlation terms, too.] This is
a remarkable property when we consider the fact that the
the interaction term, Eq. (7.1), does not allow any
simple concentration expansion. In other words, by the
connected diagram analysis, we have not only achieved
the rigorous transformation into a closed equation but
also established the concentration expansion. Equation
(7.9) can therefore be regarded as an ideal starting
point from which one investigates the concentration ex-
pansion of a transport coefficient, In fact, using this
equation, the formal density expansion of the electrical
conductivity was reported earlier, 3+*

It was soon found that this concentration expansion
diverges term by term. This difficulty means that the
summation of g- and d-diagrams according to the num-
ber of impurity triangles is not appropriate. The dif-
ficulty can be removed by resumming the series ac-
cording to a different recipe, that is, in terms of proper
connected diagrams. ® The resummation was found to
incorporate the so-called quasiparticle effect in a
natural manner,

Equation (7.9) contains terms which explicitly de-
pend on the initial condition. Many important physical
properties of the system in or near equilibrium do not
depend on the initial condition. Such examples are all
equilibrium thermodynamic properties and transport
coefficients. We may wonder whether there exist equa-
tions which are simpler than Eq. (7.9), which do not
depend on the initial condition, but which nevertheless
describe the equilibrium and near-equilibrium prop-
erties in a rigorous manner. The answer to this ques-
tion is, in general, yes. In particular, it was shown
earlier’ that an equation for the asymptotic density
operator # defined through

n(t) 7% as t—~w (8.3)
can be obtained from Eq. (7.9) (through the stationary-
state approximation), that the obtained equation is in-
dependent of the initial condition, and that its solution
yields the result identical with that of the correlation
function formula for the electrical conductivity, 8

The grand ensemble theory developed here can be
adapted, with few changes, to treat a system of inter-
acting particles which obey the Boltzmann statistics. ®
The quantum statistics, however, introduces fundamen-
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tal changes in theory, and a simple extension of the
theory to a quantum statistical gas or the electron-im-
purity system with the inclusion of the Coulomb inter-
action among electrons appears to be difficult.
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Sum rules for the optical constants
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A number of sum rules for the optical constants, in particular, the refractive index of a nonconducting
medium, are obtained. Some of the sum rule constraints are highly damped for large frequencies,
exponentially in one particular case. Formal integral relationships for the index of refraction at complex
frequencies are presented. Sum rules based on known experimental points for which n(w)—1 has zeros are
indicated. An outline of a modified derivation of some recently presented sum rules for the optical

constants is given.

I. INTRODUCTION

The Kramers-Kronig relations for linear optical
properties have led to a number of useful sum rule
constraints which these properties must satisfy. The
underlying conditions for which these sum rules should
hold are very general. The physical basis, the causality
condition, determines the domain in which the general-
ized optical property is holomorphic, from which the
Kramers-Kronig relations may then be deduced. A
number of sum rules have been recently derived by
employing the Kramers-Kronig relations and the ap-
propriate asymptotic behavior of the particular optical
properties at large frequencies. This asymptotic be-
havior may be readily determined by assuming at suf-
ficiently high frequencies, the medium responds like a
free electron gas.

This paper is concerned with the investigation of
principally, the constraints on the generalized refrac-
tive index for a nonconducting medium. A number of
surprisingly simple, but potentially very useful sum
rules have been obtained for the generalized refractive
index by Altarelli et al.!*? and Villani and Zimerman.?
The-simplest of these relations are

wax(w)dw:% w3, (1)
j: [n(w) -1]dw=0, (2)
f”[wk(w)[ (w)=1]dw=0, (3)
cosnﬁf n(w) —1 dw —SlmTBf et Kflw(iui —
n(w) - 1 dw 1
f Tt =0 s, @

f: wn(w) - 1P dw= [~ w**(w)dw, (5)
0
where n(w) and k(w) are the real and imaginary parts,
respectively, of the generalized refractive index, and
w, is the plasma frequency. The first of these relation-
ships, Eq. (1) is the well-known f sum rule, Eqs. (2)
and (3) being derived by Altarelli et al., and are de-
signated as the ADNS sum rules, and the expressions
given by Eqs. (4) and (5) have been obtained by Villani
and Zimerman (designated VZ sum rules). Equation (4)
contains the ADNS sum rule equation (2), as a special
case; 8=0.
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In Sec. II we outline how some of the above sum rules
may be obtained in an alternative manner from the
Kramers-Kronig relations. Section III presents a num-
ber of formal relationships connecting the generalized
refractive index on the complex imaginary frequency
axis, with the refractive index at real frequencies. In
Sec. IV we outline some strikingly simple and apparent-
ly previously unnoticed sum rules based on the zeros
of n(w) — 1. Section V deals with some generalizations
of the above sum rules, which have the desirable prop-
erty of being highly damped at large frequencies. Final-
ly, in Sec. VI, we discuss possible extensions and
limitations of the sum rules derived herein,

Il. DERIVATION OF SUM RULES FROM THE
KRAMERS-KRONIG RELATIONS

The basic equations from which most of the sum rules
for the refractive index have been derived are the
Kramers-Kronig relations

n(wo)—lng]mM, (6)

w? - w?
2
K(w) = — 20 Pf
T 0

From Eq. (6), it follows immediately that

f["(w’)—l]dw'=%fo dw'PLw% (8)

and on interchanging the order of integration
J’m[n(co’)—l]dcu’:g mwx(w)de T
o T 5 o wz - 12y

w
and noting the relationship

* [n(w) - 1]dw
W -wi

°  dw 7?
Pj; m:—‘l—ﬁ(w), (10)

then
fw[n(w')—1]dw’:—%fﬂowk(w)5(w)dw=0, (11)

which is the ADNS sum rule, Eq. (2). The conditions for
the interchange of the order of integration to obtain Eq.
(9) need to be scrutinized carefully. The necessary re-
quirement is that the integrand, a function of w and w’,
be summable over the plane — o< @<,
Similarly, from the Kramers-Kronig relation (7),

—00 <y < oo,
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o w T Jo o W-w

and by interchanging the order of integration, and em-
ploying Eq. (10), leads to the result

L”ﬁ(ﬁ%@_:g[n(m ~1].

Depending on the behavior of k(w) as w—0, the integral
in Eq. (13) may exist only in the sense of a principal
values. Equation (13) is, of course, just the limit as w,
— 0 of the Kramers-Kronig relation, Eq. (6). It is
worth pointing out that Eq. (13) is not applicable to
metals where both n{w) and «(w) behave as ~w™/2 as
w™0,

(13)

Similar derivations may be carried out by first
squaring the appropriate Kramers-Kronig relations.
From Eq. (7),

w) 4 *[n(w’) —1]dw"
=z P , wP-w?

[}

o[ 1o
"} W -
and hence
- 4 o = I3 —1 ,
J- Kz(w)dw:—af wzdej [_’1_(9;5)___;.‘19_
o L 8 A o
xPJ L"% (15)
o W —-w

Interchanging the order of integration as before, and
making use of the result,

P

converts Eq. (15) into
f: K (w)dw= f: [rlw”) -
x " [nlw”) - 1}{5(w" -

and hence
7 k) dw:fw[n(w)— 1P dw,

a result noted by Altarelli and Smith.? In a similar
manner, squaring Eq. (6) and integrating over all
frequencies gives

® s 4 (- = wi(w)dw’
J; wz[n(w) - 1]“ dw:;-g-J’O w?dw PJO w_lz__—u—)_z—_'
(.!)”K((l)”)d(.d”

X —_—_—
pJ; wuz_wz

Employing Eq. (16), we have the result
fw wn(w) -1Pdw= [ w**(w)dw,
0 0
which is the VZ sum rule, Eq. (5). The sum rule, Eq.

(13), is obtained from the Kramers-Kronig relations
as follows. Multiplying Eq. (6) by (7) gives the result

k(wln(w)-1] 4 f”" o’ k(w') dw’
w =z F w'?~ w?
0

XPJ m——“—[n(w”z) — 1;dw ’
o

Wt -w

w?dw
~ 0w - w?)

:—1;; [6(w’ - w?)+ 6(w" + w")]
(16)

1]dw’

wll)+6(wl+wll)}dwll, (17)

(18)

(19)

(20)
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and hence

fmwx(w)[n(w)—l]dw:——%—fw w?dw
pr cufc(w dw f [n w” e
—w

which yields
fow wr(w)[n(w) ~1]dw=0.

A number of additional results may be ¢’ ined by
considering higher powers of the generalized refractive
index. The quantity N*(w) - 1, where N(w) is the gen-
eralized refractive index, is a holomorphic function in
the upper half-plane, from which it can be deduced,
with the appropriate asymptotic behavior, that

y-1-% | ") -de, (22)
and hence

R

() = __gvﬁi Pfo‘” [”z‘wLZi‘ZL%) “1do

From Egs. {(9) and (23),
© 2 2 ’ ’ 4 ® ’ ®
/; [ (w") - K¥*(w’) = 1]dw :;J; dw PL %%)2)—?%2—?—9—

e 0’
hence,
J° [nz(w)—1]d</.)—_-foﬂ° k*(w)dw. (25)
Similarly, from Egs. (9) and (24),
[ nloddolds 7 p,a)_y), (26)

Equation (26) can also be recognized as the limit as w’
=0 of the Kramers-Kronig relation, Eq. (23). Equation
(26) is restricted to nonconductors. Sum rules for
higher powers of the refractive index may also be ob-
tained from the squares and the products of Eqs. (23)
and (24), Thus from Eqs. (23) and (16), we get

fow [72(w) — k¥w) - 1P dw =4 f: (W) (w) dw;

27
from Eqs. (24) and ( we obtain
LQ w{w(w)dw = f [r*(w) - (@) - 1P dw;  (28)
and from Egs. (16), (23), and (24), we get
J7 wm(@(@)n*(w) - k@) - 1]do=0. (29)

I1l. GENERALIZED REFRACTIVE INDEX AT
COMPLEX FREQUENCIES

The generalized refractive index of a medium may

be expressed in the form
NMw) =1+ fo expliwT)G(7)dT, {30)
o]
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where the function G(7) depends on the properties of the
medium and the time, and w is to be regarded as a
complex frequency, From Eq. (30), it follows that for
complex frequencies

NB(— w*) = N*%(w), (31)
For purely imaginary frequencies, w=iw”,
N(iw”) = N*2(iw"), (32)

and hence, on the purely imaginary frequency axis,
N?(w) is real. A similar argument may be presented for

the function N{(w) - 1. The function N*(w) — 1 obeys the
relation*
f“’ lNz(w'+iw”)—1[2dw<const (w”>0), (33)

which allows by use of Titchmarsh’s theorem, for N(w)
to be written in the form

Nw)=1+ fo " expliwT) F(7) dT, (34)

where F(7) depends on the properties of the medium;
from which it follows that N(w) is real on the imaginary
frequency axis and in particular

kiw”) =0 (35)

for real w”.

The simplest result for the refractive index at com-
plex frequencies can be obtained by considering the
integral of the function {N{w) - 1)/(w - iw,) around a half-
circle contour containing the real axis, and the upper-
half complex frequency plane. For w, real and greater
than zero, and the notation simplified by designating w
as a real variable, we have the result

[n(w

= l]dw f”"wic(w)dw
0 w? +wo 0

P wg =7T[n.(i0)0) - 1],

(36)

and considering the function [Mw) - 1]/ (w + iw,), we
obtain

= wk(w)dw © * [n(w) ~1]dw
o WEEFWE T} P4l ’
From Eqgs. (36) and (37), the results for the refractive
index on the imaginary frequency axis are

o]

(37

S oo
* -1
g[n(iw‘))'l]:“"’fo Rl (39)

From Egs. (38) and (39) the following results for in-
tegrals along the imaginary frequency axis can be
obtained:
*[n(iw’) —1]ldw 2 (=, {“[#(w) ~1]dw
fo o =7}, *'), TFEver @O
on interchanging the order of integration, Eq. (40)
becomes
= A 7 o -
[ [ntiw ), 1]dw :f [n(w) - 1]dw ’ (41)
0 w 0 w
hence,
f [n(iw) - n(w)]dw —o: (42)
o w
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and from Eq. (38),
fm [n(iw) - 1]dw=f°° k(w)dw.
0 0

A result analogous to Eq. (43), is well known for the
dielectric constant.® Kramers-Kronig relations involv-
ing the refractive index on the imaginary axis may be
derived by restricting the contour TI' to a circular arc
in the first qua. -ant, then the integral

(Nw) = 1] dw
ﬁ w - w

(w’ on the real positive axis) leads to the results

(43)

(44)
f [:’(Z: w,zl]dw Tr(w’) +P_/ [n(w 1]dw
0 (45)

Sum rules which are more rapidly convergent for
large frequencies can be generated by noting values of
the derivatives of the generalized refractive index on the
imaginary frequency axis. The integral

f[N(w) -1]dw
(w?+1)2

evaluated for a semicircular contour in the upper-half
complex plane yields the result

*[nw)-1]de 7 . i d[N(w)—l'] )
ﬁ Wiy gt -11-7 (’T—)m’

(46)
and since
d[N{w) - 1] ) 4z * wk(w)dw
( dw wsi (w2 +1)2 ° (47)
Eq. (46) simplies to
= (1 = w?)[n(w) - 1]dw _zf“ wi(w)dw
A (w?+1)? ) (wP+1)? (48)

Equation (48) may be readily checked by differentiating
the integrals in Eq. (37) with respect to w,, which leads
to

1)(w2 - w?) dw

f“' wilwldw 1 [~ [n(w) - 1)(w? - w?
b (0% + 2P 7 20, J, (w? + Wwi)? ’
and thus reduces to Eq. (48) on setting w,=1. Consider-
ing in a similar manner, the integral
[NMw) -1]dw
((.U2+ 1)3 ’
leads to the result

/w————-—[”(“’) ~1dw 310y 1)

(49)

(w?+1) 1

R

With the result
(dz[N(w)—l]) _4 re[n(w) -1]8«® - 1)dw
dw? wq.‘n'/; (w?+1)°

Eq. (50) simplifies to the same result as was obtained
by considering the integral

dz[N(w)—1]> '
w={

dw?
(50)

, (51)
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[N(w) - 1]dw
T{w+1¥

* [m(w) ~1](1 - w?) dw _o [7 exlw)de
L W+ 17 = j; (2 + 1)

(52)

Equation (52) may be rearranged with the aid of Eq. (2)
to the alternative form

zJ'”wK(w)dw A_]“’ w?(w? + 3)[nlw) -
0 ;0

(W2+1R — (w?+1)?

de (53

1V. ZEROS OF THE FUNCTION [n{w) - 1]

From the ADNS sum rule, Eq. (2), it is obvious that
there must exist at least one zero of the function [n(w)
—1] [except in the trivial and unrealistic situation that
n{w)=1 for all w]. U this zero is designated by the point
w=w,, then from the Kramers-Kronig relationship, Eq.
(8), we have the immediate result that

f”i".’;_(“’_)ﬁzi:o. (54)

w" - Wy

The necessity of retaining the principal value in Eq.
(54) depends on the behavior of k(w) at the point w=w,.

From the Kramers-Kronig relations, subtracted
dispersion relations for the real and imaginary parts of
the generalized refractive index can be written

n(w’)—n(w”)—— 2 _ "2)P[ = CUK(w dw s

(55)
k(w’) K(w”):%(w” _ w’)P[w [n(wz - 1]w? + o' w" ] dw i
0

N w?® - w"?)

(56)
For any two given frequencies w}, w] (w}# wg), which
are both zeros of the function [n(w) — 1], or alternatively
for which [n(w}) — n{w?}] vanishes, then from Eq. (55),

(w? - w

o wklw) dw
P/: (0 ~ W) w? — wi?)

Similarly, if there exist two distinct frequencies w,,
W, (w, #0, w,+# 0) such that [k(w,) ~ k(w,)]=0, then Eq.
(56) yields the result

P *[n(w) - 1]lw? + w,w,]de
o {0 ~ W) (w? ~ wi)

=0. (57)

=0, (58)

The relationship Eq. (57) also follows directly from Eq.
(54) when two zeros of the function {#(w) - 1] are known.
In fact, for a set of distinct frequencies which are zeros
of [n{w) - 1], a compact form for the sum rules can be

written as
—fwwSK(w)dw — o s 0
- 2 2 - s
o W —Wy

ﬁm colc(cu)d(.u:j;n —%K—E-ug—%di
(59)

where w,, w,, *** designate the zeros of [n{w) ~1]. I
we employ the f sum rule {Eq. (1)], Eq. (59) becomes

. w
2
W, =

4 ¢ 'l,‘
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wk(w) dw :L” EJ‘_(E‘l_d“_’ o . (60)

2 2
w? ~ Wl w® - wi

1512

V. HIGHLY DAMPED CONSTRAINTS

The desirability of finding highly damped sum rule
relations for the optical constants lies in the importance
of deemphasizing certain frequency regions. For the
high-frequency region, the optical constants are not as-
certainable with high accuracy. The purpose of this
section is to outline some possibly useful constraints
for providing a consistency check of experimental
values, while at the same time, damping the high-
frequency results, so that inaccuracies in this region
may be ignored, The results obtained make use of some
of the formal relations for the refractive index at
imaginary frequency.

The method of generating highly damped sum rules
consists of considering the appropriate analytic exponen-
tial function [exp(aw)/(exp(bw) + 1)] exp(ibw) (6> 0: b> a:
a, b, 6 all real) multiplied by the function [N(w) ~ 1].
Considering the integral

f—————eiiﬁlfg;’l T exp(iow)]

with the contour a semicircle in the upper half-plane,

ﬁ ﬁ% exp(idw)[Nw) - 1]dw

N(w) -1]dw,

=27i% (residues at%l— ,n:1,3,-w), (61)

then using Jordan’s Lemma, and taking the limit § —~
+0,

> explaw)
J: W[N(w)—l]dw

o _ 2w Eexp[(la‘ﬂ/b (2]4_1)][1\]((2]'-#1)1;—) —1].
(82)

Separating Eq. (61) into real and imaginary parts, leads
to the results

~  explaw)
_[,, exp(bw)+1 [nle) -

JZ;, sm( 2]+1)>[n((2j+1)7;—i>—1] (63)
and

= explawlk{w) dw
o exp(bw)+ 1

b fjc s(— @j+1) ) [n((2j+1)’;)—i)-1].

(64)
Some special cases of Egs. (63) and (64) can be given.
Taking the lima— + 0 for Eq, (63), leads to the result

fw [nlw)-1]dw=0,
o

which is the ADNS sum rule. Taking the lima — + 0 for
Eq. (64) and making use of Eq. (38) leads to a trivial
identity [both sides equal to - [~ k(w)tanh(3bw)dw].
This identity can be proved eas11y for general a, b (b
> q) by employing Eq. (38) and the result

b cos[(za/b)(2j +1)]
joo (2 + 1P + BP0~

2

_ m
T 4bw

[coshaw tanh $bw - sinhaw)]. (65)
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The lim b — a leads to similar results. An interesting
special case is obtained for 2a=5. From Eqs. (63) and
(38) we have

]:[ w)—l]sech( )dw

allows the following inequality to be written:

bB(2)r W} f 1] sech (bz ) dw,

which is a prmc1pa1 result of this paper. The integral
in Eq. (69) is very strongly damped at high frequencies.
The special case 2a=2b for Eq. (64) leads to a trivial

(89)

4 < = wrlw)dw identity.
=5 OV | Frg o
i=0 J A general extension of the above procedure consists
4b - w (~ 1) of considering the situation in which the appropriate
= (—?) J’ wi(w) dw 25 TP T (66) function has a singularity on the real axis, in addition to
T 0 =0 12J the singularities on the imaginary frequency axis.
Now employing the result Consider the integral
1) ,
7__2 (2 iR = §(2) [Catalan’s constant (Ref. 6}], (67) explaw) exp(idw) [N(w) —1]dw
exp(bw) +1 W — W,
where $(2)=0,.91596, and the inequaltiy
4 . ap (= (6>0; b>a: a, b, 6, and w, real), with the contour taken
— 3(2)/ wx(w)dw>—2f wr(w) as a semicircle in the upper half-plane, including the
o m Jo real axis, with the contour indented (into the upper com-
= (-1¥ <p< plex plane) at the singularity on the real axis. The limit
X(Z; G T+ pPm e ) 4w 05bs e (68)| 5 +0 gives
= explaw)[N(w) - l]dw expl(a/b)ri(25 + DI <7TZ ) ir explaw,)
= - 271 2j+1 + =0 —~1]. 7
Pf.aa Texp(bw) +1)(w - w,) 2 7525 + 1) - bw, LN ( ) exp(bw,) + I[N(wo) ] (70)
The real and imaginary parts are
P = [n(w) ~1]explaw)dw | 7 explaw)k(w,) _ 2 {nl(mi/0)(25+ 1)] -1}
o lexp(bw)+1](w - w,) lexp(bw,) + 1] s (27+1)P+ wzn'z
X [(2]‘ +1)cos (I;l 25+ l)) +bwrt sin <lbg(2j + 1)>] (71)
and
P/” k(w) explaw) dw _ mlnlwy) — 1] explaw,) Z; {nl(mi/B)(2j+ 1)] -1}
— Lexp(bw)+ 1{w - w,) lexp(bw,) + 1] (25 + 12+ p2w2r2
X [(2]‘ + 1) sin (—7;—;1(2]' + 1)) ~bwqrt cos (—%a—(Zj + 1))] . (72)
Some interesting special cases can be obtained from Egs. (71) and (72). Taking the lima ~ + 0 in Egs. (71) and
(72) leads to the results
*® [n{w) - 1]w tanh(3bw) dw <bw ) (2j+1) {n[(rrz/b (2j+1)] - 1}
Pfo PR K(wo) tanh| =) = ZE; @+ D+ Dt (73)
®  k{w)tanh(Fdbw)dw 7 (_b_w& _ S nf(ri/b)2j+1)] -1
Pj)‘ Wy o — - 2tanh 5 [nwy) = 1]}= - 2bwr 2 ACTER ('714)
Combining Egs. (73) and (38) and employing the result
S 1 2j+1 1
2 — 75)
85(3) j%g (2]+ 1)3 >j=0 (2]+ 1)2 wg,n,-z (2]+ 1)2+b2 2 -2 ) (
where ¢(m) is Riemann’s zeta function {£(3)~1,202], leads to the result
= wtanh(3bw)[n(w) - 1]dw 22 buw,
Pﬁ o — o2 < gL3)b2wir? - srk(w,) tanh 2 . (76)
Combining Eqs. (73) and (39) leads directly to the inequality
o 1 _
%nx(wo)tanh(”—“’ﬂ> +Pf wtanh(zbo)n(w) - 1ldw (17)
2 o w? — wi
where the result
=1 S (2 +1)° 1
Eo; 2j+1) >j§ (25 + 10 + b%win? (25 + 1P + bPwin~2 {78)
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and the ADNS sum rule, Eq, (2), have been employed. Equation (77) is a stronger inequality than Eq. (76) for the
upper bound to the integral. Similar resuits can be derived from Eq. (74);

P f = tanh(bw/2)x(w) dw

2
w? - w?

and

* tanh(bw/2 b
o, f an (w;oi w»;(w)dw >§ntanh(—2&> (n(w,) - 1],
[} 0

+ 801702 £(4) > $nw;! tanh (9&

) o) -1

(79)

(80)

where £(4)~1.082. Equation (80) is the stronger inequality for a lower bound to the integral

Pf”tanh(bw/z)fc(w)dw .

2 2
w? — wi

VI. DISCUSSION

The simplified procedure for derivation of many of
the sum rules for the optical constants discussed in Sec.
II is restricted only by the necessity of establishing the
conditions of summability of the integrands, so that, the
order of integration may be inverted. Summability en-
compasses the asymptotic behavior that has been as-
sumed in the derivation of these sum rules by Altarelli
etal.’

The establishment of results for the optical constants
as a function of imaginary frequency are of little utility
from the point of view of providing a constraint for the
testing of experimental data. However, they do provide
a route to other sum rules, which evolve from particular
functional forms of the optical constants for which poles
on the imaginary axis appear, as in the case of the in-
tegrals considered in Sec. V,

Constraints on the optical constants which arise from
the zeros of the particular optical functions have pos-
sible wide utility. The majority of the known sum rule
constraints, with the principal exceptions of Egs. (1)
and (2), relate the integrals of different optical constants
over an infinite frequency interval, In order to test
experimental data by such sum rules, both optical
constants need to be experimentally accessible, or ob-
tainable through indirect means (i.e., by Kramers-
Kronig inversions). Sum rules of the type (54) circum-
vent this difficulty, since only experimental results in
the vicinity of the zero(s) need to be determined for one
of the optical constants, and not the entire frequency
interval of the particular optical constant. This repre-
sents a considerable reduction in effort compared with
determining data over large frequency intervals.

The key results of Sec. V, Egs. (69), (77), and (80)
provide useful results from the point of view of provid-
ing suitable criteria for the quality of optical data. The
highly damped nature of Eq. (69) essentially eliminates
the difficulty of obtaining data at high frequencies, or
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having only poor data available for this region, Attempts
to obtain strongly damped integral constraints as a
function of a single optical constant have not as yet met
with success.

The generalization of the above sum rules for con-
ductors can be carried out in a straightforward manner,
Connections between the various optical constants, such
as the dielectric constant, the conductivity, etc., also
allow a number of sum rules to be readily obtained. Ex-
tensions of the asymptotic method and the above pro-
cedures to second-order Kramers-Kronig relations for
nonlinear optical phenomena’™® appear to be possible
and this will be the subject of a further investigation.
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Ruelle’s cluster property for nonstrictly localizable fields
derived from symmetry of their Wightman functions
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Hermitian fields are considered which fulfill all the Wightman axioms, except local commutativity,

formulated for the Gel'fand space S'(R*) instead of the Schwartz space S(R*). For fields of this class,

containing the Jaffe class and even the larger class of essentially local fields on § I®RY), it is shown that

symmetry of the Wightman functions and mass gap imply Ruelle’s cluster property. Hence the Haag-Ruelle-Hepp
scattering formalism applies to these fields, which need not be local.

1. INTRODUCTION

While there is no doubt that relativistic quantum fields
have to be treated as operator valued generalized func-
tions, ! there are no physical arguments for the choice
of any particular space of test functions. It is mainly
a matter of convenience? that the Schwartz spaces § and
/) have become standard in axiomatic quantum field
theory. ® In order to be as general as possible, it would
be desirable to work with test spaces as small as possi-
ble and endowed with a topology as fine as possible.
However, there naturally occur difficulties if the space
of test functions is chosen too small. Perhaps the best
known effect of this type is the following one analyzed
by Jaffe?:

If one is to allow the field operators to increase
rapidly at infinity in momentum space, it is natural to
choose some space of smooth momentum space test
functions @(p) which sufficiently rapidly decrease at
infinity, However, such a function cannot have a Fourier
transform @(x) with compact support (in configuration
space) if it decreases too rapidly, i.e., if

S dtt10g(1/max| @) )
i ligli>t
diverges. Then the usual formulation of the axiom of
local commutativity® (in short: locality), which is the
most powerful tool in axiomatic quantum field theory,
is no more applicable.

In order to allow for both locality and rapid increase
of the field operators in momentum space, Jaffe intro-
duced a new class of test spaces.* For fields of the
Jaffe class most of the results of Wightman field theory
can still be derived by essentially the same methods.
Unfortunately, there is no Jaffe space minimal in the
sense specified above. As a consequence, each dy-
namics requires its own Jaffe space. In this connection
the Gel’fand space® S!(IR*)=S'1''! pecomes relevant,
as already realized by Constantinescu. ® S! is just the
intersection of all Jaffe spaces,’ and its topology is
finer than that induced by any Jaffe space. Consequently,
it seems plausible that quite a lot of the structure of
Jaffe spaces survives for Si.

Therefore, in the present paper, we study fields ful-
filling all the Wightman axioms® formulated for S'(IR%)
instead of §(IRY), with the unavoidable exception of
locality. Evidently, this class is considerably larger
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than the Jaffe class.® For simplicity we consider only
a Hermitian field A (x) describing a single type of neu-
tral scalar particle with mass m > 0. Constantinescu
remarked® that it might be possible to derive many of
the standard results of local quantum field theory also
for such a field if “local commutativity is replaced
with some ‘technical’ conditions.”

We believe that symmetry of the Wightman functions,
formulated in Sec. 2 as “Wightman property” and well
known for local fields, is the natural and powerful sub-
stitute for locality. Obviously, PCT symmetry can then
be proved by exactly the same methods as those used
for Wightman fields. 3 However, it is by no means evi-
dent how to consistently define an S-matrix under these
conditions. A solution of this problem seems to be of
considerable interest in connection with the Oster-
walder—Schrader approach® to constructive quantum
field theory.

Now, the purpose of the present paper is to derive
Ruelle’s cluster property!® from the usual mass gap
condition and the Wightman property. Then we already
know how to establish the Haag—Ruelle—Hepp scattering
formalism, 11

2. THE WIGHTMAN FUNCTIONS AND THEIR
PROPERTIES

Let D be the common invariant dense domain of the
smeared field operators®

Alp)= [dxAek), ¢cSY(RY.

Since for S! there is an analog!? of the classical nuclear
theorem, ! the expectation values

(@lA@) e+ Al,)|®), &, ¥eD,
and especially the vacuum expectation values
BWE)=(Q[A(xq) e Alw,) |2

[x=(x,,...,x,)] are well defined as generalized functions
on S}(R*")=S1****', The same holds for the truncated
vacuum expectation values, formally defined by

BIED=2 D=1 5 OBl , ... .5, ),
2=1 MEPn) JEM i J
where M ={J;,...,J;}€ P,{n) iff it is a partition of
{1,...,n} into ! (nonempty) disjoint ordered subsets J,
with the ordering in each J=(jj,...,j,) being the
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natural relative ordering of integers. By translation in-
variance of the theory, there are!® generalized func-
tions WP (£) on SYIR'") such that!®

fdxl.“ dxmlm(m(xi’- ’an)

=fdéW‘T’(£)[f d§n+1¢<§ Ejreen, jZf1 a)]

(dEE dEjesvdb,, E;=X;=%j,1, ¥,3=0) holds for every
e SYRY™V), which we symbolically denote by

W (xy = Ky ve s Xy = Ky) =B (e, . .

.. ’xn+1)¢(x1, L]

’xm-t)'
In the usual way® one derives

supp W™ (g) < (V,)"

(V, denotes the forward lightcone, V, its closure) for
their Fourier transforms, formally defined by

S “ A
W T(q)= @)y [ dEW T () expliGE)
(GE=q& ++o» +4q,t,, q;£,=q%8%— q;&;). Therefore,!® the
Wightman functions
W (@)= @n)? [ dg WP () exp(~ i 4E)

are well-defined analytic functions, holomorph in the
tube

To={E=E-ific@m n,eV, for j=1,...,nk

L!-invariance of the Wightman distributions implies L,-
invariance of their Fourier transforms and finally of
the Wightman functions:

WP (8) =W (AL) @.1)

for all A€ L], Hence the BHW theorem’ tells us that the
W™ () possess single valued analytic continuations into
the “extended tube”

7—7’IE U AT"?

AEL (@)

where (2.1) also holds for Ae L,(C). The point tis
known to be in 7N RY", the set of so-called Jost points,
iff3 X &, +o00 +,&, is spacelike for arbitrary nonnega-
tive Ay, ..., A, With Ay o000 +2,>0.

The Wightman functions are polynomially bounded!® if
7 is restricted to a compact subset K of (V,)":

|WD(Z)| <Py(f) forall {7, withneK, (2.2)

(Here Py denotes a suitable polynomial depending on K.)
Hence!? the application
o~ lim [dEWDDe(E), ¢S R
:;'é”&f)"
defines a generalized function on S!(IR!"), which coin-
cides with the corresponding Wightman distribution:
im [ dEw @@= [ WD D).
ILTIEN]
AS (v
For the vacuum expectation values (z > 1) this means
[ GBT@eR) = lim [ dE
1Im{zp=2p,1) 1+ 0
z€s,
xWT(E)e(x) for g€ SUR™),

(2.3)
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where
@nE{EG ¢4": (21—22, .o

Q_B(T)(E)E H/(T)(ZI_ZZ’ .

« 9%na1 _Zn) S 7—"-1}:
. )Zn-i—zn)-

This is why analysis of the Wightman functions gives
deep insight into the general structure of the underlying
field theory. The most useful tool in this connection is
the following property of the Wightman functions, which
we shall call the “Wightman property”:

Definition: The Wightman functions are said to possess
the Wightman property iff, for arbitrary n> 1,2}‘“(2)
has a single valued analytic continuation into the domaijn??

P_[Z 4n,
@"—‘{ZE(D . (Zr(l)_zr(Z)"--azr(rx-1)_zv(n))

& 7}y for suitable m€S,},

in which it is invariant under permutations of the
ZiyeeesyRye

The Wightman property is known to be equivalent to
locality for tempered fields. !® The same holds for
Jaffe fields.® An obvious advantage of the Wightman
property is that it does not depend on the test space on
which A(x) can be defined. While the usual formulation
of locality fails for the Gel’fand space S!, since it does
not contain test functions with compact support, the
formulation of the Wightman property still applies.
Thus, in a technically modified way, the notation of
locality becomes applicable to fields on S'(IR%).

3. THE WIGHTMAN PROPERTY DERIVED FROM
ESSENTIAL LOCALITY

In a recent paper!! another substitute for locality,
called “essential locality, ” was proposed. In this con-
nection it is interesting to note that the Wightman prop-
erty can also be derived from essential locality. This
derivation will be given in the present section as an
exercise for our main task, namely, the proof of
Ruelle’s cluster property in the next section. Let us
first briefly review the concept of essential locality!®:

A set SC S!(IR™ is bounded with respect to the topo-~
logy of SI(IR") iff there is a positive constant A such
that?®
sup sup sup A™a ¥ [0 (x) |
VES XEM GEZQ (3.1)

<o for every Ne Z,

holds with M =IR". If (3.1) holds for some closed subset
M of IR", then S will be called locally bounded on M in
S1(IR™. This definition was introduced in Ref. 11 in a
slightly different form. Actually, both definitions are
equivalent, due to the following

Lemma 3.1: Let () be some nonempty open subset of
IR", let N be some nonnegative integer, and lete, A be
positive constants fulfilling the inequality € < (2¢A)™.
Finally, let ¢(x) be an arbitrarily differentiable function
over (), for which

Cy=sup sup A™'a~(1+IIxI)" [0 ()]
XE() ac2}
is finite. Then ¢(x) is the restriction of a function ¢(o)
that is holomorph in U%(()) and fulfils the inequality?!
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sup sup (24)"1a (1 +lol))¥ | o** (o) |
eEU()) acZ]

< (1 +€)¥Cye™(1 - 2eAe)™.

Proof: Evidently, the analytic continuation of ¢(x) is
given by

(p(a)(x +0”) — Z;" (B!)-iors(p(a*s) (x)
€ 27
for x€ () and 0’ < @" with [lo’]| <e.
By this representation we get the estimate

A +lIx +o' I |t x +0") |
<@+’ 2 (B Io N + i)Y [ =B (%) |
8C 20

<( +”UI”)NCN Z) (B!)-iuor”IslAla+Bl(a +6)(a+s)_
[ISE

Hence the simple inequalities

(a + B)(ou»B) < zlaoﬂlaaBB’

3' > o™ e-IBIBB

(3.2)

yield

A +lIx +o' ¥ o (x +0") |
< (1 +]lo’lY¥Cye’(24)*'a® 20 (2eAll0’]])'®
[’ A

'

for y € () and o' " with lio’ll <e. This directly implies
the statement of Lemma 3.1. m

Let M be a closed subset of IR” and F(x) a generalized
function on S!(IR"). Then F is called locally continuous
on M with respect to SY(R") iff!! sup,csF(9)! is finite
for every S C S(IR") that is locally bounded on M in
SYR").

The field A(x) is called essentially local iff,!! for
arbitrary ®,¥c D, (®1[A(x,), A(x,)]1¥) is locally con-
tinuous on Vg= {(x;, x,) € R%: (x; - x,)*>0}. In order to
derive the Wightman property from essential locality,
we first need one more technical result:

Lemma 3.2: Let C be a nonempty, open, convex cone
in IR". Let the function f(y — ¢7) be holomorph in R"-i(
and polynomially bounded on every region of the form
R"-iK, where K is any compact subset of . Finally,
let @(x) be a test function from S!(IR") fulfilling

sup  sup A"l (1 + x| ¥ (x) | <
XERN thf,'

for all Ne Z, and some A > 0 not depending on N, Then
for arbitrary v’ e with 171l < (2eA)™! we have

Lim S axfix—=ine) = [ dxflx-it)o(x - it’).
TEC

Proof: Let 7/ and 7’1l < (2eA4)"!. Then for suffi-
ciently small fixed 7€ we may choose € > 0 and a finite
set {rg,...,Ty}C(C with T1y=7, Ty=7" such that the
conditions

“Thl - Tj” <e, Ue(Tj) cC, ”Tj -7l +e< (2&4).1

hold for j=0,1,...,N~1. Under these conditions
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Lemma 3.1 and the Cauchy theorem imply
[ axfix-it)elx - i(r;- 1)
= [ A flx = 1Tl = (T 10y = 7))
for j=0,...,N~1. Hence we conclude
[ axfix-ine) = [ dxf x=ir)olx—i(r"- 7))

for sufficiently small (. Obviously, by Lemma 3.1,
the rhs converges to

S axflx=it"o(x - it’)
for r—0.=
Let us define sequences of “type 6’; by??
@z, @)= (N/7)"/ exp(- Nlix - 2']|?),

where x,%' € IR¥ and N- 1< Z,. By Egs. (2.2) and
(2. 3) and by Lemma 3. 2 we then conclude:

lim ( [ dZBT (%) gz, ()

N= e
- [ o BTG - B)op,yG - ) =0
x!

for sufficiently small y € RY with (y,;-%,,...
e (V,)™!, where

)yn-i—yn)

K ={& eR'™ 2] 27| <e

forj=1,...,n and =0,...,3}

If #€®.N IR* and if we choose e sufficiently small,
then by the Cauchy theorem we may derive

lim | dZBT (& - 1) pp, v(% - ) =BT )
N-ow K2 h— -
x’
for sufficiently small y € R*" with (y, ~y,,..
e (V,)™!. Hence

lim [ dZ BT E) oz () =BG
lim [ &3 i

holds for every # €&/.N R". If*® rc S, is such that also
E:E (x:(i)’ L ax:(n)) E@,’,, then’ USing

. 1yn-1'—yn)

%?,N(’?) = <P§",N(52r),
we may conclude that

lim [ di [ @7 ®) -8B @)z, v @)
N~ oo R (3- 3)
— Q(T)(x') - Q(T)(;&:).

Recalling the classification of Jost points we see that
2 eR™\V,={XcR¥": (x;-xp)*<0 for j#j'}.
Therefore, the set
WNon N & )}NE Z.

is locally bounded on V,, with respect to S{(IR*"). This
may be easily proved by (3. 2) and the estimate

3
A-(1+k+1)k-k/2]--!/2 'tk<a%) exp(__ t2) l <1
fortcR! and j, k< Z,,
which holds?! for sufficient large A >0 and implies
NA-(!+k+1) €!+2[(]' +E+ 2)-(l¢k+2) /25-472

X t"(—d>jex (-N£B)| <1
ar) P
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for N,j,kc Z, and te IR! with |f] >e.
If A(x) is essentially local, then

sur;l [ az [T z) -8 E)]ex) |
v

is finite for every set S SI(R*") that is locally bounded
on Vy, in SI(IR'™). Hence (3.3) finally yields

@(”(;C’) — E(T)(;&:)

for every £’ €®,N IR* and every 7< S, with ¥, & ,.
This is known® to imply the Wightman property. Thus
we have shown:

If A(x) is essentially local, then its Wightman func-
tions possess the Wightman property!

4. RUELLE'S CLUSTER PROPERTY AS A
CONSEQUENCE OF WIGHTMAN PROPERTY AND
MASS GAP

We do not know, whether, conversely, essential
locality can be derived from the Wightman property.
However, we shall derive some weaker continuity
property, which, together with the mass gap condition,
is still strong enough to guarantee Ruelle’s cluster

property.!® To this end we have to extend the bound (2. 2)

to larger regions. This may be done using L, (C)-
invariance:

Lemma 4.1: Let A € (0,1), let Ay,e>0, and let
Ny ++sMm1€ V,. Then, for sufficiently smalil 6 >0,
there is a compact subset K of (V,)" and a finite con-
stant C such that, with n,=0, the following statement
holds:

For every 7 € Ug(#’) and for every £ R*" with
|88 <M llEN =€, &N >NMEN forv=1,...,n-1
there is a A€ L, (C) fulfilling

AT eRY - iK
and

IRe(AD <IIEll +C
(remember ¢,=£,-1n,).

Proof: Evidently, without loss of generality we may
impose the additional restrictions

E,,:(a,b,0,0), ]a|<)\1b>€‘
Let us first choose a §; > 0 such that
U351(n;)c VvV, forr=1,...,n-1.

Then choose a k > 0 small enough in order to guarantee
K/Xy < 8y, kAy/e<1 and Re(A,, ¢ n7) € Us (17) for
¥=1,...,n-1 and all £, under consideration, where

A -k ENHE ~illg,l™ 00
— ikl £l 1= kHEJNDVE 0 0
Mgy, = 0 0 10
0 0 01
c L,(T).

Finally, choose 6 < (0, 3,) sufficiently small to be sure
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that the compact set

K={n"c R Ny € Uge, () forr=1,...,n-1;

N € -Um for suitable a”,b”
fulfilling |a”| <x” and ||(b”,a”,0,0)ll =«}
is contained in (V,)". Then it is almost trivial to check
Age R =K
and
IRe(Ay, ¢ M <1l + 6 455 Il
r=1
for all £ under consideration (corresponding to our

choice for 5).m

Given €, Ay, Xy >0 with A; <1 and given n, j=Z, with
0<j<n, let us define

4
wi Ay ={rc R [x5 - xl, | <Aqllx; = sl >,

”xj - xj”“ > 7‘2”95,— X I if {’r’rl}# {7’] + 1}};
M:: A “IR4"\05,11,A2

Clearly, xeQwl oy M Xy CO;’;'”, where 7; is the

permutation whi 31 just exchanges jand j+1. In view of
the cluster property we want to prove that

sup | f dZ[BT (%) -BW (%, )] o () | <o (4.1)

holds for every set S CS!(IR'") fulfilling

\GHZIY | 9@ 2) |

sup sup. sup, eld
veSs zCUc(M’e"x g ) aczin
r <w for NcZ, (4.2)
and
sup  sup (2ee)'¥ & ¥|Z||¥ | 0@ @) | (4.3)

fcUt(Rin) agin
< for every Nc Z, and ¢ < S.

Consider a set S of this type and let ¢ €S. Then, by
Lemma 3.2 in connection with (2. 2) and (2. 3), we have

ST (% Ta P
[ di [ BT E) - BTG, )0 () 4.4)
= f di@T(‘g)[(p(zA)— (P(irj)]y EE’?_ 13';!
for y € R*" with | §1i <e and y, - y,,,€ V, for
v=1,...,n=1, In order to apply the Wightman proper-
ty, we should like to cha.nge the way of integration such
that the x € R \U (M eagnrg) aPpear only in the combina-

tion £ — 4%’, where y' ]R“" is chosen (independently of ¢)
in such a way that
y;"—_y;-bly ”37'” <e, and y';" y7l'+1E V+ for v#j.

By Lemma 4.1, (2.2), and L,(C)-invariance of W% we
know that there is a > 0 and a polynomial Px) ‘such that
Z €®, and BT (2) fulfills the inequality

[B7E) | <P(z) (4.5)

for all £ with §€ Uy($') and x € Uy(
let us put

ny §
" ’*1'12)' Therefore,

v,=y; forr#j
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and

y;=(y +minfe - 113'1l, 6}/2,¥))
in (4. 4), which we are certainly allowed to do, if § is
chosen sufficiently small. Then, from the bound (2. 2)
and from (4.2), we see that

RPN dxﬂBT(z)[w(z)— @, )|

Ak

has an upper bound independent of ¢ €S. Hence, in or-
der to establish (4.1), it is sufficient to show that also

s BTOLo@) - 0E.)]]

e.xi,)«z
has an upper bound independent of ¢ €S, Let us define

dn-1,
e,xl, {(xiy =,y 7---;xn)E]R'" 1'

2 0%i,, for suitable xjc R'}.

For (x,...,%X;,... ’xn)502§>{1,x2 and x%< R! we then

have:

X028, HE hu = Aqllx; = Xpqll

<x§ <afyy +0qlix; = x40

Therefore, using the Cauchy theorem, we may write

fO dx @T(E)[(P(E) - <P(5,j)]=11(¢) +1(¢),

E"‘Mz

where

[}
¥ > el 4
Il(w)Efén,j dxlooodxjee.dxnfyo jdy,”oﬂ_BT(x—ty )
Fl

6.11,7\2
X [¢(x - iy ”) - (p(xrj - zy:’j)] lxo-xg 1'11'“]"}.;1"
[2((p) fO 1«.,.,dxje.edxnf’gdy;ll)@?(&_ij;u)
e.li.lz ¥y

X [¢(§‘ - ij} ") - (ﬂ(ﬁ?, Zy’ )],040 AT Yo TR

II_

yr yr fOI' 7’*]‘, y;’,EYJEY}~

Here we omitted the additional term
+A, X =X

fé"'j dxyoeedx;eer dx, fj+1 1% ! dx’ QBT(x—zy)
e.)t1,)«2 j 1-A1|Ixj-xj U

x[o@x~1y') - olx,, - i; )]

= my AEBTER-5")- BT, -5 )]eGE-5"),
0 iy - Y b
which is zero, due to the Wightman property. By (4. 2)
and (4.5) both 11;(¢)| and |L,(¢)| have an upper bound
independent of ¢ €S; hence we have finally proved the

desired continuity property:

For arbitrary e,2;,, >0 with A; <1 and for arbitrary
n,j< Z, with 0 <j <n (4.1) holds for every subset S of
SYR*") fulfilling (4. 2) and (4. 3).

As in Ref. 11, let us now introduce the following
notation:

mz(i)EmT(xf(l)) e ,xr(n))’
a0E ((0> ai), veey (0, an)):
1519 J. Math. Phys., Vol. 17, No. 8, August 1976

min Hagery = Bgernyll,

"EO:(r.r‘)E(l...."’)x(n‘+1,..,n)
§(ay) = [ ai B @) oG - @),
Syw={reS,: 1(r) <mr’) for 0<vr<r'<n’

as well as forn' <r <r’sn}.

Then the following lemma, which was derived from
essential locality in Ref. 11, may still be derived from
the continuity property just established:

Lemma 4.2: Let N be a nonnegative integer and let
1€S,, ,» and @< SYRY). Then there is a constant C for
which the inequality

m’f.ao ‘8: ACHER RACH) J <C
holds for arbitrary a,,...,a,c R® with lla, ~a, |
< (n - l)mt,ao'

Proof: Recall that B7 (%) - ®(x) can be written as a
finite sum of generalized functions of the form

mT(x"(“’ .. ’xr'(n))

T
=B (Xer (1)s - s Xet (Gatrs Xer (3o + + 3 Ko (m)

with suitable je {1,...,n~ 1} and suitable 7’ € S, fulfill-
ing 7'(j)e{rle’ +1),...,7()} and 7'(j +1)
e{r(1),...,7@’)}. Hence, by the continuity property
established above,

sup| [ % B () -BF D)]o @) | <=
e

holds for every set S C S(IR*?) and ¢ > 0 for which the
conditions (4. 3) and

sup _ sup suge & 12117 | 9@ @) |

1 zCU"(M') S
<w for N2,

(4.6)

are fulfilled. Here we define ¥ to be in M7 iff for arbi-
trary (j,j)e{l,...,n'}x%’ +1,...,%} at least one of
the inequalities

12205 = %005 | 2 311%p sy = Xpigosl,
1%e sy — Xe gyl <,
or
1%e (5 = Zecso oIl < (1/2)1Rg(ry = Kool
for suitable »,7’c{l,...,n}
holds. Let N’ be an arbitrary nonnegative integer. Then,

by translation invariance, our proof is complete if we
show (4. 3) and (4. 6) for the special set

S:{gogo(:?)smﬁ';(](p(i— ay): 25,...,a8,€ R, a,=0}

and for suitable ¢ >0. While (4. 3) is a simple conse-
quence of the definition of S!(IR*") and Lemma 3.1, con-
dition (4.6) is (by Lemma 3.1, again) a consequence of
sup sup sup4 a5 '“llxll"lﬁf)(“)(x)l
s S JcCM1 o= 2,
< for NcZ,.
So we are left to prove (4. 7):

Let £ +@,€ M]. Then, for suitable (j,5')c{1,...,n'}
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x'+1,...,n}, we have
lagcs) = @psl =My,3,

and at least one of the inequalities
lxtes = #0eses | 2 21 Kesy = Zeein) + @risy = Briin)l,
(K (h) = Keser) + @pesy = Bgse)ll <1,

or

1(Ke 5y = Kegger) + (@yezy = Bzl
SE gy = ey Il + Nagry + 27001

for suitable 7, 7’ holds. In any case we have the in-
equality My, S 1+ 2(n +1)I%1, which allows the follow-
ing estimate:

sup IZI1¥ | @f (%)|
feu] 0

<smy; sup (&l +(n~1Pm, ;)" [0® @) |

§+aOEM‘1'

< sup (200 + 13RI + (e — 1))V | 0@ @) |.

fcrin
This, together with the definition of S*(IR*), implies
(4.7).w

As shown in Ref. 11, following Ruelle!’ one can derive
from Lemma 4, 2 and the mass gap condition the
following:

Cluster property: Let N be a nonnegative integer and
let ¢ be a test function from S!(IR**). Then there is a
constant C such that the inequality

llagll¥ |§L(a,) | <C

holds for a, =0 and for arbitrary a,,...,a,cIR%,
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and their bilinear and trilinear invariant forms
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The unitary irreducible and many nonunitary representations of the universal covering group of SU(1,1) are
given in a realization on certain spaces of functions. We discuss intertwining operators for these
representations and their connection with the discrete series. The tensor product decomposition is
performed by means of an integral transformation. A completeness relation for these integral kernels is

derived.

1. INTRODUCTION

Qur study of the universal convering group G of
SU(1,1) is motivated by the fact that conformal invari-
ant quantum field theories in two-dimensional space—
time (like the Thirring model} exhibit the symmetry
group G® G, which is the universal covering group of
the conformal group for two-dimensional Minkowski
space. Representations of the group G®G are used in
the construction of such models. It is hoped that by
means of harmonic analysis on the symmetry group
G®G one gets insight into certain features of these
models that can be carried over to quantum field theo-
ries in four-dimensional Minkowski space.

Representations of the group G, namely those of the
discrete series, have been given by Bargmann. ! Both
the principal and the discrete series have been present-
ed in infinitesimal form (as matrices) and in global form
(as operators in function spaces) by Pukanszky.? This
author gave the supplementary series in infinitesimal
form in addition. His main result was the proof of the
Plancherel formula.

In this article we present all unitary irreducible
represenations and also a great many nonunitary ones
in an operator realization on a function space, We con-
struct bilinear invariant forms and their kernels that
are related with the intertwining operators. For the
supplementary series such kernels supply us with an
invariant scalar product. Finally we study trilinear in-
variant forms and their kernels that are related with the
problem of the tensor product decomposition of two
representations. We derive a completeness relation for
these kernels. This relation is equivalent with the com-
pleteness relation for the Wigner coefficients of G.
These Wigner coefficients can be defined as the tri-
linear invariant forms for the elements of the canonical
basis. But we do not introduce them explicitly, mainly
because this would involve reasoning for a specific
choice of normalization which is of no use for us later.

We emphasize that the coordinate functions, that is,
the matrix elements of the representation operators in
the canonical basis (the ¢ or 4 functions), and the multi-
linear invariant forms for the elements of the canonical
basis can be obtained from the corresponding expres-
sions for the group SU(1,1) by a proper interpolation
and analytic continuation in the helicities. For the
representations of SU(1,1) we refer to the textbooks,
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Refs. 3,4. Our work profited most from the work of
Ferretti and Verde® and Wang® who deal with the tensor
product decomposition for SU(1.1). In fact, there exists
older work on this subject by Andrews and Gunson’ and
Holman and Biedenharn.® Andrews and Gunson were the
first authors to apply the Burchnall— Chaundy expansion
in this context. This method has been used later by
Wang and has also been adopted in this article. It
seems to us much more elegant than the formalism of
Holman and Biedenharn which is based on interpolating
and analytically continuing the respective formulae of
the group SU(2). The proofs given in Refs. 5, 6 for the
deformation of a contour in the complex j-plane are re-
duced to a lemma that is given in the Appendix.

2. REPRESENTATIONS
We denote elements of SU(1, 1) by
a
U:(E E)’ detv =1, (1

An element of G can be characterized by the matrix v
and a real number £, — o <{<4 o f=argg. Thus the
group G possesses an infinite number of sheets over
SuU(1,1).

Next we introduce the space (0 <7<1)
De=1{g(p)€ C(= =, +=)|g(p+2m) =exp2mitig(¢)}
(2)
of complex valued functions. Extracting a factor

glo)=explit)flo), g, (3)

yields a periodic function f(¢) that possesses a rapidly
converging Fourier series

80

floy= 22 a,, expime). (4)

M=~

By this property the elements of /), can be
characterized.

In /), we introduce the canonical basis

{8.(®) |ga(@) = expligp), =7 +m, m integral,

—o < < + oo} (5)
and the canonical norm
2 1 o 2
lglr= [ lgto)|7av. ©)
0
Copyright © 1976 American Institute of Physics 1521



Completing the space /), with this norm (6) yields a
Hilbert space /2.

The space /), can be made to carry a representation
of G, denoted by the symbol x =(j,7), in the following
way. Let us denote now

v‘1=<g£), v:(_%;B) )

For arbitrary je €; we define the linear operator in /),

T}, g(0) = |a + Bexp(-ip) | Y g(9,, ), ®)
where
, o +Bexp(-ip) .
expli,, ) = =——=————"= exp(i®) 9)

@ + B exp(+ig)
is independent of £, but ¢, ; is not

@y, e =@ +2arg(a + B exp(-ip)). (10)
Because |al> I8], the rhs of (10) is uniquely defined
by £=arga, namely

|arg(a + B exp(- i) — arga | <n/2. (11)

It is a straightforward task to show that these opera-
tors satisfy the group multiplication law and present
bounded operators from /), into /), with respect to the
canonical norm (6). Continuity in the group element can
also be proven with respect to the same norm. Similar
assertions are true in other topologies like the /), 2-
topology. ?

In the canonical basis the operators T3 ; possess the
matrix elements (“coordinate functions”)

T, 184y(#) = 23 Ch o (0, D)2, (0) (12)
q
1
with the integral representation

27
Ce0, @ E)=2L7,]; exp(-i (g, - 42))¢

X (a + B exp(- i)™/ (a + Bexp(+ip)) 1/ 21 de,

We define coordinates on SU(1, 1) by 13
v = exp(io,0,/2) exp(o,n/2) exp(ios@,/2), n=0. (14)
Then (13) can be evaluated

Cthz (v, £) = expli@ g, +i90yq,) cjlqz {coshn), (15a)

)

= (—é‘—;—j_qz)(l +u> '(ql*qz)/2 (u_1> (ql-qz)/z
41— 4, 2 2

X2F1(%+]. ~qs, %—j—‘Z2; g1=4q,+1; (1 -u),

qy2 g4, (15b)
_ o LG +aTG - )
o) = T T g TG 4= )
Xc,fz,,l(u), 4145, (15c)

The principal series is obtained if j is purely
imaginary. In this case the canonical norm (6) can be
shown to be invariant. Thus the principal series can be
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realized in the Hilbert spaces /2 with the invariant
scalar product

ne=5 [ E@ a0 (16)
The discrete series is obtained as follows. We set
g(p)=exp(ike) h(p) amn
and have
T, Ji(9) = exp(= k(¢ = @y, )} | @ + Bexp(- i) |21
Xh(@y, ). (18)

For k== (§ - ) the multiplier in (18) is {«

+ B exp(— i@))*’!, respectively (a -+ Bexp(ie))¥!, due to
(10). These multipliers are boundary values of the anti-
holomorphic function (@ + 8z)%"1, respectively the holo-
morphic function (@ +Bz)?*"! in the unit circle lz | <1.

If k is periodic, viz.,

=T modl, (19)

then the negative, respectively positive, frequency parts
[by negative frequency part we mean that the coefficients
a, in the Fourier series (4) of k(¢) vanish for m > 0;

the positive frequency part is defined correspondingly]
constitute invariant subspaces. Thus /), possesses an
invariant subspace 75~ (respectively 7i*’) under T%,,
provided

j—3=7 mod 1 (20)
(respectively j— 3=~ T mod 1).
These subspaces are spanned by the canonical basis
elements

o m=0,1,2,+e" (21)

~q:j_é_”’zv
(respectively 7{": g=—j+z+m, m=0,1,2, +++).

If (19) is fulfilled, then the positive (negative) frequency
part of (@) can be continued into the unit circle |z 1 <1
to yield a holomorphic (antiholomorphic) function
@) [(z)] of z. Following from the subspaces 7
of /),, we have obtained certain linear spaces of such
holomorphic or antiholomorphic functions. The scalar
product for the discrete series of SU(1,1)! can be taken
over unaltered,

2n -1
T 1zi<1
X (1= |z |3 2dxdy,

(%)
X

@1 82)an = 7P E) P (2)

(22).
1 .
n=3~j real.

This integral converges obviously for »> 3. But the
scalar product can be extended to all # >0, as we shall
see in a moment. The invariance of the scalar product
(22) is easy to prove. Completing the linear spaces by
means of (22) or its extension to » >0 leads to the uni-
tary representations of the discrete series. Namely,

the positive frequency parts yield the positive discrete
series and the negative frequency parts the negative dis-
crete series.

The coordinate functions for the discrete series come
out as [using the functions (15b, ¢) as analytic expres-
sions in j]
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Jediacr — 1 i
cqfqz (u) - NTallNlazl Ca

1tzz(u): (23)
where for the positive (negative) discrete series

L1
qi,y==-jt+z+m,

@,2=+j—3-m), (24)
m=0,1,2, ”"j<+%
and N, denotes
1_ 1/2
N — Tz-j+gq) (25)

T TA-%TE+i+9)

N7! is the norm of the basis element g,(¢) due to the
scalar product (22). This expression (25) can in turn
be used to define the scalar product in a basis depen-
dent fashion (which makes it more difficult to prove
invariance). It shows that a positive scalar product can
in fact be defined for all real j smaller than 3 corre-
sponding to n >0, as was asserted above. The negative
discrete series can be treated in an analogous fashion.

3. THE INTERTWINING OPERATOR

We define an operator S on /), for all j in the left half
j plane by the convolution integral

sgle) =[S, 01 |x, 2l (@n) doy (262)
=N fzr ) 2sin? - ¢ |
o
X exp( +2i70(@; — ¢)) g(®;) d@,. (26b)
with
{arg(sin(<p/2 —40)) +7/2
o(e)= 7/2 for 0< @ <27, (27)
The function o(p) satisfies
o(p+2m =0(p)+m, (28)
0((@1)v, e = (@2)u, ) =0(@y - @3). (29)

We choose the normalization constant N(j, 7) for con-

venience as
Nx) =N, ) =T (- 2j) 2sinn(z +j - 7). (30)

The operator S turns out to be diagonal on the canoni-
cal basis

(31a)
(31b)

qu((P) =Sqng(</7),
Sea=Se()=T(z+j~q)/T(z-j —q).

From (31b) we see that the definition of the operator S
can be extended to all complex j except a discrete set

of singular values on the real axis where some S,, be-
come infinite. We want to include in the set of singular
points also those where S, vanishes. Of course, the
whole set depends on the choice of the normalization
constant (30). This extended operator is called the inter-
twining operator. The singular points are connected
with the discrete series and will be investigated in a
moment.

The name of the operator S results from the property
that it intertwines two representations

Xz(j}T) and Xc:(—j”r)
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in the sense that
ST, =T%,:S (32)

on /), provided only that we are not at a singular point.
In this case S is a mapping of /), onto /), and possesses
an inverse S*1. We call x° the “conjugate” representa-
tion of x. If j is purely imaginary, S can be continued to
a unitary operator on /% so that two representations x,
x° of the principal series turn out to be equivalent.

We denote the representation x* the “dual” represen-
tation of y if

x=7, x'=(-j,-1).
Letg;€ /)., &€, Then

2r
Blgng)= |, &@)g:(9)de (33)
is an invariant bilinear form if g; transforms as x and
g, as its dual x°. This assertion follows immediately
from (2), (8), and

%‘i = |a +Bexp(-ip)| 2. (34)
If g,€ sy &€ D5, then the bilinear form
Blgg) =, £(0)Sg)(9)do (35)
is invariant, provided that g; transforms as x%° if F:p)

transforms as y. We shall make use of this fact in the
construction of the invariant scalar product for the
supplementary series,

Let z—j~ 7 be an integer, but 3 +j — 7 not. This im-
plies that all matrix elements S, are finite, and some
are zero. We can also write this assumption as [see
(22), (23)]

$—j=n, n=+7 mod 1, 2j not integral. (36)

Then the intertwining operator S annihilates the sub-
space spanned by the vectors g,(¢) with

g=n+m, m=0,1, 2, ¢ve,

which we denote 7{*’. This null space #{*’ of S is an in-
variant subspace and carries a positive discrete series
representation as we know from Sec. 2. Similarly we
have an invariant subspace },((" if n=- 7 mod 1, spanned
by the elements g (¢) withg==-n-m, m=0,1,2,¢++,

We consider two functions g(¢), g,(¢) of /), which do
not have any components in 7{*. We set g,(¢) =g(9)
in (35). Since j is real, g transforms such as g,. Con-
sequently, (35) defines a sesquilinear invariant form on
D/, After a renormalization of S we get a sesqui-
linear form on 7{* itself. Namely, replace the rhs
of (30) by I'(- 2j) 2sinw(3 +j + 7) and denote the new
operator by S’. Instead of (31b) we obtain

St=T@+j+4q)/T(z-j+q). (37)
S’ does not annihilate 7{* but 7{~. It gives on 7"
Sae=T(1 = 2j)7ING? (38)

so that, up to a constant factor, S’ generates the scalar
product (22) of the discrete series.
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Imj
FIG. 1. The cuts of the
function {j}¥2 in the j plane
ah Re j for the case q; =z ¢, 20,

One can elaborate further on the singular points of
the intertwining operator, in particular on the case that
both 3 +j— 7 are integral. In this case 2j is also inte-
gral, It results in a discrete series representation of
SU(1,1). 1t is only in this case that subspaces of the
type £y appear as intersections of 7{* and 7{ that
carry finite-dimensional “spinorial” representations.

The bilinear form (35) leads to an invariant scalar
product of the form
7 J—
(g1,80 = [, £1(¢) Sg)(@)do (39)
also for the supplementary series (after an eventual

adjustment of the sign). We need only require that j is
real and that

Sgg _%_j—q >0

=2 40
Sqetyqst 2ti-4 (40)

for all q. We require j <0 in order to render the inte-
gral (39) convergent for g, ,€/),. All points in the

domain
- l3=-7|<j<0, 0s7T<1, (41),

and only these solve these constraints, as has first been
found by Pukanszky.?

Finally use is made of the intertwining operator in
defining new coordinate functions, the “d functions”

DY o, £) = expliqy ¢; +ig;¢) dg g, (coshn), (422)
d} o, ) =87 /2 () Si a2 (5) €] o, 0)- (42b)

The definition of the square root is a matter of conven-
ience. We set

TG +i=ay) g 120y gr-1/2(
TE+i—q) Sayer D 8ig, ()

_ F(é-j+q1)f‘(%‘+]'+(h) 1/2:{7-}1/2
T(z—7 +q)T(z +j +q,) ’

(43)

where the right-hand side is defined as a symmetric (j
— —j) analytic function of j. For q,=q, {7} is a poly-
nomial of j of degree 2(g;—q,). We define the cuts of
{j}/? as in Fig. 1. In particular a cut extends to « if
and only if g, — g, is odd. On the imaginary axis we
choose positive real values. Correspondingly the asymp-
totic behavior of {j}1/? is

{j}i/?. ~

(AR

F5)1 (1 +0@F)), O<zargi<m. (44)
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From the definition several symmetries of the d
functions can be deduced. From (32) or explicitly from
(15a) we have

Caa, ) =8} o (7)€q 4, 0S50 (). (45)
For the d functions this relation simplifies to
d;fqz(u) = d;iqz(u). (46)
Moreover, we find from (15¢)
d‘{i"z(u) = (= 1)“1"‘zdzzq1(u) (47)
=(-1)4"% d{qi'_qz(u). (48)

The relation (48) connects the representations x and
x“?. These form a pair due to the automorphism of the
group G

v 0-1' T’ ‘E - = ‘E
With (48) we can easily derive

- !d
DY o, ™7, = 5 =Dk, 0, 8). (49)
(x)

If /), possesses an invariant subspace 74, some of
the coordinate functions vanish identically. The func-
tions cﬁlqz(u) vanish if ngej,((", g &7 for g, > ¢, and
if g, €78, & ¢ 7, for'q, <g,. The d functions behave
more symmetric, Namely, délqz(u) vanishes if & e],‘(”,
8o, & Fx and if g, ¢ 3, g,,€ 757 for ¢; > gy, and analo-
gously for g, <g,. Considered as functions of 7, ¢ func-
tions have first order zeros at the points mentioned,
whereas d functions have zeros of order 3 (that become
of order 1 if they coincide).

Now consider the case that an invariant space 7{"
exists, let g, , both be in ¢, and j <0. The normal-
izing factors Nq appearing in the coordinate functions
for the discrete series [see (23)] are already incor-
porated in the analytic expression for djiqz(u) and we

have

d§1qz(u) =(=1)%1™2 cg;g;w(u). (50)

Though it is never necessary o use the d functions,
their characteristic symmetries (46), (47), (48), and
the simplified appearance of the discrete series, make
it sometimes very comfortable to use them. We use
them also in order to facilitate the comparison of our
results with those in the literature.

4. INVARIANT TRILINEAR FORMS

We consider functions g;(y;) eﬁ,i, ¢=1,2, and define
the convolution integral operator (Rey, >~ 1)

K(gy1°89)(w3)

2r 27
= [ doy [ a0 K, 05 |x1, 015 %0, 92)

Xg1(¢01) 82(@,) (51a)
27 2%
=N(x; |X1;X2)]; d¢’1j; do,
Y
X T ( 2sinPi= 9| "
i, ik 2
cyele
X exp|2i0(¢p; - %)m]) £1(@1) g2(@2). (51b)
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The form of the convolution kernel K given in (51b)
'satisfies the covariance constraints

K(g, °g2)6013, 52)
TISK(g 0g) =K (T, 81° To48))
provided only that
T, + 1 — Ny =integer (53)
and
i=+j=dytiz—3,
Yo==is+Ja+is= 2 (54)

Yi=—Jji=ja—Js= 2.
We require the integrand in (51) to be periodic. This
leads to the additional constraints

T(+ 7Ny~ 1y =integer,

(55)
T, + 1 — N3 =integer.
From (53) and (55) follows
T, + Ty — Ty =integer (56)

so that 7, is uniquely fixed by 7, and T,.

If (56) is satisfied, the three constraints (53) and (55)
become dependent and one parameter, say 7;, remains
free. We set

My=Ty+T3, Ny=— T+ (67

Thus it turns out that there is no covariant kernel K of
the form (51) if (56) is not fulfilled, but an infinity of
them if (56) is fulfilied. However, it will be shown that
in the latter case the kKernel X can be represented as a
linear combination of two fixed kernels K, and K,. This
is in agreement with the known fact that the Clebsch—
Gordan coefficients for SU(1, 1) exhibit a twofold de-
generacy.® It remains to be true in the case of the
universal covering group.

The integral (51b) converges absolutely if Rey,> -1,
for all k=1,2,3. From (54) it can be seen that this
convergence domain contains a strip around the three
principal series Rej,=0. Thus one defines the operator
K first for this strip and then by analytic continuation in
the whole space €; of the variables j,, j;, j;. As in the
case of the intertwining operator, the operator X is
singular on a subset of points of €3. This singular set

is partly connected with the discrete series. A com-
plete discussion of the singular set is not attempted
here. We will have to show still that K(g-£,)(¢3), &1

S 0,1, g,< /), is infinitely differentiable if we are not at
a singular point. For g;€ 0_,3

2r
S a0 Kg108:)(@) de (58)
is then a trilinear invariant form, if g; transform as
Xs-
Clebsch-Gordan coefficients are defined as the tri-

linear invariant forms for three elements of the canoni-
cal basis. We set

81(01)=84,(01), £2(¢2) =84, (#2) (59)
and define the “C coefficient”:
K(g,, 80, )(9) = 27780 10y (9) (60)
XC(xs, 431 415 Xzs‘12)n3
for g;=¢,+q,, and
C(Xs» 3 ]X1, 91 X2)de)n, =0 if q3#q;+q,. (61)

The constraint (56) is automatically taken into account
by (61) this way.

In order to express the C coefficient explicitly, it is
useful to assume Whipple’s notation. ° Namely

Fy(t; m,n) =[T(@m)T(Bn)T(Bar)]™

X 3F (O gmns Rgmas X gmas Brmts Bary 1), (62)
-Fn(l; m’n):[r(almn)r(ﬁlm)r(ﬁln)]-l
X3F o (Cingy U1gss O ign; Bims Bin3l) (63)

with the labels (g,k,j,1, m,n) denoting any permutation
of (0,1,2,3,4,5). The o and 8 coefficients are given in
Table I. F,(l;m,n) and F,(l; m,n) go into each other un-
der the simultaneous replacements

Je=™ =Jw Qe — s (64)

All F,(l;m,n) [F,(l;m,n)] with fixed I represent differ-
ent series with overlapping convergence domains for
the same analytic function of j,, q,, £#=1,2,3 which we
denote therefore F,(I) [F,(!)]. For more details of the
relations between all the F,(I) and F,(I) see Ref. 10.
The F,(l;m,n) and F,(l; m,n) are entire analytic func-
tions of the variables o« and 8 and consequently of the

TABLE I. Table of @, B. The coefficients a,,, are totally symmetric whereas §,,=2— f,,.

T -
O3 =2+i+4q3

..
Q=2 *riith—H

Cyp=3-fatq, Opy=3—71—h—Js
Qg3 =3+ —ja+Js Qps=3—ji—
Coyg=3+j1 —jo — 3 Cpa=3 -2 — @
Q5= 3+ — 4 Qs =3+ — @
Qp3=3%—J1 —J2 +is Ops=3—J3—
Bu=1-ji—h—a Bos=1—2j,
Be=1+ji=jh—a Bia =1+2j,

Bu=1l—-jd—js—q
By =1=Ja+j3— q

Bz =1+j —js +ay
Bu=1+ji+i3+q

Oypg=3~js+qs Ogyy =%~y + gy
Qo5 =3+j2+qy Qgas =% —fy + o+ ja
Qgy=3+ji+q Qg5 =% = ji+jy—Ja
Qg5 =3 +ji +a +] s =3+h—
Bis=1+ji—dp+qs Bag=1+2j3

Buz=1—j1~js+q
Byu=1~ji+js+q

Bos=1~ji—jatqs

Bys=1—7Js +j3+¢q
Bys=1—Jjs—js+q

1525 J. Math. Phys., Vol. 17, No. 8, August 1976

W. Riihl and B.C. Yunn

1525



je- This can be proved by means of a Barnes’s type
integral representation. !!

After a straightforward computation we obtain the C
coefficient in the form

Clxs, 91 +2 X1, 415 Xz,‘lz)n3 =(2m)N
X exp(=im(T + 7Ty = Ny = ayy)/2)
X [(exp(= i matgy5) = exp(= Em( Bgy + 215)) AF (1)
+ (exp(— imogyy5) — exp(— im(ogys + Qgq5 + 273)) BF ,(4)]

(65)
with
_ T Tlagy) Tlogyy) T{ays)
" sinm By T(ag19)T(ayy3) (662)
7 T(aga) T(0rga) T (@gss) . (66b)

~ sin7 By, T(ag3 T (@ g3q)

We see that the C coefficient (65) is a linear combina-
tion (depending on 7;) of two terms being proportional
to F,(1) or F,(4). Under the simultaneous replacements

J1* " =Js3 Jer iy 4143, Gy =4, 67)

the subscript of o and 8 are submitted to the
permutation

(0,1)2,314’5)_.(074,3’2)1)5)' (68)
This amounts to replacing
F,(1)~—F,4), A—B. (69)

By a particular choice of 7; we can either retain only

the F,(1) or the F,(4) term. Namely, if
Mg, == 2045 + Tz, (702)

then the F,(1) term survives. The convolution operator
(51b) for this choice (70a) is denoted K, and its C coeff-
cient Cy:

Ci(xs3 91 +42 X1, 013 Xo» €2) = (2m)3N (= 1)1

REACCIN) () I B

T(agp)T(ay3) (71a)
Similarly we may choose
T,z == 30435 (70b)
and have only the F,(4) term
CalXs, @1 +42 X1, 915 X2, 92) = @T)N(= 1)%7"1°™2
x P("‘F&I;S(:’;OIE?L 1;::’;215-) F,(4). (71b)
From (68) and (69) we obtain
Cil=31s T, @1 | =535 T3 03 Ga» = Ta» = )
= (= )" Cy(fa, T3, 43| J1s 1> 015 F2> T 40)- (72)

Both coefficients C,, C, are polynomially bounded in
gy and ¢,. Infinite differentiability of K(g,-g,)(w;) for
g1 60,1, 29 60,2 can be deduced from this fact.
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5. THE DUAL KERNELS AND THE PRINCIPAL
SERIES CONTRIBUTION TO THE COMPLETENESS
RELATION

Apart from the kernels K,, K,, or K we introduce the
dual kernel K° by

2
Kd(g3)(§01y f/’z)=fo do,

XK (X1, 915 X2» P2 }Xay ©3)&3(®3). (73)

We postulate covariance
Kd(gS) 6011 XD-rZ; (743)
(T, X T2 ) K (gy) =K*(T}3,£3). (74b)

It is easily verified that a kernel K? satisfying these
constraints can be obtained from the kernel K (51) by
replacing

Xk“’Xg’ Ne™ = Ng- (75)

Infinite differentiability of K*(g;)(¢;, ;) follows from
the polynomial boundedness of the C coefficients in g,.

We note that for g, ED_,,.I and g,€ /.., Wwe have a tri-
linear invariant form

[T ag, [ 40,2100 g(@)K o g5) (01, @) (76)

when g(g,) transforms as x? (x9). We set

&1(gy) =gq1(¢1) 6011)
£2(0)) =£4,(#) € Dnys (1)
85(03) =go,(03) € s,
and denote the value of (76) for these functions by
Cx1,41; X2,42|X3’Q3)n3- (78)
Comparison with (60) yields
C*x1,41; Xzaqz|X3»‘13)n3=C(X§a -a3x{, - a5 X3 —qz)-n3
(79)
provided the normalization constant satisfies
N xe Ixs) = Nx§ [, x9).- (80)
Thus we have immediately
C X1, 415 Xor D2 | X3 44 +’12)n3
= (272 N® exp(im(Ty + Ty = My + Q33/2))
X [(exp{=imaq3) — exp(— im( By — 213)) GF (1)
+ (exp(— T yy) = exp(— im(ays + Ag1y — 213)) HF 4(4)]

with 81)
~ sinmByy I"(01345)F(01045) (62a)
_ 1 Tlays)T(ays) Moy,
T sinmBy, (o 495) T (e py5) (820)

If we fix 75 such that the kernels K; and K, result [see
(70a) and (70b)], then the two substitutions (75) are in-
compatible. The phases of C{ and C§ must therefore be
computed explicitly. We choose 71; so that only the F,(1)
respectively the F,(4) term survives. From

W. Riihi and B.C. Yunn 1526



M3,1=+3Qo3 + Ty (83a)

we obtain

Cé=Qm)pNY(~ 1)1

T(ory45) 70 y25) Targgy)
8 T(ag45) T (00 g45) Fa(1). (84a)
Alternatively
n3,2=+éa024 (83b)
yields
C4 = (27)N%(- 1)1
S <)) )F"(4)‘ (84b)

T(aq95)T(@o15)

Our aim is the derivation of a completeness relation
of the following kind

f du (x3)Psf02’d(p3

(A1 (X1> X2» X3 K5X1> €15 X2 @2 lXs> @3 )
XKy (X3, 95 |X1> @15 X2» #3)

+85(X e Xa0 X8) K§ (X1 915 X2» @2 [Xa» #3)
X Ky(x3s 93 X1 945 X2» #3)]

+ discrete series contribution

400

= 2 exp(2mi{T ik + Tok,))
kh 23=®
X3(@y = @1 =21k ()5(py ~ @5 ~ 2Tk,). (85)

We assume that y,; , belongs to the principal series
first. Other representations will be reached by analytic
continuation later. We have to derive A, 4, and the
measure dj(x3)ps on the principal series in the j, plane.

In addition we have to show that combinations KK,
and KjK, that could be allowed by covariance do not oc-
cur in (85).

We take matrix elements of (85) and obtain

Gath.q'lm’z f du(xs)ps

(a1 CFx1, 915 X292 X3, 91 +2)
XCy(xs, 41 +a31x1,41; X2, 93)
+ 85 CHxy, 45 X212 X3, 1 +40)
XCylxs» a1 +43 X1 413 X2, 43)]
+ discrete series contribution
= (27)"Bq, g3 By 05 (86)
' This relation is obtained as special case of a more gen-
eral formula.

Following Ferretti and Verde® and Wang, ¢ we use
“coordinate functions of the second kind”;
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p imj,
iy | &= :
XVQ
sy | = = 0 D
e FIG. The contours v, ,.
1 Rej,
-t ] @ z
y-+
- jq' j: [Ca— . .
I

T s/l —(q+a*) /2
e:q'(z)— (_ 2]-) {7} [z(Z +1)]

sinm

x[5(z - 1) 1/ 2mi=1/2
X[[(F-j—q"T(z-j+q)T2i+1)]!

X Fils+j—q, 2+i~q'; 25 +1; 2/(1-2)), (87)

€lo@)=(= 1)Vl (2) = (- )" e, ()
x[arg(z +1)=arg(z - 1) =0]. (88)
Here {j }!/? is the analytic function of j described in Sec.
3 [Eq. (43)]. One considers then the product
eil @) €2 @)
and expands it into a sum over

Jgln . . .
ey @)y G3lr) =% +jy+jp+n
by means of the Burchnall— Chaundy formula. ! Since
e;'g,q:g (z) falls off exponentially in the right half j, plane
[see the Appendix, Eq. (Al5)] we can transform this
sum into a contour integral. Then we add up four such

integrals by means of
dla @) =elulz) +e3h () (89)
to obtain (z >1), g, >4q1, 4,29,

1 o _1 Ly
dqlqi (Z) dazaé (Z) —9 et d]3 2]3
i

. . N
x[tanw(j; + 73) + tanm(jy - 73)]E(]3)eqi+qz’qi%(z) (90)
with

E(jg) = {5,122 T

T (0 435) T(@ 145) T (@ p35) Tt 945) /
g ( T(0tg42) T g34) Fy(0)F,(5)
- F(QO a)_r(ac“)l"(am)r(aou) ,
1 T 195) T (0 545) Fp(5)F,,(0)> . (91)

The contours ¥+, + are depicted in Fig. 2. Primed (un-
primed) terms depend only on primed (unprimed) vari-
ables g,.

A Sommerfeld—Watson deformation of the contour
¥ «v+, = which is justified in the Appendix, leads to

+io
»—f_h +27.

Lys es
*T & R

Use is here made of the fact that the functions F,(1),
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F,(1) are free of singularities in j;. Because the
imaginary axis and all the integrands except the factor
e"i‘% are symmetric under j, ~~ - j;, we can replace
eﬁg% by %d:gq.a in (90). Together this yields (z = 1)

Fq 4y 1 Hieo ..
d’t”'l(z)d"z"é(z):_'f{ . djsjs

+[tanm(j; + 75) + tanm(j; ~ 75)1E(j3) d:za's(z)

N 2% WEGm) Al @) (92)
0sn <[q‘3 -1/2]
with
jan) =qi~n-3. (93)

The sylm of residues stems from the poles of the func-
tion eqqug(z).

The sum of the residue terms has been given for the
case

43>q;3>3. (94)
If

-22q;24q3, (95)
then we have a sum over z from 0 to

[~a;~ 2] and jy()=-q3-n-3. (96)

If neither (94) nor (95) is fulfilled (still for ¢4 > ¢}), then
the sum is void. The sum of residues represents the
contributions of the discrete series.

Introducing the real parameter p by
J3=1p, 97
we can rewrite the measure on the imaginary axis

dp.(x3)ps
1 . . ; 1
= --2—27]3[tamr(13 +74) + tanm (s — 75 )| diy

_ p sinh27mp
~ cosh2wp + cos27n7,

Thus the measure du (x;)ps is positive.

The relation (92) is usually derived first under the
assumption

41>41, 43> 4. (99)
If we go to the limit z =1 [absolute convergence of the

integral in (92) will be proven for z =1 in the Appendix],
the factor

[on the rhs of (82)] allows only

6«11«12,0’1“1’2
491=41, 4=4;.
In order to obtain orthogonality of the C coefficients,

say, for q;#4{, we have to abandon (99), say, by
considering

4:2q], dy<q;. (100)

However, the derivation of (92) uses the coordinate
functions of the second kind, whose hypergometric fac-
tor is symmetric in g, ¢’. Since we want to maintain
the connection

gy +q,=4q;, q9{+q;=43, (101)

1528 J. Math. Phys., Vol. 17, No. 8, August 1976

it can be seen that the coeifficients in the Burchnall—
Chaundy expansion remain unchanged. It turns out that
E(j,) is independent of the order and that (92) is valid
in general,

With the help of the three-term relations for F,(1) and
F,(1)," we replace F,(0), F,(5), F;(5), F}(0) in E(j;) by
F,(1), F,(4), Fy(1), Fy(4) and get
E(jg)={j 117 Lo} /2 {j o4 1/

X[VF,(1)F;(4) + WF,(4)F,(1)] (102)
with
Ve + 78
"~ sinmByy sinma gy sinTayy,

% T(ag)T{oryss)
T(0gq5) T (0 g30) T (300 Tedg5)

-3

" sinmByy Sinmar 45 SInTQg,s

T(ag)T (org45)
T(ag19) T{agis) T{a 123 Tlargas) *

Comparison of (102) with (86) then yields

(103a)

(103b)

A1(0X15 X2> X3) =— 89(X15 X2 X3)
(104)
T

=(2 -3 dy =1
(2m) (NN sinm(jy +45+7,)

We have still to determine the discrete series
contributions.

6. THE DISCRETE SERIES CONTRIBUTION TO THE
COMPLETENESS RELATION

The contribution of the discrete series to (85), (92) in-
volves the discrete measure 2j; concentrated at the
positions (93) if ¢;= 0 or (96) if g5 <0. This measure
depends on g;. The introduction of the covariant ker-
nels is therefore more complicated than in the case of
the principal series.

The easiest way to deal with the discrete series makes
use of kernels K,, K;, K4, K3 (which we are going to
define) instead of K,, K,, K}, K{ in (85). In fact, the
choice (70a,b) is not unique for retaining a simple
Whipple factor F,(I) or F,(I) in the C coefficients. One
can isolate any F,(l) or F,(I) by means of three-term
relations' if one wants to. But the function 73(j,) one
has to choose is not always elementary. Other elemen-
tary choices are, e.g.,

Ky fy=— 30914~ Ty, (105)
Cy= (27N (= 1)%2™" r(“f}(f*;i i‘;‘fff;f;‘;"“) F,(5), (106)
o=@ e gl g o)
Kyt ny=+304~ Ty, (108)
C,y= RTIN(= 1)%2™ r("‘i’}g;l;(s‘;‘f}g;;i‘;“’m F,(0), (109)
Ct= @men(- 1y DIl e T ;‘0"1 (51‘( ;f;‘;‘ LF,0).  (10)
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The function E(j;) [(91)] can be written in terms of
C,, C;, C4, C{ easily. The principal series contribu-
tion in (85) then looks like

2r
f dp (X3)ps fo dﬁos[As(Xv Xz)Kg(Xp P15 X250 P2 lXa; ®3)

XK (X3, @3 |X1r @15 Xo» P3) + BylX1s X2)
XKHXy, 915 X2 @2 1X3> 93) KalXss @5 [x1 @15 x20 @] (111)
with the weight factor

Ag(xys X2) == B4(X1s X2)
", (112)

sinw(j, = jo + T4+ Ty)

= (27) 3N

that can be extracted from the integral since it is in-
dependent of j; [contrary to A,,, in (104)]. Correspond-
ingly E(j,) is proportional to

B4(xy, Xg) C5C1 + B4(x1> X2) CIC3

If ;= 0, then for the discrete series terms I'(a/gs)™
=0 and consequently C3=0. Thus, only the first term
in (113) survives. We introduce a new kernal K§ as the
convolution of K¢ with an intertwining operator,
precisely

(113)

Tt 04)

S 124l ~d . .
Tl 1,915 Xo» 92 1X3,93)

(114)

Clx1, 415 Xa» 92 |X5, 70) =

The contribution of positive g, to the discrete series
can then be presented in the form

. 27 2r ,
+A3(X1,Xz)lz,) 2]3f0 do, fo do;
3

XK, 915 X2» 92| XEs ©3)
XS(X§, @3 x> 05 KX, 931 X15 @15Xar 03)- (115)

The intertwining kernel S is obtained from (26) by a
special normalization and by setting

T3= j3+3z mod 1, (116)
This gives explicitly
S(x5> 03| xs> 93} =[T(1 +25)/27]
%[~ 2i sinz(@; - @} +140)] - 24371, (i

In fact, the sum over j; in (115) runs over all positive
Js 5o that

T, +T,2j,+% modl (118)
is fulfilled.

Negative g, can be treated analogously. In this case
(96) holds and for the discrete series terms I'{ay3)™!

=0 implying C;=0. Consequently, the second term in
(113) survives. We define

Ci(x1, 915 Xo» 72| XS @3) =[T(@ous)/ T{@pzs)]

% CHx1, 915 X2» 92 | X35 23)- (119)

As contribution of negative g, to the discrete series we
obtain this way
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.2 2 ,
+A84(X1» Xz)JZ) 2j, fo 'd‘ﬂs fo 'dﬁpa
3

XKy, @15 X 02 1X55 03) S0, @31x3 03)

X Ky(x3> 94 X0, 915 Xz » 92). (120)

The intertwining kernel S [its complex conjugate enters
(120)!] is the same as in (117). The sum runs over all
positive j; obeying

- T =Ty 2 jy+% mod 1. (121)
The completeness relation says that the sum of (111),
(115), and (120) gives the delta functions

300

E exp(Zm’lei) 6(@1 - (p{ - 211']31)
ks~

X 25 exp(2miTyk,) 8(@, = @5 — 27ky). (122)

k2=-eo

APPENDIX: ASYMPTOTIC BEHAVIOR AND
CONVERGENCE OF INTEGRALS

We make use of the asymptotic expression
T(a +3)/T(6 +5)~j* (1 +O(1/5)),

]argj[ ST=—€

(A1)

following from Stirling’s formula. The line argj =,
can be included as follows, We have

T{@+j) sint(d+j) TA-b=j)

TG 1))~ sint@+j) TA—a=j) (a2)
and from (Al)
C(l~b-7)/T(1-a-j)~j21+0(1/5),

larg(-j}| sm=e. (A3)

If we keep away from the poles of I'(e +7j) by a fixed
distance €, then from (A1), (A2), (A3)

,I"(a +] )/I"(b +j)] SM(E)(]- + l]'l)Re(a-b)

everywhere. In fact for a complex number x = £ +in we
have

(A4)

|sinmx |? = sin’r£ + sinh?ry,

lsin'rrx! 2 max (]simr& ] R lsinhm)l). (A5)

In the case of hypergeometric functions ;F, at the
argument one similar reasoning leads to valuable esti-
mates. We start with the following.

Lemma: The analytic functions of x defined from the
hypergeometric series

3Fala,b,c; d,e+x; 1), (A6a)

sFala,b,c+x;d+x, e+x; 1) (A6b)

by analytic continuation in x, have asymptotic expan-

sions for |x|--c, valid at least for larg(x - x,) | <7/2
(%o arbitrary fixed), that are termwise equal with the

hypergeometric series themselves.

We have been able to prove (A6a) for [arg{x — x|
<u/2-e. A general proof does not seem to be known
vet (see Ref. 13). We rely on the fact that it is plausi-
ble. It can be verified easily in the special cases where
the hypergeometric series can be summed.
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In the left half planes the hypergeometric functions
have poles at the same positions as the functions

Tle+x)T(e+d+x-a—-b-c) (ATa)
respectively
Td+x)T'(e+x)T{e+d+x—a-b—c). (ATh)

Assuming validity of the lemma allows us to extend the
asymptotic expansion into the left half plane up to

largx | <7 —¢€ or to the whole left half plane except
parallel strips around the poles. Moreover, an estimate
is possible in the same sense as the estimate (A4).
These results are achieved by inverting the sign of x in
(A6a) by a three-term relation.

If we take E(j;) in the form (91), we meet the func-
tions F,(0), F,(5), F,(0), F,(5) which contain hyper-
geometric factors of the type

Fola,b,c;d+x, e—x; 1) (A8)

that posses poles in both half planes. Again a three-
term relation allow s us to express the function (A8) by
two functions (A6b) or two functions (A6b) with the sign
of x inverted. Since we are interested in an estimate of
E(j,) for largj,l < 7/2 we need the functions (A6b)
themselves.

In fact, from the definition we have
JFala,b,c; dy+x, eg—x; 1)
=T(s)T(dy+x)T(e; — x)F,(0,4,5), (A9)

where the parameters o.;, Bm, are connected with the
parameters a,b,c,d=d;+x, e=¢e;—%x, s=d+e-a-b
—c, as in Ref. 10, Table 4.1. Then we express F,(0) by
F(5) and F,(4) using the three-term relation

F(0)=T(1-e+a)Tl-e+b)T(1-e+c)

sinve 1
x (ﬂF(s) O+ sroro 9(5)) (A10)
and realize F,(4) and F,(5) by
F,(4)=F,(4; 0,1), F,(5)=F,(5; 0,1), (A11)

to which the lemma applies. It follows
Fola,b,c; dy+x, eg=x; 1)~1+0(1/%)

+ (7/sinme)[T(s)/T(a@)T (b)T(c)]

X y-1%2tavbred-eg=dg (1 4 ()(1 /x)), ‘xl —~w, |argx| <7/2.

(A12)

The second term can obviously be neglected if |Imx |
— 0, Similar situations arise if the functions (A6a),
(A6b) are studied in the left half plane: for Imx = const
there results a power behavior which vanishes if {Imx|

—o  leaving the asymptotic expansion in a series of
inverse powers as expected from the lemma.

Treating the first term in (91) with this techniques we
obtain (including the factors in front of the bracket)
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~fa /2 U2 7 2324200t ~a ) sag=al
{]1} {72} Sin'ﬂ(- 2]2) (;2]3) i 3

X(1+0(1/j), |Imjs| ~=, |argj,| =€

— (A13)
For Imj; =const we get some power behavior if we keep
a distance ¢ away from the poles. The second term in
(91) gives exactly the same result as (A13) and both
terms cancel. This could be expected since E(j;) is in-
dependent of the order of ¢, Z¢{, ¢,% qj. Consequently,
there must be cancellations up to the result

E(jg)~ MGy, § )Fdjy) 3 il (1 + 0(1/j,)),

, . (A14)
\Im]3|——°°, l]a\"“’-
Finally we take into account the exponential decrease

of the second kind function
[tanw(j; + T5) + tanm(jy - 75)1{ 73}/ 2 €2 2)

1/2
~_ 2 jg-d'-l/z

msinhn (a15)

exp(- nj,),

n==arccoshz >0, largj3| ST-e

This justifies the replacement of the Burchnall—
Chaundy series by the contour integral over },y+,+ and
the Sommerfeld—Watson deformation of this contour.
For Rej; =0 we have uniformly in z

I3

l[d3 @) <1, z2=1 (A16)

following from the unitarity of the principal series.
This justifies the limit z — 1.
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Lagrange multipliers and gravitational theory
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The Lagrange multiplier version of the Palatini variational principle is extended to nonlinear Lagrangians,
where it is shown in the case of the quadratic Lagrangians, as expected, that this version of the Palatini
approach is equivalent to the Hilbert variational method. The (nonvanishing) Lagrange multipliers for the
quadratic Lagrangians are then explicitly obtained in covariant form. It is then pointed out how the
Lagrange multiplier approach in the language of the (3+ 1)-formalism developed by Arnowitt, Deser, and
Misner permits the recasting of the equations of motion for quadratic and general higher-order Lagrangians
into the ADM canonical formalism. In general without the Lagrange multiplier approach, the higher order
ADM problem could not be solved. This is done explicitly for the simplest quadratic Lagrangian (g '"°R?)

as an example.

. INTRODUCTION

Since the earliest days of general relativity it was
known that the field equations of general relativity could
be obtained from a Hilbert variational principle using
the Einstein Lagrangian, g'/?R. The Hilbert variational
approach assures the connection is Riemannian and
treats the Lagrangian as a function of g,, and its deri-
vatives. An alternative method, the Palatini approach
was proposed almost as early as the Hilbert method. !
In the Palatini approach the metric and the affine con-
nection are varied independently and the Riemann rela-
tionship between the metric and the connection is de~
duced as a consequence. The Palatini approach is known
to be equivalent to the Hilbert approach for the Einstein
Lagrangian g*/?R.

However, the Palatini approach gives different results
than the Hilbert method when we apply it to higher order
Lagrangians. In particular the Lagrangians g'/2R?,
&2R, ,R**, and g'/%R,4R**® have been investigated by
several authors using the Palatini method.?™ In all cases
the field equations are different than those obtained from
the Hilbert approach. This difficulty has been handled
either by simply choosing the quantities g,, to be the
metric, as a special case, after the variation is per-
formed, or by simply leaving the two sets of equations
obtained by separate variations of the affine connection
and the g,, as independent sets of equations in a gen-
eral affine space.

Lanczos® and later Ray® have shown that the Palatini
procedure for g* /2R can be understood as a Lagrange
multiplier approach where it turns out that the Lagrange
multiplier itself is zero. We believe that the Palatini
treatment of Stephenson, > Higgs,® and Roxburgh? of the
quadratic Lagrangian of a Riemannian space are un-
necessary and incorrect. In Sec. II we will show that
extending the idea of Lagrange multipliers to nonlinear
actions leads to the expected results with the additional
information that the Lagrange multipliers are no longer
identically zero. We will examine the quadratic
Lagrangians as particular examples. In Sec. III we will
apply a Lagrange multiplier approach to the Arnowitt,
Deser, and Misner (ADM) 3+ 1 canonical formalism.
We show that a Lagrange multiplier approach enables
us to formally solve the ADM approach for nonlinear
actions, which was not possible in the original ADM
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method. We consider the Lagrangian g'/?R? as a particu-
lar example.

The Lagrange multipliers used in Sec. Il are of a
completely different nature than those used in Sec. II.
The constraint of Sec. II must be pre-imposed in Sec.
I since all the affine symbols involving time as an in-
dex must be explicitly expressed in terms of Christoffel
symbols in order to produce a (3 +1)-formalism. In the
(3+1)-formalism we use the Lagrange multiplier ap-
proach to decouple the variations within the intrinsic
3-geometry (expressed in terms of 3g;; and 3pty,) from
the variation involving the extrinsic curvature (expressed
in terms of K;;, N;, N). This procedure is “natural” to
the (3 +1)-formalism because it emphasizes the break
up between the intrinsic geometry of the 3-space and
the extrinsic curvature of the 3-space with respect to
the enveloping 4-space.

Before proceeding with these investigations we need
to discuss why we wish to consider nonlinear actions.
There are, in general, 14 independent algebraic invari-
ants of the Riemann tensor, any one of a combination of
which could be used as the Lagrangian of a variational
principle that would yield a “completely geometrodyna-
mical” theory,! one expressed entirely in terms of the
structure of the curvature of space—time. Classical
general relativity results, of course, from the variation
of one of the simplest of these invariants, the Ricci
scalar R, In recent years, the next most complicated
invariants, the three independent quadratic invariants
R® R, R*', and R.s,R*™" have attracted renewed atten-
tion in several respects. They have been treated in con-
nection with the question of stability against gravitational
collapse’ and also mentioned in connection with the re-
normalization difficulties of attempts to quantize the
gravitational field.®*® In view of this interest, we first
clarify some confusion in the current literature regard-
ing the method of obtaining field equations from the
quadratic Lagrangians by showing (in Sec. ID) that the
alternative methods of “Hilbert” and “Palatini” vari-
ational procedures can be made to yield equivalent re-
sults if the Palatini method is correctly interpreted as
a Lagrange multiplier technique as indicated by Lanczos®
and Ray.®

Since one of the major lines of approach to the quan-
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tization of general relativity is the “canonical Hamil-~
tonian formalism” developed by ADM, it should prove
desirable also to be able to express the field equation
of the quadratic invariants in this formalism. We show
in Sec. IIT that a “ Lagrange multiplier” procedure here
provides a very natural way to re-express the equations
of motion into a first-order canonical formalism, and
exhibit the explicit form of the field equations in this

formalism for the simplest quadratic Lagrangian,
gl /ZRZ .

The idea of using Lagrange multipliers is reminiscent
of the attempts of Lanczos to develop a canonical formal-
ism for nonlinear Lagrangians,'® His approach, how-
ever, was quite different from the ADM method. The
multipliers he introduced were of a different nature than
those we introduce in the section on the ADM approach.

The final section (IV) contains a discussion of the
general applicability of the Lagrange multiplier method
in the 4-formalism and discusses the questions of inter-
pretation of the nonvanishing of the Lagrange-multiplier
constraint forces, with some suggestions for future
work.

1. LAGRANGE MULTIPLIERS—4-FORMALISM
FOR NONLINEAR ACTIONS

A. General comments on Lagrange multipliers

Many papers have been written applying the normal
Palatini approach to nonlinear actions®™* such as g'/2R?,
2 2R*® R, etc. I one followed Ray’s suggestion, ¢ then
the correct way to approach such problems would seem
to be via Lagrange multipliers. With such an approach
it is obvious that the field equations so obtained for g,
must be equivalent to the normal Hilbert variation. How-
ever, we will have the additional information contained
in the Lagrange multipliers.

Suppose we wish to examine some action
A= (g2 dx,

where the integral is over all 4~space and L is the
Lagrangian of the system. The normal Einstein approach
is to calculate the set of equations.

(1)

6A/6g,,=0, (2)
We instead consider
A= g3 d4x+fg1/2[_cd4x’ (3)

where

chAaBY[FaBV —%g‘”(gpﬁ,r +gm',a‘gsr,p)] (4
with A,* Lagrange multipliers,

We now solve the set of equations

5A/5gu,,= 0, (4a)
GA/éraﬁr =0, (4p)
BA/BAT =0, {4c)

where the variations are taken treating g,,, I, and
A as independent quantities. Equation (4c) simply
recovers the constraint. Solving Eqs. (4c) and (4b) and
substituting into Eq. (4a) must, in principle, produce
the same result as Eq. (2). However, we now have the
additional information contained in the Lagrange multi-
plier given by Eq. (4b).

To calculate 8/ ., we need the following identity for
affine spaces in which the connection implied by Eq. (4)
is not known:

6(28°° (2, v T 8w .= Sar ,a)]
= %(gpﬂ;?‘ +ng;B ~gﬂv;p) 6gup +%gap[(5gp5);r + (6gpy);ﬁ
- (égBr);n]- (5)

This identity can easily be established for affine spaces
with symmetric connection by an extension of Palatini's
original argument to affine spaces. As long as the con-
nection is symmetric in its covariant indices, by a the-
orem due to Weyl, ! there exists a locally geodesic co~
ordinate system in which ordinary and covariant differ-
entiation are equivalent. In this coordinate system g ,
=&gy;, and, since the variation operations and ordinary
differentiation commute, we see that 6(gw,,) = (5gp) 0
This variation is a tensor so the explicitly covariant
form of the preceeding must hold in all coordinate sys-
tems. This establishes Eq. (5) for all affine spaces with
symmetric connections. Once the constraint of a
Riemannian space is imposed by Eq. (4c), the terms in-
volving the covariant derivatives of g,, vanish and Eq.
(5) reduces to the well-known result for a Riemann
space.

Noting also that terms such as [/ (8g) d*x vanish when
Eq. (4c) is applied, we can now discuss the effects of
the constraint upon Eqs. (4a) and (4b).

For (4b) we obtain

TABLE I. Lagrange multipliers and constraint effects on quadratic actions.

5L
Case L BY BHY
08, r%sy sconst A
A R? — 2RRM¥ +}uvR? -2g%"R,, ~RMY— R +guVR I,
—2R* ROV —R#oV, — RS e
- 2R57;a
B RU-VRMV +%guVR0fROT +R“y;00
_2Ruova°w ‘4Ru5”;‘rc {+2Ruov1;‘m
c RogyoRAET0 +38" RopysR*E70 ~4R,"8T, +2ZRVOMT g
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GL BY) @
( 6ra37+A,, 6%, =0 (6)

while Eq. (4a) becomes
(6L /bg,. +§(Auvo:a + A, — Auuv;q)]ﬁguv =0. n

The variation in Eqs. (6) and (7) are taken considering
8., and I'%,, as independent quantities.

It is now obvious that Eq. (6) can always be solved ex-
plicitly for the Lagrange multipliers A,® and substituted
into Eq. (7). As Ray pointed out, ® the A,* =0 if / =R;
however, this is not true in general. The particular ex-
amples of the quadratic scalar invariants of a Rieman-
nian space are shown in Table I. We denote the second
quantity in Eq. (7): i.e.,

BYY = H(ARYT AT AT ), (8)

B"Y is obviously symmetric in 4 and v, since we took
I'*;, symmetric in 8 and 7. It is clear that from adding
columns 3 and 5 of Table I that the results obtained are
equivalent to those of a straightforward Hilbert variation
such as found in DeWitt.®

B. Discussion of “‘normal”’ Palatini results for quadratic
Lagrangians

Stephenson? has considered the quadratic Lagrangians
of Table I with a “normal” Palatini variation. This is
equivalent to our results with A, =0, and hence B*”
=0. The three entries in our table are labeled A, B, C
in agreement with Stephenson’s cases A, B, C. In a later
paper Higgs® shows that the only solutions to
Stephenson’s cases A and B are the Einstein equations
with or without cosmological constant. Roxburgh! has
arrived at essentially the same conclusion for a com-
bination of cases A and B for symmetric affine
connections.

As Buchdahl'? has pointed out there are objections to
the ambiguities and “unphysical” aspects of applying the
Palatini method as it is normally given. In the light of
of our analysis we can add another “physical” objection.
If we follow the usual Palatini procedure, then the set
of Riemannian spaces that satisfy Stephenson’s equations
is much more limited than those that satisfy the Hilbert
variational procedure. Stephenson’s, Higgs’, and
Roxburgh’s solutions correspond to choosing AF =0,
From Table I we see that for case A, A,” =0 corre-
sponds to R,, =0 which leads to Higgs’ conclusion® if
we assume the normal relation between the connection
and the metric. Likewise, for case B, A,® =0 corre-
sponds to RBY.,a =0 which again leads to Higgs’ conclusion
for Riemannian spaces.

For the Lagrange multiplier approach to reduce to the
results of Stephenson et al. it is not necessary that
A% =0 but only that

B*'=0. (9)

This condition on the sum of the covariant derivatives
is less stringent than that imposed by the previous
requirement.

In classical physiecs Lagrange multipliers are related
to forces of constraint. It would thus seem appropriate
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to call the 40 quantities, Au‘”, generalized forces of
constraint that confine physical 4-space to be those sym-
metric affine spaces that are Riemannian. That is, there
is a choice for the 40 Lagrange multipliers such that the
space is Riemannian. If one imagines the space com-
posed of all possible symmetric affine spaces, then the
set of all Riemannian spaces is a hypersurface of this
space and the Lagrange multipliers constrain us to this
hypersurface. It is possible that greater understanding
of the nature of the spaces defined by the higher order
invariants can be obtained by examining these “con-
straint forces.”

Ifl. LAGRANGE MULTIPLIERS AND THE ADM
FORMALISM

A. The connection between the Lagrange multiplier approach
and the ADM formalism

In Sec. II we saw that the Lagrange multiplier ap-
proach, although equivalent to the Hilbert variational
method, does simplify calculations in the 4-formalism
approach to general relativity. In our attempt to extend
the 3 +1 canonical formalism of ADM to higher order
invariants, the Lagrange multipliers will play a much
more essential role. As ADM point out, two essential
aspects of the canonical form are'®

(1) that the field equations are first order in the time
derivatives, and

(2) that time has been singled out so that the theory
has been recast into (3 + 1)-dimensional form.

The Riemann tensor is second-order in the time de-
rivatives, so all of the 14 independent scalar invariants
constructible from it are also second-order in time. For
the particular case of the Einstein Lagrangian, gl’ 2R,
it is possible to neatly sidestep this difficulty and satisfy
condition (1) by eliminating a total time derivative (as
well as a divergence term for further simplification)
and use the equivalent Lagrangian!3

L apu=&y7"' = NR" - N,R', (10)
which is already first order (although of second degree)
in the time derivatives.

Alternatively, we could use the full Einstein
Lagrangian expressed in terms of g;; and its conjugate
79 and do a “Palatini variation” as ADM indicate.!?
When they take this approach, ADM have built in the
constraint that the 3-geometry is Riemannian. This arti-
fice is successful in achieving canonical form only be-
cause of a peculiarity of the Lagrangian used. Even the
full Einstein Lagrangian “g' /2R is only linear in 7%,
and so the Lagrange equations for g;; and 7 as indepen-
dent variables happen to be in canonical form. All higher
order Lagrangians constructed by the ADM “Palatini
approach” will be nonlinear in 7%/; hence, some other
approach is needed to achieve a canonical Hamiltonian
form for the equations of motion. In order to use this
approach we will need the extrinsic curvature Xj;.

In the remainder of this section we will show how to
apply the Lagrange multiplier approach introduced in
Sec. II to the ADM formalism in order to enable us to
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put the higher-order invariants into canonical form,

This is not trivial for the higher-order invariants. After
some general discussion in this part of Sec. III we will
examine the Einstein Lagrangian in subsection B and
finally look at the simplest quadratic Lagrangian,

g4 /2R% in subsection C.

Since all the Riemann invariants are second-order in
time, they would in 3 +1 formalism have the general
functional form

L=[ (3gij,Kij) K;;, N,N,),

where the extrinsic curvature tensor K;; is related to
the intrinsic 3-geometry 3g;; of the spacelike hyper-
surface by its definition:

K= (1/2N)(N;); + Ny = 2gy;) (11)

No Riemann scalar invariant will contain any higher-
order time derivatives than K;;. It would seem that for
the variation process we can give up the definition of
K;; in terms of g;;, and treat the K,; as independent co-
ordinates. These coordinates appear in the Lagrangian
only in first order in their first time derivative. We
will impose, as a nonholonomic constraint, the defini-
tion of K;; in terms of £;;. This constraint is of the
form:

afL c:ons:4tx'ail|t4g1 /zd4x

=0 [ AV[K; = (1/2N)(Nyy; + Njyu = 3g,) IN 3 12 dt
(12)

It should be noted that the “constraint” on K;; here is
not related to the Riemannian nature of the over-all 4-
space. The extrinsic curvature tensor K;; is an entirely
spacelike 3X3 tensor which is completely specified once
we have given the intrinsic 3-geometry of a spacelike
slice, imposed the initial-value equations on it, and
chosen a coordinate system. Thus it is already “con-
strained” in form. Because of this, we cannot simply
treat it as a “free” variable as a direct usual “Palatini”-
type approach would do; if we wish to treat it as a free
variable in the variation, then we must use the Lagrange
multiplier method to express the “constraints” on its
form separately. The Lagrange multipliers A must
then be nonvanishing always since the “constraint” (i.e.,
the restriction on the form of K;;) is always real. We
will find that the A are nonzero even for the case of
the Einstein Lagrangian *g!/2*R. This is simply a conse-
quence of using the Lagrange multiplier formalism to
“decouple” the variation with respect to K;; from that
variations of %g;;, N, and N;, and in itself implies noth-
ing about the Riemannian nature of the over-all 4-space.

Essentially, in order to write the Lagrangian in
(3+1)-form at all, the constraint of K;; in terms of N,
Ny;3g;; has to be “pre-imposed” (i.e., 4-space Rieman-
nian as is spacelike 3-space), and we do not solve for
those constraints in this formalism. They are implicit
in the initial-value equations obtained by varying N and
N;, since it is N, N;, and 3g;; that determine the im-
bedding once a coordinate system is chosen.

We now construct a new variational principle.
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6 [(Lr+L N 2dxdt=0 (13)

where /. is Eq. (12) above and / 3 is one of the 14 in-
dependent scalar invariants of a Riemann space. The
gquantity

Lg :LR(sgih Kyj, f{u’ N,N)

is now to be considered a function of two independent
sets of variables %g;; and K;, and their first order time
derivatives. Thus, the total Lagrangian has been ren-
dered first order in time so that we can proceed to the
canonical Hamiltonian formalism in the usual way. The
3-space itself must remain a three-dimensional
Riemannian manifold with a metric signature (+++).
One can choose the 3-space initially Riemannian by
either varying the g, ; directly by a Hilbert variational
principle or by a Lagrange multiplier technique similar
to Sec. II.

As we will discuss in subsection B, if the scalar
Lagrangian / ; is chosen to be R, it is possible to elimi-
nate I'{U and hence the Lagrangian multiplier is trivial
to find. In all other cases (we examine R? in detail in
subsection B) the invariant is sufficiently complicated
that any attempt to eliminate K i; is doomed to fail. Thus
it is in general essential to use the Lagrange multiplier
approach of Eq. (12) for the higher-order Riemann in-
variants if one wishes to recast them intoa 3+1 or
ADM canonical formalism,

It is also interesting to note that the constraint of
Eq. (11) is of an interesting mathematical type—a non-
holonomic constraint. In fact, it is the simplest such
constraint. That is, one variable (K} is related linearly
to the first time derivative of another corresponding
variable (3g;;).

B. The Einstein Lagrangian, *g'’2 *R

For simplicity we will begin with the ADM equivalent
Lagrangian for this case:

LADM:N 3g1 23p _ N Sg”a[(TrK)z— Tr(KZ)]’

where TrK =K’; and Tr(K? =K',K';. This is first-order
and second degree in g;; but is written entirely in terms
of °g;;, Ki;, and the lapse N and shift N;. We can treat
the K;; as separate coordinates if we add the constraint
Lagrangian

Le=N3g" "ENIK ;-3 38 AT (NG + Ny )
+4 30t /27\”;,’”,
where the '/ are the Lagrange multipliers.

The momenta 7 and 1" conjugate to 3g;; and K, re-
spectively are trivial to evaluate:

nii — aL;t.-u gt/ (14)
i
= a[a_ total _ o (15)

t7
where we have dropped the superscript 3 on the g% and
in all future cases where the quantities meant are clear.
Equation (14) allows us to eliminate the Lagrange multi-
plier. We can now form the Hamiltonian density
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H=gm¥ + K0 — [
=~ Ng'/2R + Ng[(TrK)? = Tr(K?]

~ 2NTHK ; + (N + Ny )t + K (16)

and then the Hamiltonian H by

H= [H d.
Some of Hamilton’s equations recover definitions

. 8H

&1y =57 == 2NKy; ¥ Ny + Ny, (17
which are the constraint equations, and

. oH -

Ky =5 =Ky (18)

The latter Egs. (18) are trivial in this case only because
the equivalent Lagrangian Eq. (10) did not depend upon
the K;;. In general, Eq. (18) will recover the definition
of 11" in terms of K,;. The equation in z;;, Eq. (17), will
be the same no matter what scalar invariant we take for
the Lagrangian since it depends only upon the constraint.
The dynamical Hamiltonian equations are

. SH
= (19)
0g
. OH
ij:—-—: 2
I 0K, o (20

where the zero in Eq. (20) is again a result of the par-
ticular invariant (*R) that we used.

We now have

id :Ngl /Z(Rij _ %gin) + ZNgl /Z(K'lmej _KmmKij) (21)

and
¥ = 2Ng! /2(K* — g/ K) + 2N71¥ = 0, (22)
We can make the identification
”U:ﬂ.fjADM:gl/a(ginmm_Kij). (23)

Since the A are related to the 7% in Eq. (14) we see
that we cannot take A/ =0 even for the Einstein invari-
ant if we use a canonical formalism. That is, there is
no direct “Palatini” approach unless we use a constraint,
either “pre-imposed” or added on by Lagrange multi-
pliers, in the 3 +1 canonical formalism. Since the
Lagrange multiplier is effectively equivalent to the mo-
menta for any action there is no simplification possible
in our approach,

In addition to the dynamical equations, general rela-
tivity (and other geometrodynamic theories obtained
from the higher-order invariants) is unusual in that it
also has constraints on the initial value data. This data
must be consistent with the initial value data. This data
must be consistent with the initial value equations, which
are obtained by varying the action integral, Eq. (13)
with respect to N and N; (lapse and shift}), We may in
a sense consider N and N; as “Lagrange multipliers”
which give us the initial constraints. For the Einstein
Lagrangian we obtain

%:g"Z{RHTr(Kz) - (TrK)2J} +219K,;=0 (24)
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and

EA—: Zﬂijlj =0,

o, (25)

which are identical with the ADM results since 7%

=74 apm- These initial value equations are not expressed
in terms of the Hamiltonian because they are not dy-
namical equations. They are only constraints on the ini-
tial value data.

Thus, in the 3+ 1 canonical formulation of general
relativity the Lagrange multipliers have a different phy-
sical interpretation than we found in the 4-formulation.
For the 4-formulation the Lagrange multipliers A,""
were zZero and represented the constraints needed to keep
4-space Riemann while in the canonical approach those
Lagrange multipliers relating &;; and K;;, i.e., the A%,
are related to the canonical momentum,

1t is interesting to note for our “truncated” Lagrangian
[ apm (with constraint terms /, and £ ;o0 =/ apm +L)
that when we make the identification 7% =3g'/2x*/  then
the “Hamilton’s” equations of motion, Egs. (21) and
(22), are in the fact exactly the same as the Lagrange’s
equations for g;; and K;; equations, while our “defining”
equation for 7Y, Eq. (17), is just the constraint equa-
tion obtained by varying / , with respect to A (this last
identity holds for any Lagrangian). Equation (18) for
K,; in this case yields nothing, so that our “Hamiltonian”
equations and “Lagrange’s” equations for this “trun-
cated” Einstein Lagrangian are in fact identical. It
should be remarked that the automatic Riemannian na-
ture of the space—time for the Einstein Lagrangian
tg /24 R obtained in Sec. II can still also be seen in the
context of the 3 +1 formalism. If we throw in Lagrange
multiplier constraints for the 3-space Christoffel sym-
bols A% (0%, = 38"™(gmip T & s = Gie W)INE 2=,
then the variational analysis within the 3-space proceeds
exactly as in Sec. II for the 4-space and we obtain ex-
plicitly *A,® = 0. Hence, an arbitrary spacelike slice is
automatically Riemannian within the intrinsic 3-space.
Further, we note that the equations of motion, Eq. (22),
for the time evolution of II¥ implies that 7/ ==, and
our initial value equations are consistent with those ob-
tained by ADM with the pre-imposed condition. Since
the above considerations hold for any arbitrary space-
like slice through the structure of 4-space, we conclude
that the over-all 4-space for the Einstein Lagrangian
must be automatically Riemannian if the Lagrangian is
the Einstein g'/2R.

C. The quadratic Lagrangian g' /2 R?

The quadratic Lagrangian, ‘g'/?*R?, represents the
simplest quadratic Riemannian invariant used as an ac-
tion for a possible field theory. Thus, it will provide
the simplest example where the Lagrangian multiplier
technique is needed. In this Lagrangian we will take the
£:;=(814) and the K;; as independent variables and im-
pose the relation between K;; and g;, by Lagrange multi-
pliers so that the Lagrangian density is

Liorar=L g2 +Ng "AV[K,; = (1/2N)(Ny; + Ny = £i)].
(26)

J.L. Safko and F. Elston 1535



All geometric quantities without a preceeding super-
script are three-dimensional quantities.

When we form Lg2= ("2 4R)2/g' /2 we must use the
full expression for the Einstein Lagrangian ‘g'/2 4R
rather than the truncated expression [ ,py with the di-
vergence and total time derivative removed, since the
left-out terms will now contribute nonvanishing cross
terms when we form (g*/24R)2. The full expression for
the entire Einstein Lagrangian is!

*g! 2 *R= - gyyribu - Ng™* "2 Tr(riom) = 3(Toom)?] + Ng* /2R

+ 2N (i) = 27w = ENF T oy + NV G 2]

where Ty =g 2(g" 'K = K¥) and T,py= g“nADM In order
to form g”sz, we eliminate 7i}, and 7%, in favor of
K;; and K;;. If we once again let K=TrK,;=K';, Tr(K?
:K,."'ij, we can express /[ g2 simply provided we use
the notation

—_Zg“ag”l'(”, B=+Ngt/?K?,
C=-3Ng'2Tr(K?), D=+Ng'/?R, (7
E=+2g""%Ny; +N; )KY, F=+2g"?N'K,,

___zgl/leiH’ Q:l/Ng‘l/z.

Then, using ‘g2 *R2= (g2 *R)?4g' /2, we obtain
[r2/Q=A%+2A(B+C+D+E+F+G)
+(B+C+D+E+F+G)? (28)

where the only terms dependent upon I'{” are first two
since only they contain the term A. We will identify
them as Lkij/Q=A2+2A(B+C+D+E+F+G). These
are the terms which prevent us from proceeding with
the canonical form without recourse to Lagrange
multipliers.

Using Eq. (12) for the constraint, we obtain again, as
we must,

=zg /", (29)
but now the momentum conjugate to K;; is not zero but
is

aL total _

/2443 SK
K ;; gl &

_-”B
78

Hij

+C+D+E+F+G). (30)

This enables us to express L,}“ as

(4/N)g ' 2(g K )z (31)

Using Eq. (30) for II¥ enables us to eliminate $YK
from Eq. (31), producing

LKij ujnlj [Ng/2/16K%)(K,,;11V)?
- [gt/2/2K|(B+C +D+E+F+G)(K;;11¥)
-[1/Ng' 2} (B+C+D+E+F+G)® (32)

Lkij:Ku'n”-

The last term cancels all the remaining terms in the
[ g2 of Eq. (28), so that

LRZZI'{”HH _ [Ng-i /2/16K2](Kijnij)2

~[g/2/2K|(B+C+D+E+F +G)(K;;11¥). (33)
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NT - (g™ /Z/ZK)(K,SHrS)[‘gl/ZKZ _

Once again the initial value equations are well posed
and come from the total action

A= [ qudt= [[ mdxdt
so that
+ 21K - (g2 /16K (K, 117)?
3¢ 2 Tr(K?) + g /?R]

0A

+H(K, M) g¥ /K 15

=0 (34)
and
sa T2+ A TIKY /K -
BN, |- (KT [K' /K] -0 39

The problem is now straightforward. Defining / ;.
=/ g2 +/ constraint @nd treating g;; and K;; separately, we
form the Hamiltonian as H= fﬁ_dsx,._where the Hamil-
tonian density // is // =g;; 7/ + K ;1Y =/ , 4.- There are
four different Hamilton"'s equations. Two recover the
definitions of 7/ and I1¥: i.e.,

2NK;; + (Nyyy T Nj10), (36)
which recovers our constraint of K;; in terms of N, N;,
and g;;, and

oH _ 1 Ng-t/2

Ki=3m7= "+ Ty o (K, II7)K
gl/2
+§(IT)(B+C+D+E+F+G)K“’ (37

where taking the trace of Eq. (37) and solving for 0¥/
shows that it indeed simply recovers the definition of
0" as 8L ot/ 0Ky;.

The remaining two Hamilton’s equations, the dyna-
mical equations describing the time evolution of the 3-
space, are
1Y = - 6H /0K,

—+2N7T”+ (Ng-I/Z/KS)( HrS) g'j—%(Ng'l/z/Kz)
X (K, U9 1Y + 5 (g7 /2 /K2) (K, 17%) gV
X[B+C+D+E+F+G]-35gt¢/0)n¥
X[B+C+D+E+F+G]
+NKgh ~ 3NKY
+ (I\]ilj +Nili)

- (1/K) (K TNTGH /K,

(38)

7 =_ 6H/bgy;
= +& (Ngt 2 /K% (K, I17°)2g"
+1 [Ngt (K, 702K KN +[B+C+D+E+F+G]
[ L /2 /K (K, 1)
L+ %@-1 /2 JE2)(K, 117%) K
[~ sNK%g" ~ 2NK KV

+ (K, ) (5/K)

x| + 2N Tr(KY) g +6NK K 7
- N(R” - %gin) -K® (Vrls +Aslr)g”

L" NmKI mgij _ ZANrmKij| n + f\'l mI mg.ij
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+{(K, ITIN"KY /K . (39)

Although these are extremely complicated expressions,
it is clear that the formal conversion from 4-notation
to (3 + 1)-notation has been completed, and that the same
process will work using any order scalar invariant of
the Riemann tensor in the action principle.

V. CONCLUSIONS

We have seen, then, that the classical Lagrange multi-
plier technique proves of significant value in discussing
the field equations of higher-order Lagrangians in two
distinct ways:

(1) In the covariant 4-formalism treated in Sec. II,
we can extend the “Palatini” procedure to higher-order
invariants by employing the Lagrange multiplier tech-
nique to constrain the affine connections to be
Christoffel symbols of a Riemann space. The equations
of motion obtained are, as expected, equivalent to those
obtained directly from the Hilbert method; however, we
gain the advantage of being able to solve explicitly for
the Lagrange multiplier constraint forces, and thus
identify those terms in the equations of motion which
arise directly from the constraint to Riemann space.

(2) In the 3+ 1 formalism treated in Sec. III, we can
use the Lagrange multiplier technique to “decouple” the
variations of the intrinsic 3-geometry of a 3-space from
the variations of the extrinsic curvature K;; describing
the embedding of the 3-space within the enveloping four-
dimensional space. This allows us to recast the equa-
tions of motion into a first-order (in time) canonical
Hamiltonian formalism (as developed by ADM) suitable
for attempts at conventional quantization techniques.

The purposes achieved by the Lagrange multiplier
technique in each of these formalisms (Covariant 4-
formalism and ADM (3 + 1)-formalism) in the context
of the higher-order invariants are complementary in
the following sense: In the 4-formalism, we can solve
easily and directly for the constraint forces that keep
the space—time Riemannian, but we obtain a second
order in time Lagrangian formalism that is unsuitable
for quantization purposes, whereas in the (3 +1)-formal-
ism the Lagrange multipliers are not related to the con-
straints to a Riemann space, which must be pre-imposed
in order to achieve (3 +1)-form for the Lagrangians,
but do allow us to recast the equations of motion into a
first-order canonical Hamiltonian formalism. Further,
although the present paper concerns only the quadratic
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invariants of the Riemann tensor, it is obvious that the
techniques of Secs. II and III will apply to any of the
higher-order invariants constructable from the Riemann
tensor. The classical method of Lagrange multipliers
thus proves a powerful tool in analyzing the equations

of motion for higher-order Lagrangians.

This preliminary investigation of the quadratic
Lagrangians poses several interesting problems and
lines of inquiry. What is the physical significance and
interpretation of the nonvanishing Lagrange multiplier
constraint forces and the “additional” terms to which
they give rise in the equations of motion in the 4-formal-
ism of Sec. II? What is the significance of the fact that
these constraints are automatically satisfied for the
Lagrangian g“ 2R of general relativity ? Is general rela-
tivity unique in this regard ? (Recall that in Stephenson’s
cases A and B, Higgs has already shown that the assump-
tion Aasr =0 reduces these theories to general
relativity.)

One would also like to have the remaining quadratic
invariants R,,R*” and Ry sR**® in 3 + 1 Hamiltonian
form. In principle the application of the “Lagrange
multiplier” method developed in Sec. III to these invari-
ants should be straightforward and direct; however, it is
obvious that in the (3 +1)-formalism the calculations
involved for higher-order Lagrangians will rapidly be-
come very tedious and elaborate. It is hoped that the
present paper will stimulate interest in the ADM for-
malism in the context of higher-order Riemann
invariants.
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Quantum mechanics on topological networks
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A quantum mechanical model of electrons on a network which has been used to obtain the line spectra of
conjugated organic molecules and the band structure for various solid state systems is shown to be
intimately connected with the homology and cohomology sequences of the algebraic topology of 1-
complexes. Thus, the remarkable qualitative agreement of these models to experiment implies that those
calculated physical quantities are structural quantities. Quantum mechanical conservation laws analogous to
Kirchhoffs electrical conservation laws are derived by variational methods applied to the system’s
Lagrangian. The topology is shown to enforce energy conservation on the network.

1. INTRODUCTION

Network modeling of physical systems has found wide-
spread acceptance in science. To chemists and physi-
cists this manifests itself mostly in a variety of dis~-
cretized models of molecules and solids in which a
three-dimensional material is idealized as atoms con-
nected by bonds lying in R®. Modern day mechanical and
electrical engineers have also found network modeling
very beneficial in dealing with aggregates of complex
systems. They, however, utilize a different class of
networks which we shall for now term “Kirchhoff-like, ”
after G. Kirchhoff. These networks have the feature of
inherently incorporating conservation principles, ener-
gy for example, as part of their algebraic structure.
Although electrical networks are the best example of
this class, there is a vast literature on electrical cir-
cuit analogies to the electromagnetic, elastic, and
fluid flow field equations and to mechanical and hy-
draulic pipe flow systems.!? A number of publications
have also appeared in the quantum mechanical litera-
ture describing a Kirchhotf-like network model of elec~
trons in molecules and solids. *~® The remarkable
success all these models have had in emulating the dy-
namic and kinematic features of the systems they
represent seems to indicate some deep underlying
mathematical structure common to all, Due to a very
general theorem in electrical circuit theory, Tellegen’s
theorem, the existence of such structure is even more
compelling. It has been used to derive virtually every
theorem concerning the power distribution in an elec-
trical circuit, linear or nonlinear, of arbitrary
topology. ?

We define an electrical circuit as a graph consisting
of vertices connected to each other by directed branches
on which Kirchhoff’s current and voltage laws are
obeyed. The current law (KCL) states that at any in-
stant of time the net current into each vertex is zero,
while the voltage ~ ~ (KVL) states that instantaneously
the voltage arow ich loop of the circuit is zero re-
gardless of wheu... the constitutive processes occuring
on the circuit are linear or nonlinear, passive or ac-
tive, singly or multiply valued. The excitation is also
arbitrary as it may be sinusoidal, exponential, periodic,
or random. It is well-established that both (KCL) and
(KVL) are topological in origin and that Tellegen’s
theorem is of natural consequence in the algebraic
topology of 1-complexes.®~'2 In brief, (KCL) is the
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electrical counterpart of what the topologist calls a
homology sequence, while (KVL) is the cohomology se-
quence. An Ohms law relation comes about as an iso-
morphism between the two sequences and Tellegen’s
theorem as a consequence of their orthogonality (in the
sense of a vector space). For higher-dimensional topo-~
logical complexes it can be shown that the operational
structures of linear graph theory and the vector calculus
are identical. This is the dominant reason for the great
success of network analogies to problems in continuum
field theories. More importantly, however, is their
possible utility as a foundation for the theory of non-
linear equations of motion, of which the Brayton—
Moser equations are one example, ?

In this paper we restrict ourselves to a discussion of
the aforementioned one-dimensional (1-complex) net-
work model of electrons in molecules and solids. Gen-
eralizations to higher-dimensional complexes and their
relationships to continuum quantum fields will be con-
sidered elsewhere. Originated as a free electron model
to describe in a simple fashion the electronic proper-
ties of conjugated organic molecules® and molecular
solids such as graphite and diamond, *® it was later
extended to nonzero atomic potentials by Montroll and
his colleagues and utilized to analytically determine the
band structure of perfect crystals, crystals with de-
fects, and crystal surfaces.®? Later applications were
directed towards electron scattering by crystal de-
fects.® In this model electrons are restricted by non-
constant one-dimensional potential fields to move along
the one-dimensional bonds of a network of atoms. The
network is given the same topological pattern with the
same lattice spacings that would represent its molec-
ular or crystallographic structure. Energy spectra are
then obtained by incorporating the boundary conditions
that

(1) the wavefunction is continuous along all branches
(bonds) of the network and at the node points, and

(ii) the net current flowing away from any node point
must vanish.

The technical details of this procedure are discussed
at great length in Refs, 3—8. It should be noted that the
first condition only holds true for atoms with dimen-
sions of measure zero, i.e., atoms represented as
points. (ii) has the flavor of a “Kirchhoff-like” current
law, It will be shown in Sec. 3 that in the stationary
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state the conservation condition (ii) has, for an arbi-
trary potential V(x), x€ R, the form
¥ dblsy,)

(1.1)
{3} dxj,p

=0’ IPE Lz[j’jp]’
X;; =node
0

where Y(x;; ) is the Schridinger wavefunction with sup-
port on [4,7,] and the sum in (1.1) is over all connected
lattice points j, to j.

Comparisons of the energy spectra obtained with this
method to experiment and to the more accepted theo~
retical analyses has shown a remarkable accuracy con-
sidering the one-electron approximation used and the
one-dimensionality of the model. 34

In the forthcoming section we shall briefly review the
relationship of Tellegen’s theorem to the algebraic topo-
logy of 1-complexes. The consequences of these gen-
eralized topological (KCL) and (KVL) variables will then
be exploited in Secs. 3 and 4. In Sec, 3 this is begun
with a general discussion on the embedding of a
kinematic constitutive conservation theorem, the con-
servation of momentum, on a topological structure.
These results are specialized to derive the quantum
mechanical (KCL) condition, Eq. (1.1), by a variational
procedure. It will be shown (Sec. 4) that this condition
implicitly contains the information of (KVL) and results
in a net energy conservation for the aggregate network.
By virtue of this superposition of physics on mathemati-
cal structure, the calculable physical quantities are
therefore structural quantities.

2. TELLEGEN’'S THEOREM AND THE ALGEBRAIC
TOPOLOGY OF NETWORKS

Tellegen’s theorem may be written as

L Niph"vy = DA BA vy, 2.1)
P

where 7, and v, are, respectively, the current and
voltage as measured along any branch of the circuit,
with p denoting a port (open branch) and with b denoting
an internal branch. The sums are performed over all
the ports and internal branches in the circuit (see Fig.
1). A" and A” are referred to as Kirchhoff’s operators
and have the following properties:

(1) If Kirchhoff’s laws for currents and/or voltages
are valid for a circuit of particular topology, then they
will also have validity after operation by a Kirchhoff
operator.

(2) All linear operators and both Kirchhoff current
and voltage operators.

Port 2

O

' —0
&Branch 2 #Brunch 3 Port2  Port | I
Port | Branch | —0 4

! Branch 4
O~ .

(a) (b)

FIG. 1. Typical network with four internal branches and two
ports: (a) circuit diagram showing the elements, as yet un-
specified, and the branches and ports numbered; (b) topology
of this network showing the branches and ports numbered.
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TABLE I, Kirchhoff operators.

Kirchhoff current (voltage) operators are defined as those
which yield, from a set of currents (voltages) that obey
Kirchhoff’s current (voltage) law, a set of numbers or func-
tions that also obey Kirchhoff’'s current (voltage) law. The re-
sulting quantities need not have the dimensions of current
(voltage) and may depend upon other parameters or variables
(such as frequency or temperature) introduced by the operator.
All linear operators (that operate in the same way on all
branches and ports of the network) are Kirchhoff operators.
Some examples of linear operators are the following (these
are all Kirchhoff operators):

1, Identity: Aé=i(t)
. Multiplication by a constant or by a specific function of
time f(¢): Ai=Fe)i(z)
. Shift in time by £y: Ai=i(t ~ £y)
. Differentiation in time: Aé=di (#)/dt
. Integration in time: Ai=[i{t)dT
. Convolution with a specific function of time f(¢): AZ
=[2i(t~T)f(7) dT
. Evaluation of i for a specific time ty: Af — i ()
. Time reversal: Ai=4(—¢)
. Selection of the even (or odd) part of i(t): Ai=3[#(¢)+i(—#)]
. Time average (or stochastic average of an ergodic pro-
cess): Ai= z%;
11, Selection of first-order perturbations or, more generally,
nth order perturbations
12, Selection of a particular experiment; the various experi-
ments may involve different element values of different
excitations, but they always involve the same topology.
13. Taking the Fourier or Laplace transorm (or, for periodic
signals, selection of the Fourier coefficients)
14, Complex conjugation

™

DU Lo

O W W=

(3) The nonlinear operators that presently qualify for
the title have been found empirically to be either cur-
rent operators or voltage operators, but never both
simultaneocusly.

A compilation of proper and improper Kirchhoff
operators has been listed in Tables I and II. In par-
ticular, if A”=A’=1I, then {2.1) is nothing more than
a power conservation theorem which states that the
power flowing in and out of an open system is the same
as the internal power generated in the system. If the
system has no ports, i.e., it is closed, then the lhs of
(2. 1) vanishes, and

27N A"v,y=0.
b

(2.2)

As a more interesting example of (2.1) consider the
two circuits depicted in Figs. 2 and 3. Although they

TABLE II. Non-Kirchhoff operators.

Some examples of operators that are not Kirchhoff operators
are the following:

1. Squaring: Ai=4%(¢)

2. Taking the absolute value: Ai= | i(2) |

3. Determination of the maximum value in a certain time
range

4. Selection of the root-mean-square or effective values

5. Selection of amplitude-modulation or frequency-modulation
components

6. Multiplication by constants or functions of time that are
different for different branches

Aaron B. Budgor 1539



FIG. 2. One state of
the network (values of
resistances in ohms).

both have the same topology different constitutive rela-
tions occur on them. By associating state 1 with A’ and
state 2 with A” we obtain item no. 12 in Table 1. Equa-
tion (2.1) is a reciprocity relation because the two
states of the network are related solely by their topo-
logy and can be likened to the occurrence of a virtual
process since state 2 does not occur on circuit 1 and
vice-versa.

We shall now demonstrate the relation between
Tellegen’s theorem and algebraic topology. The theo-
rems and corollaries to be stated are given without
proof, although the references where they may be
found are provided. !'*12 % Definitions for the topological
terms used are given in Appendix A. For the sake of
clarity it should be noted that, although Tellegen’s
theorem has been applied to electrical networks embed-
ded in R? one would like to show its applicability to
molecules and to solids in R%, This can be accomplished
by utilizing the following graph projection theorem. For
notational simplicity graph is synonymous with linear
graph.,

Theovem 2.1:¥ TCR?3 a graph isomorphism I :
' — T onto a two-dimensional orientable manifold = C R®
of genus g.

The map II must be performed such that no two edges
in ¥ cut one another except at the vertices.

As an illustration of this theorem, Euler has shown
that if T" is a convex polyhedron with n vertices, m
edges, and f finite faces, then T is a planar graph and
n—m+f=1, The f faces form a basis of elementary
cycles. When the mapping IT does not yield a planar
graph, the number of elements in the basis of elemen-
tary cycles, k(Z), is!*

EZ)=(f=1)+7(Z), where 0<7(Z)<2g. (2.3)

Thus, the image of I" partitions the surface of = into
m+2-=n-7r({) faces, with each face homeomorphic to
I2=[0,1]x[0,1]. These examples suggest that no matter
what topology T has, one can always find a two-dimen-
sional manifold in R® in which ¥ is a 1-chain.

The following definitions and theorems will now be
introduced in order to motivate the central result of
this section, Theorem 2.4,

Definition: Let Z be a graph consisting of m arcs
ol,...,0k, then a flow is a vector ¢ =(¢y,..., ¢,) such

that

(a) for every k<m, ¢,cR, and ¢, is denoted as the
flow in arc G}, @. )

27 ¢

iS w*(a)

(b) for every vertexa 27 ¢;=
iCw™(a)
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Theorem 2.2: A necessary and sufficient condition
for a vector ¢ to be a flow is if it is of the form

¢=§ sipt, 2. 5)

where the s;€R, i=1,...,m, and the u* are elementary
cycles, k=1,...,m. Thus, ¢ is a 1-cycle and is
orthogonal to all 1-coboundaries.

Definition: A potential difference (tension) is a vector

6=(6;,...,0,) such that for every elementary cycle
2 89— 23 6=0. (2.6)
icut tcu-

Theorem 2.3: A vector 8 is a potential difference if
3 a function f(a) defined on a set X of vertices with val-
ues in R such that for every arc i=(a,b), 6; =£(b) - t(a).
Thus, #(a) is denoted as the potential associated with 4.

Corollary 2.3: A necessary and sufficient condition
for a vector @ to be a potential difference is that it be of
the form

m
0=2 5,0}, 2.7
i=1
where the w’ are elementary coboundaries and
Si;++.,SxER. 8, therefore, is a 1-coboundary and is
orthogonal to any 1-cycle. Finally,

Theovem 2.4: A vector ¢ =R™ is a flow iff it is
orthogonal to every vector in ©, the set of all potential
differences; a vector 8 = R™ ig a potential difference iff
it is orthogonal to every vector in &, the set of all
flows.

One may conclude from this theorem that & and © are
orthogonal subspaces of R™, that is, $®6 =R™. Thus,
the inner product of every ¢ and € vanishes:

<¢’9>:0-

If we now let A’ and A” be linear operators that leave

the vector space of flows and tensions invariant, then by
premultiplying (2.5) and (2.7) by A’ and A", respective-
ly, and then taking the inner product as in (2. 8) we have

{2.8)

{(A'¢p,\"6)=0, (2.9)
The proof of (2.9) is easily demonstrated. Since ¢ and
# are 1-cycles and 1-coboundaries, respectively, then
by linearity so are ¢'=A'¢ and 6’ =A"6, Application

of Theorem A3.1 completes the proof.

ideal opL
diode 1 circuit

FIG. 3. Another state of
the network (values of re~
sistances in ohms).
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Our correspondence of algebraic topology with
Tellegen’s theorem is now complete by noting the sim-
ilarity of (2.4) with the Kirchhoff current law, of (2. 6)
with the Kirchhoff voltage law, and of (2.9) with
Tellegen’s theorem, Eq. (2.1). These results encom-
pass the case of port branches and open circuits since
“open branch” flows and tensions of the form (2.5) and
(2.7) may be constructed by including ideal arcs of null
contribution to the elementary cycles and coboundaries
of such ¢ and 6.

3. FLOW CONSERVATION ON A NETWORK

The flow and potential difference properties of a
linear graph when identified with a physical process
are, in principle, conservative. This is clearly ap-
parent from the Kirchhoff and d’Alembert “principle of
virtual work”?® laws, the by-products of graphical
analogies to electrical and mechanical systems. In
general, conservation laws can be elegantly obtained
through the methods of variational calculus when applied
to a Lagrangian. This approach still holds true for
systems represented by graphs, with the sole exception
that the domain of the Lagrangian is now restricted to
a 1-chain. We now introduce two variational procedures
which will subsequently be used to derive flow 1-chains
in quantum field theory.

Consider the well-known classical mechanics contin-
uity equation

g—f+V°(pV)=0 (3.1)
and its quantum analog

Z ) + 2 oy - yrvy) =0 (3.2)

ot 2m

We define the scalar functions p and $* in R®" as the
particle (fluid) density and probability density, respec-
tively, and the vectors pv and i(yVy* — *Vy)/2m as
currents.

Let M be a differentiable manifold with tangent bundle
T (M)
6N -9

M=R*XR*X ceecves XRIXR? (3.3)

and consider the Lagrangian function L(¢, ¢,) on T (M)

where ¢ is a (3N + 1)-dimensional field with coordinates

41y« 5q35.4. Equation (3.1) results from a variation

of the action integral
A= [ Ldg®*\. (3.4)

Denoting pa=aL/a¢qa, a=1,...,3N+1, the Euler—

Lagrange equation associated with (3.4) is

3N+
PL _ %S op

- - =0. 3.5
a¢ o=1 aqa ( )

Suppose ¢ is kinosthenic, that is, a variable not ex-
plicitly contained in L, then

oL

7&; = (3.6a)

and (3.5) becomes
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N+1 ap
e _
iZ,:l Tl (3. 6b)

With the correspondence (Gimoas) =%1s 9 (i+1)moa(s)
=91, dusnmoacsr =21, d3va =1) and (Pimd(a)’_‘v"t’
Dltahrmod(3 =Vy;s Pliszymoatsr =Vayr P3vag=m), ,... N,
we arrive at (3.1).

Equation (3. 2) can be obtained by an application of
Noether’s principle to the N-particle quantum mechani-
cal Lagrangian

L=9*x,,... ,xN)(?—g—;p— (Ko oo Xy)

FVX, X)X, . ,xN)> (3.7)

h—Z
+'2%V¢*(x1, e ’xN) -Vz/)(x1, ‘o 1xN)’ Xy ER37

where (X;,...,Xy) are the N-particle coordinates,

and V(x,,...,Xy) is the N-particle interaction potential
and/or an external electric field. This variational ap-
proach makes use of the property that the action integral
remains invariant with respect to a group of infinitesi-
mal transformations applied either to the dependent or
independent variables. Since this Lagrangian is invari-
ant up to an arbitrary complex phase factor, ix(x,1?),
a(x,t) being infinitesimal, then by substituting

explia (x, t)Jv for ¢ (3.7) becomes

Z(X1, e )xN’a)
d
=L +EP* Xy, 000, XXy, 000, Xy) a—c:
7% dp* da
+_2—7; (Zj>¢(x1’-'-,xN)'é;;'(xh'--ny)&; (3-8)
0 (Lo
- Zp*(xb LR ’xN) E% (x1’ L 1xN) E) +O((¥2).

Variation of (3. 8) with respect the kinosthenic vari-
able « yields the probability density conservation law.

Relations (3.1) and (3.2) are also valid when evaluated
at the vertices of a graph. We verify this for (3.1); by
analogy it holds true for (3.2). For simplicity we as-
sume temporal invariance, that is, the time dimension
does not enter in as a directed arc in the graph.

As a first step we rewrite (3.1) as a conservation of
flux over the submanifold DC M

a d
a—tfpdx3”+fV°(pv)dx3N=0.
D D

(3.9)

FIG. 4. A node with m di-
rected bonds of length L em-
anating from it.
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By Gauss’ theorem the second integral can then be re-
lated to a (3N - 1)~-dimensional integral over the bound-
ary of D:

f Ve (pv)dx®’ = f pvdxi¥-1-0, (3.10)
D D

Suppose D is a 1-chain (D e R¥), and without loss of

generality consider one central node with » attached

arcs, each of length L (Fig. 4). Then

m
D=2, alp! (3.11a)
j=1
and
D=2, aldoh. (3.11b)
i=1

Since an arbitrary directed arc 8}, connecting the cen-
tral node n; and some node #,;, can be represented as

°§=(no;nt) (3.123a)

then

8,61 =06 =n; - ng.

{3.12b)
Thus the current 1-chain pv is conserved at 0-cells
3.

For many physical situations it is unimportant to know
the time development of . It is therefore of interest to
determine a stationary state conservation condition for
real §. Defining 9{{) ., as the N-particle wavefunc-
tion on bond j, 1 <j <m, variation of the action integral
A gives

L
(1) (m} 1) (m) )
8A=5 [T LOD,..., 0E V..., ¥6, 1) dx¢

m oL AL G 3.13
e
j=t x ()
m aL L
=2 [W W |
i=1
oL d oL () gt
+’/0\ <alpt( ; dxl?i wlt.’s)éd)(:ﬂ)dx y
where L is (Appendix B),
VLTI T &
L—ngf( dx; ) (3.14)

+{V(x13 R e E]zl)2(x1, ceesXy)

and where we have employed the notational substitution
(x): (x1, cen ,XN).

Substitution of (3. 14) into (3,13) yields at the node point

(J) &pzé;
(3.15)

L
of {zmx)-mzz: 2 syt —o.
0

In order for the equality in (3. 15?) to hold, each term
must vanish separately. Since 5p{]) and 8{i) in the first
and second terms are arbitrary functions in the domain
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of definition of x, then the conservation condition is
(3.16)

To exhibit the complete generality of the conservation
conditions (3. 2) and (3.16), consider the one-particie
Klein—Gordon equation in the presence of an electro-
magnetic field,

} Z/) = 0:

{Z} [1;u —(e/c)A, T +m?2ct

1’

where P, is the 4-vector P, = (P,, P,, P;, ieA,/c) with
components Py = (%/i)d/dx, and where x, =(x,, z, ict).
This equation can be derived from the Lagrangian

(3.17)

Lz_%i‘/f%J,vw*,W_?_e_‘l{.*( ¢+_Qad))
c ct
(3.18a)
2
+ﬁ7—?ec (AZ= AL +mPc)P+y

and implicitly contains the gauge invariance of the
vector potential

104

— 2420 o A —

P +V.A=0, (3.19)
Making the transformation § = explia(x,?)], (3.18a)
becomes

= _z_g ad) *azp 2e *)

L=L-~ at( -y 77 oY

+iva - (¢v¢*_¢*v¢- Azpz/;*)—%»()( %), (3.18b)

Variation with respect to the kinosthenic variable
o (%,t) results in the current conservation condition

A,
E a:; =0 (3. 20a)
with j, = (ji, 75,3, icp) and where
S (e 2L 20 _ St
= 2mct (‘fJ - ot | T me ’ (3. 20b)
X 30 PR\ Ay _
Zrm( o 8x5> “FL, p=1,2,3. (3.200)

Equations (3. 20) also apply for an N-particle system,
each particle having its own local coordinate x,.

On a graph the conservation condition (3. 20a) is now
a flow 1-chain, j, €R, and must be evaluated at verti-
ces. If the 1-chain is a combination of time and space
1-cells the appropriate current component (3. 20b) or
(3. 20c) must be used. Thus, vertices to which both
time and space 1-cells are connected will have a mixed
conservation condition.

In the absence of an electromagnetic field in (3.17),
A, =0, the conservation condition (3. 16) is then appli-
cable when ¢ is a time independent real scalar field.

In conclusion, it should be mentioned that all the con-
servation conditions previously derived apply equally
well upon replacement of the scalar field § by quantized
field operators J In such a case the current conserva-
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tion condition on a graph becomes

. N ! 1) =
Z)](x) [x=vertex'— Et']:}?l (ax - axr)c(x,t:x 7t )—0

x 1wyt

(3.21)

with the sum performed over all arcs connected to ver-
tex x. G(x,t;x’,t’) is the time or temperature dependent
one particle Green’s function. !¢

4. ENERGY CONSERVATION ON A NETWORK

In Sec. 2 Tellegen’s theorem was introduced as a
statement concerning the conservative nature of energy
(power) on a network. For an electrical circuit this
energy comes from the product of a (current) X (voltage),
each factor being intimately connected with the topo-
logical structure of the network. To carry this analogy
over to network models of other physical systems, one
must obtain an identification of two canonical variables
whose properties are those of a flow and a potential
difference.

For mechanical systems this identification is simple,
current = velocity, and because of Newton’s third Law,
voltage = force. The product of these two variables has
dimensions of energy. In quantum mechanics this state-
ment can be made explicit by rewriting the current in
(3.2) as

j=(1/m)Re(VY/i) = P/m =v.
(4.1) is clearly a (KCL) variable.

4.1)

We choose the wavefunction  as our quantum mechan-
ical “force.” This has the appropriate form since the
solution of the one-dimensional stationary Schrédinger
equation can be written as

D(x) = Py (x) + (1/k) fo sink(x — x) V' (x)d(x") dx’, (4. 2a)

where
B =2mE/RY, V'(x)=Q2m/m)V(x) (4.3)

and ¥,(x) is the homogeneous solution in the absence of
the potential field V(x).

Integration of the integral in (4.2a) by parts yields

$00) = 4(0) + 3 [V (D3(x) = coskx T (0)4(0)]

- Z}z’/o-xcosk(x—x')d;;, V' (x(x"))dx’

= 9h(0) + 77 [V ()9(a) ~ coshaV'(0)4(0)]

1 X
+EZ,/ cosk(x — x")Fq, y, (x")dx’. (4.2b)
0
Since $(x) is continuous at vertex points, it is truly a
(KVL) variable.

Energy conservation is then derived by application of
Tellegen’s theorem, which for Fig. 4 results in

3 dP(xy =0) _
Lo () === =

o

0 (4.4)
Continuity of all the ¥, at ¥, =0 reduces (4. 4) to the
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form (1.1), which is then the starting point from which
the line and band spectra of molecules and solids are
derived.
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APPENDIX A

In this appendix we define, for the reader’s conven-
ience, a number of topological concepts necessary in
the development of the main text. Due to the extensive
literature on this subject, proofs will be omitted.

Definition: A linear graph I' is an interconnected set
of arcs (1-cells, G1) at vertices (0-cells, d9).

If the arcs are directed then I' is said to be ovientable
if it is possible to define a positive rotation at each of
its points, all the rotations being consistent. For non-
linear graphs we generalize the concept of orientation
by introducing the genus of a surface.

Definition: An orientable surface is said to be of
genus g if by elastic deformations it can be made to
coincide with a sphere of g handles: The ordinary sphere
is of genus 0, the torus of genus 1, and the pretzel of
genus 2.

T can be given vector space structure by defining
linear combinations, k-chains, of the k-cells, 2=0,1.

Definition: A k-chain, &*, on a graph I' with # vertices
and m arcs is some linear combination using the k-
cells 6% as a basis:

6’“:2(1’}6?, at eR. (A1)
7

Since the set of all k-cells is a vector space V¥, ¢*
€ V* and

dimV'=m, dimV’®=n. (A2)

Definition: The boundavy opervator 9, is a linear

operator

3yt VE— Vel (A3a)
with the fundamental property

Dt © Bp(+) = 0. (A4)

In words, (A4) states that the boundary of the boundary
of a k-chain vanishes. As an example of (A3a) the
boundary of the arc (a, b) is

2(a,b)=b-a. (A3b)

Chains whose boundaries are zero are called k~cycles.
The set of all k-cycles, y*=ker(d,), is a vector sub-
space of V%, Y*C V%,

As an illustration a 1-cycle is a sequence of arcs
©l,...,6.), 65 V!, such that

(a) every arc 0}, k=1,...,q, is joined to the pre-
ceding arc G}.; at one of its extremities and to the suc-
ceeding arc 0},; at the other (it is a 1-chain),
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(b) the sequence does not use the same arc twice,

(c) the initial and terminal vertices of the 1-chain
coincide.

An elementary cycle satisfies in addition to the previous
three conditions,

(d) in traversing the 1-cycle one encounters the same
vertex (excluding the starting point) only once.

For a given 1-cycle 1, we denote by p* the set of arcs
oriented in a given sense, and by p~ the set of arcs
oriented in the opposite sense. A vector g ={(U, .., ly)
. can be associated with every l-cycle of a graph consist-
ing of m arcs in such a way that
0 if i pu*Up”
1 ifiep”
~1 ifiepy-

Mi= (A5)

Theorem A.l: Every 1-cycle is a direct sum of ele-
mentary cycles. Since the V* are linear vector spaces,
we can define a scalar product

(s,*): VXX VE—~R

<6k* » 6k> = E al]z_* a?a
J

(A6a)
(A8b)

where ¢** is a k-cochain defined by the linear mapping
V%%~ R and is dual to c*.

The collection of all £-cochaing forms an m-dimensional
vector space V¥, Geometrically the dual graph I'* has
n* =f vertices and m* =m arcs which partition I'* into
f*=n faces [Remark: Each vertex of T lies in a unique
and separate face of I'*, |

The adjoint to @,, 6,.,, is a coboundary opevator de-
fining a linear map

Bauy t VE L= ¥ (AT)
and obeying the property
(@48%, T = @, 03*™ ) = (¥, 6,081, (A8)

The coboundary operator 5, has a fundamental property
similar to the boundary operator 9,

8,° Oy )= 0. (A9)

k-cochains whose coboundaries are zero are called
k-cocycles.

k-cochains obtained from (k- 1)-cochains via the map
0,y are referred to as k-coboundavies. As an illustra-
tion of the map 5,6°* — &!*, consider an arbitrary vertex
a and define an arc as incident from a if the vertex a is
the initial and not the terminal vertex, while incident to
a implies that a is the terminal and not the initial ver-
tex. Furthermore, if we denote w*(4) as the set of arcs
incident from a set of vertices A and w™(4) as the set of
arcs incident to A, then the 1-coboundary is a set of
arcs of the form w(A) which is nonempty and can be par-
titioned into two classes, w*(A) and w™(4). With every
coboundary of » arcs one may associate a vector w
=(wy,...,w, such that

0 if ig¢ w(A)
1 if ic w'(A)
-1 ific w(A)

(A10}

Wi =
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The w; are elementary coboundaries and have the
property w;Nw;=¢, 1#j.

Theorem A.2: Every l-coboundary is a direct sum of
elementary coboundaries.

With this background it can easily be shown that the
following theorems hold true.

Theovems A.3: Let Y =ker(2,) be the cycle subspace
of V! and D'* =Image(5,) be the coboundary subspace of
V¥ Then for a connected linear graph I' with m arcs
and » nodes:

(1) The inner product of a 1-cycle and a 1-coboundary
is 0, i.e., {3, d™ =0,¥y'e¥!, d*cDI*,

(2) Any 1-chain orthogonal to every 1-coboundary is a
1-cycle, i.e., if (¢1,d™)=0, Vv d'*c D', then élc ¥!'.

(3) Any 1-cochain orthogonal to every 1-cycle is a
1-coboundary, i.e., if (¢1* §1)=0, ¥§'c ¥, then
A% ¥
citeD .

(4) Every l-chain is uniquely expressible as a direct
sum of a 1-cycle and a 1-coboundary.

(5) The dimensions of the cycle and coboundary spaces
v! and D'*, respectively, are

dimY'=m-n+1, dimD'=n-1.

APPENDIX B

The time independent Schridinger equation for an
interacting N-particle system can be derived from the
Lagrangian (3. 14)

L:EZ. i (ad’(xp L ,XN))z
2m i=i ax;
+{V(x), ..., x5) = EJ*X,,...,%y), X;cR? (B1)
by using the method of Lagrangian multipliers, By
writing
511)(1(1, ' ’xN) .
axi - Wt' (BZ)

the original Lagrangian may be modified to

N — n
L’:L+2Pi(a¢(x1"a"’x”) W:)
i=1 X;

2 N
zf_mgwmwx‘,...,x,,)—E]sz(xl,-..,x~) (B3)

1xN) - W;)

b4

N
" E Pi(ad)(xt, e
ot 9%,

the P; acting as the Lagrangian multipliers. Since the
W, appear only as algebraic variables, without deri-
vatives, they are kinosthenic and

AL’  n'w,
9 7% _p - B4a
oW, T m : (Bda)
Thus,
W;=mP,/h?, (B4b)
and (B3) becomes
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N
L’=2L;2-E P2+ (VX ..., Xy) = E)OP(X(,. .., Xy)

i=1

N N

" 2 ay

= EP,-+§P;——axi (X()...,Xy)

p N

:——m, P+ [Vx,...,Xy) = E}*xy, ..., Xy)

2R o

N

2

+Z}P,-—z£(x1, . )

i=t X;

X W
=H(P;,ZP)+LP,—-—-(xl,...,xN).
= 0%

Variation with respect to P; yields

m Y
- P+ (X, ... ,Xy) =0 (B6a)
Fil ax,-( 1 i
and variation with respect to ¥(xy,...,Xy) yields
X ap;
2LV, ..., Xy) = EJ0(X,, ..., %y) - 27 =i —-0. (B6b)

izt 9%y

By substitution of (B6a) intc (B6b) we have Q. E.D.
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A renormalized Feynman amplitude expressed in the a-parameters is defined by introducing a subtraction
operator acting directly upon the a-integrand. Different forms of this subtraction operator are discussed.
We define the isotropic and nonisotropic normal products and we give a more general oversubtraction rule
which ensures both the absolute convergence of the amplitude and the Bogolubov, Parasiuk and Hepp
recurrence. The proof of absolute convergence of the amplitude is performed using Hepp’s sectors and

equivalence classes of nests.

I. INTRODUCTION

The Bogolubov-Parasiuk' theorem on renormalization,
which tells how to extract a finite part from a divergent
Feynman amplitude in such a way that the resulting field
theory satisfies Poincaré invariance, unitarity, and
causality, was first established in 1957, and completed
later by Hepp?® in 1966. In their proof, they first
regularize with a cutoff the divergent Feynman ampli-
tude, and then, they recursively subtract away a
Taylor expansion in the external momenta of the graph
and its subgraphs.

In 1973, Zimmermann® gave an explicit solution to the
above recursive process in the form of Taylor sub-
tractions of the integrand expressed in momentum
space. The introduction of a cutoff is then completely
avoided since the resulting integral is proved to be ab-
solutely convergent.

An independent way of renormalizing a divergent
Feynman amplitude by performing subtractions on the
integrand, not according to Taylor expansion in the
momenta but according to Laurent expansion in the
Schwinger o parameters was given in Ref. 4, This
scheme is a generalization of the work of Appelquist®
completed by Anikin, Polivanov, and Zavialov,> The
introduction of generalized Taylor operators* acting
upon the integrand expressed in the a-Schwinger param-
eters turned out to be very convenient to solve various
problems related to the technique of renormalization
(for instance, the asymptotic behavior of the Feynman
amplitudes when the scaling parameter tends to
infinity®:").

In this paper, we intend to give a simple proof of the
absolute convergence of the renormalized Feynman
amplitude expressed in the o parameters. This proof
is generalized to the case of oversubtractions (isotrop-
ic® and nonisotropic normal products®) as well as to the
case of soft mass subtractions.®

In Sec. II, we remind to the reader, the power count-
ing theorem for convergent Feynman amplitudes ex-
pressed in the o parameters. The renormalized
Feynman amplitude is defined in Sec. III, and the proof
of absolute convergence is given. We restrict ourself
to Euclidean space; the generalization to Minkowsky
space in the sense of distribution was performed by
Hepp, and is not exposed in this paper. In Sec. IV, we
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discuss an oversubtraction rule which preserves both,
the absolute convergence of the amplitude and the re-
currence of Bogolubov, Parasiuk, and Hepp (BPH) in
terms of generalized vertices. Finally, in Sec. V, we
prove that the renormalized amplitude as defined in
Sec. III satisfies BPH recurrence. Two appendices are
devoted to technical problems.

Il. THEOREM ON THE ABSOLUTE CONVERGENCE
OF THE MULTIPLE INTEGRAL

1
o 1
711 da,exp(- 20 a,mD(a).
0 4=1 a=1

The above integral is performed over a domain defined
by

Osq;< fori=1,...,I, (2.1)

Although the following considerations apply to general
functions of the above kind, it is convenient to keep the
usual Feynman diagram terminology. Let us call graph
the set G={1, .. .,l}.

Definition 111: A subset § of integers between 1 and
{ inclusive is called a subgraph, 1(§) is defined to be
the number of integers in §.

Definition 112: A nonempty collection of subgraphs
Sy .. .,5,is called a nest if 4> j implies §,25,.

Definition 113: A function Z(a) is said to have the
“Taylor series property” with respect to a subgraph
§ if there exists a complex number u(§) such that

p-u<5)Z(a)| (2.2)

o,~p2a, for aES
has a Taylor series in p at p=0 and does not vanish at
p=0.

Definition 114: A function Z(a) is said to have the
“simultaneous Taylor series property” with respect to
anest /V/, if there exists complex numbers u($) for
every subgraph § </ such that

I pS ()] (2.3)

SEN

has a simultaneous Taylor series in the variables P
at p¢= 0 and does not vanish when all poe= 0.

aa—p%aa tora€ S

Example: The function (&, + «,)"! has the “simulta-
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neous Taylor series property” with respect to the nest
consisting of subgraphs §,={1}and §,={1,2}.

Theovem: If (i) Z(a) exists for 0< q, < «; (ii) Z(a)
is polynomially bounded when arbitrary subsets of {al,
...,a,}are scaled to «; (iii) 7 (a) has the “simulta-
neous Taylor series property” with respect to every
nest A/ of subgraphs; (iv) the superficial degree of
divergence

w($)= - u($) -21(S)

is strictly negative. Then, the integral

(2.4)

H
- 1
I= [ 11 da, exp(~2 a,m*)2(a)
0 g=1 a=1
is absolutely convergent provided m,#0 for all a. This
theorem is the so-called power-counting theorem.

Pyoof: We decompose the domain of integration into
Hepp’s sectors,? each defined by a permutation {il,iz,
.,i,} of the integers {1,2, ..., I}
Se={el0sa, < eo<a}, (2.5)

and we perform in each sector the change of variables

1
ai = IT Bf’
J k=j
: (2.6)
. = I g2,
da, =28,dp; " B
For each sector the integration domain becomes
(VES 8, <,
2.7

0<8,<1 forj<l,

and the Jacobian turns out to be 2! I1} 5f"‘_ In a given
sector, the change of variables transform /(a) into

1]

HIBj“(Rj)Z’(B,), (2.8)
j:

where the subgraphs Rf ={i, . . . 4}, and where the

function /’(B;) exists in the domain (2.7) and is poly-

nomially bounded when g8, ~~ «,
Then
I= gE 1,
with

(2.9)

© 11-1 I '
=21 p(R") +2j=1
L=2" dB,fOIIl dﬁ,j{fl 8,

=1

xexpl - B(m3, + 2o 8-+ g ym? )]27(8,). (2.10)
j=1

The absolute convergence of 1, is now straightforward.
Note that the property that/’(8,) exists when the

B’s equal zero is due to the “simultanecus Taylor series
property.” In (2.10), u(R’)+2j equals w(R?) +21(R)
=-w(R)>0.

lil. R OPERATOR

This section is devoted to the definition of a finite
part of the integral

I= [7 Tl dagexp(- 20 a,m?)2(a),
=1 a=1

0
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where at least one w(§) is positive or null and where
all masses differ from zero. It is the purpose of Secs.
IV and V to show that the finite part chosen here (among
others) is related in perturbative quantum field theory
to the renormalization process.

Definition I 1: If f(x) is such that x™ f(x) has a Taylor
series at x=0, then for any integer n, we define the
generalized Taylor operator 77 on flx) by

T:f(x) =yt T:"E' (u)(x-uf(x))’

where E’(u) is the smallest integer larger or equal to
Reu and T2 “)(x"*f(x)) are the first n— E’(u) +1 term
of the Taylor expansion of x**fx) at x=0.

(3.1)

Definition I 2: If a function Z(a) has “the Taylor
series property” with respect to a subgraph §, we
define for any integer #, Tg on Z(a) by

7 Z(e)={rZ(a)| (3.2)

) .
a~ple , acS ps1

Further properties of the generalized Taylor operators
7 can be found in Appendix A.

Theorem: If (i) Z(a) is infinitely differentiable for 0
< @, <; (i1) Z(a) and its o derivatives are polynomially
bounded when arbitrary subsets of {a,, . . ., a,} are
scaled to =; (iii) Z(a) has tre “simultaneous Taylor
series property” with respect to every nest A/ of sub-
graphs; (iv) for every subgraph §, C(§) is a non-nega-
tive integer satisfying § D §'—~ C(§)= C(§’), then, the
integral

1
L=/ i da, exp(- 22 a,m*)R{Z(a)}
0 a=1

a=1

is absolutely convergent provided m, # 0 for all a.

In the above integral, R is the subtraction operator
which we define as

R=(1+2 I (-725rcH)
A+ (m (-7 »,
where we sum over all possible nests of subgraphs $;
C(S) takes care of possible oversubtractions,

We show in Appendix B that the operator R can also be
be defined as

R=1II (I_T:Sgldhc(f)),

“See

where the product runs over all the (2° - 1) subgraphs
of G, provided that condition (iv) is replaced by the
stronger condition C(§,U )= C(§)+C(S,)-C(5,NS,)
and C(§)= 0. In that case, the product which defines R
can be taken in any order.

The plan of the proof of absolute convergence is as
follows: (a) decomposition of the a-integration domain
into Hepp’s sectors (2-5), (2-8), and definition of the
nested subgraphs R ={;,, . . .,4,} for j=1,...,I; (b)
construction of a maximal nest (/, from a given nest //
and a given sector; (¢) definition of equivalence classes
of nests A/ with the same maximal nest g, and sum-
mation over all nests of the same equivalence class;
(d) application of the 7 operators upon /(«) and proof
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of absolute convergence in each sector for each equiva~
lence class, The first step has already been accom-
plished in Sec. II; let us proceed with the second step.

A. Q construction

Given any three subgraphs R, S, and T, we define
the subgraph

Ww®(S, TY=8N(RLU T), (3.3)
and we have the property

(S, WwR(S, T)) = wR(Ww®(S, T), T)= (S, T), (3.4)
If moreover S2 T, then

wR(S, T)=SN(RYT)=TU(RNS), (3.5)
and we have

TCw®S,T)CS, (3.6a)

w”(S,T)=8S—SUR=TUR, (3. 6b)

wRS, TV =T~ SNR=TNR, (3.6¢)

Definition 111 3: For every nest N={7,...,T,}, we

define the nest N'={T,,T,, ..., T,, T,..}, where T, is

the empty subgraph @ and T,,,=G’=1{1,2, .. .,1,l+1}
DG. Given a nest R=(R*=®,R", .. .,R",R*'=G') and
a nest /7, we define a R-maximal nest g as

G =R =1 (T, T,.)5=0, . .

(3.7
The presence of R and R"*! in the nest R is such that
Nt CQBRN, (3.8)
On the other hand, (3.86a) together with
wR{(TI,ThI)QwRi'(Tj,Tj_I) for i<, (3.9)

makes of @®(\’) a nest. Now § is a R-maximal nest,
that is by definition

QY=
Indeed, given two consecutive elegllents of the nest g
which we call wR‘(Tj, 7,.,) and w® (T, T;_,), it can be
shown using (3.5) that

(3.10)

RN, T, ), 0R (T, T, )

:{ WRYT,, T,.,) for k<i, 3.11)

WRNT;, T, ) for k2i+1.

Next, we may partition G into three parts in the
following way.

Let us now rename the distinct elements of G as ¢

={1,=%,T,,...,T,,T,,,=G’} and since § is R maxi-
mal, we have
1 .
BTy, T, )=T, or T, forj=1,...,¢, 3.12)
WAUT,,, T)=T, for i<r+1.
Then, because of (3.9) there exists for each j=1, ...,
t+1 a number p(j) such that 0sp(j)<r+1, and
T,., for i<p(4)
wR{(Tj,Tj_,)z{ 1= P (3.13)
T, for i>p(j),

)
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Lyt lii=1, .. L, t+ 1)

where (3.13) is nothing but a rephrasing of the property
mentioned in (3.11). Note that p(¢+1)=»,

Letting p(0)=»+1 and p(¢+ 2)=0, we define

K={T;:j=0, ... ,t+1; p(>p(j+ 1)}, (3.14)
H=A{T,:j=1, ..., p()<p(i+ 1)}, (3.15)
B=G-K-H. (3.16)

Note that T,,,= G’ < K always; T,=® € K also since p(1)
<7 because ;=#+1 is such that w*(7,,& =T,)=T,.

Let us now state some properties of the subnests K
and /. We define
Kt={rsj=1,... ,t;wR{(Tj,Tj_l)
= TR Ty, T = T}
U{{To} if wRi(Tl,TO):TI}
0 otherwise
U{{TM} it wr'(T,,,, T)=T, }
0  otherwise (3.17)
Then, K°={G'}, K"*'={&}, G'c Kt for i#»+1 and

K="U Kt

i=0

(3.18)

One element 7, can belong to several K*: we label the
elements of K* by

Ki={Kkt, LK} =G} fori=1, .. .7, (3.19)
Similarly, we define
. ! 1
Hi={T,:5=1, ..., t0® (T, T, )= (T,,,,T)=T,},
(3.20)
such that /° and A7*! are empty and
r
H=UH, (3.21)

i=1

It can be proved! for 1< i<y that in between two con-
secutive elements of K% is one and only one element of
#% in between two consecutive elements of 4% is one and
only one element of K*; X' has at least two elements; /f*
is never empty since there is one element less in 4% than
in K% and w*H( KL, K e/ for j=1,...,7,—1. We
define

Hi=o®' (KL, K}) for 1<i<randl<jsy -1.  (3.22)

Again, several H; can represent the same subgraphs.

Two nests A/} and /V} are said to be R equivalent if
QR W1) = Q®(N;). This equivalence relation partitions the
set W of all nests into a set W/R of R-equivalence
classes. Each equivalence class I' is characterized by
the R-maximal nest G =QF(V)v AN e T. The largest and
smallest nests in this R-equivalence class T are, re-
spectively, ¢ and UK, Thenif /'€ T,

BUKCN CG,

and conversely if 4/’ is any subset of 4, N/ =8 UK U4’
e T'. To resume the development of the £ construction,
let us now state the following lemmas:

(3.23)

Lemma I11: The R-equivalence class T of nests A’

M.C. Bergere and Y.-M.P. Lam 1548



is isomorphic to the set of all subsets of # in the sense
that A in T corresponds to that //* in # satisfying A/’
=BUKU#H".

Lemma I12:

b (@) - UKD =1(RY) for i=1,...,7. (3.24)
#=1

The proof of lemma II2 follows the definition (3.22) and
the topologic relation I(S, Y 5,)=1(5)+1(5,) -1(5,NS5),)
for any subgraphs §; and §,.

Given a sector g as defined in (2. 5) we define the nest
R(g)l=(R°=¢,R', .. .,R'=G,R"'=¢"),

R ={iy, ... i)

For each R(g)-equivalent class I'e W/R(g), we consider
the space consisting of coordinates 8, for each R*c{R(g)
—{@} - {G'}}, tp for each Be A, o for each Kje K and
x! for each Hic # (i=1,...,5;j=1,...,7,-1). We de-
fine the transformation (gT') from the (a,,..., @,)-space
to the above space by

(3.25)

ng, I, I ot I x} 2
= {‘a;‘;r" Ber Rl i) - 6.20
aEK} 'aEHj

Lemma 113: Under the transformation (gI'), the func-
tion Z(a) is transformed to a function of the variables
£g, and of the group of variables o!/8, and 8;x} (i=1,

S lij=1,...,7,—1) that is

Z(a) €D ZeT (g5, 01/ 8y, B,x1). (3.27)

Proof: We give ourselves a line a. For a given R?,
we call K§ the smallest element of A* which contains the
line a. Then from (3 22) and the nest property, a is also

in Hj, Ki,,, Hi, K, _,, H; _,. The problem is to know
whether a is in H ﬁrom (3 22) again, with j replaced
byj-1, if ais inR‘ then a is in HY_; if @ is not in R,

a is not in H} ;. Consequently,

Zla) ('F)Zfr(ga fz aixt,8,xi.,) if aisin R I
> 1 (- v HA) )*C(S))Z(a)
N'er Se N

a(f)ﬂ

and

Z(a)(xr)zn‘(g h 0‘

Both forms ca.n be rewritten under the form (3.27).

if @ is not in K*.

B. “Simultaneous Taylor series property’’

It Z(a) has the “simultaneous Taylor series property”
with respect to a R(g) equivalence class I'eW/K(g), that
is with respect to its R(g) maximal nest G, then

2 (85,0)/Biy Bix}) = 11 (85017

7yl
x IT I1
=1 7=

[(241_) wik! (8, X' MH‘):]
By

x 2 E (ga)d"(‘oi> RN

d =0 aJ-O

-

(3.28)

where u(5) has been defined in (2.2) and where, of

course,
1 3 \% 1Tt
Afd,a)(ﬁlxj)‘ cp ds d.1 (3‘53 ) El jf;ll Zﬁ'
Tl ot meteh)
X834 I g0 N [(—L)
i cf g=1 521 L\ By

ol
X (,B{X;)-u(H})]Zxr(gB, Eli—, B,X})} o eoteo
B™%"

(3.29)
Af{'“(ﬁix}) has a simultaneous Taylor expansion in 3, x,‘.

For a given sector g, let us call (g) the transformation
defined in (2. 6).

Lemma 114: If Z(a) has the “simultaneous Taylor
series property” with respect to a R{g)-equivalence
class I'e W/R(g), and if C(§) is an integer for every §
eN’eT, then

H

_ , .
= 2 o Bf;,] n
0 $=1y00esl

i=lsees '7“£=1

i
m(H )20

(1 -xhymuh
[ wanr  (

3B, X}

m(Hj)wl
) ] Aﬁ,a,w'x;)} (3.30)

i
X*a ] .
7] 1 iorm(Hj)<0

if all m(K}) and m(B) are positive or null and zero otherwise. In (3. 30),

m($)==21($)+C(S) - E'[u(S)],
and for i=1,...,],
r‘-l
py= 2 [WH) - u(K) - af]+ Z

y [m(H) +1].
i=1 .f=1'....ri-1
mw;»o

(3.31)

(3.32)

Proof: The proof of this lemma is simple; the T operators relative to subgraphs of a nest commute., From lemma

111, we can write

s BaTe)

ri-l

= 11 r1 I -
SGBUK( -S.)lcl j=1 (-7 i)
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Then from (3. 28) and the remainder theorem for Taylor expansions, we obtain (3. 30).

Lemma O 5: Under the assumption of lemma II 4 and further assuming that C(§) is a non-negative integer such
that §O §’ implies C(§)>C(§’), then

by= -2 (3.34)
Proof: From a} <m(K}) and from m(H%) +1 <0 for m(H}) <0, we obtain

r -1

E[ (HY) — u(k) + 20(K}) - C(KY) + B[ u(k)] - 20(H}) + C(HY) - E'[u(H})] + 1)
=1

Then, using v< E'(v}<1+v,
74-1

p> L [20(ED - 20(H) + C(HY) - C(K)].
j=l

From lemma II2 and from (3.22), which tells that H{ DK}, that is, C(H%) = C(K}) for j#1 and for j=1 if Ki+® [if
Ki=%, C(k}) =0, and C(H})>0], we prove (3. 34).

C. Proof of the theorem

Given a sector §, of the integration domain as defined in (2.5), we consider a R(g)-equivalent class I' of
subgraphs.

Then, using lemma 114 and the Jacobian 2! I1}_, 82! of the transformation a‘el 8, we get

mtxi)m(s)
J 1l da, expl(~ EamZ)‘ Z 0 (-rHsre)Z(a =22 T f as, 1"

ot 'EFSE gheo 2,20
} B

=1

11e1
xj 1 (ag, 8" Yexp[ - BZ(m,l+Eﬁ,--- 2m3 )]
(]

{=1

1 (1 - yhym@ ) 3 miiys1
x n [dx‘ o () (Bixt) (3.35)
L b 7 m(HI! a8 xt (a.a) iXy TR o
m(ffj)io 3’
Assumptions i and ii of the theorem imply
3\ mED L N
‘ . (aB X; ) Mo Bixp)| < PI8,) for fx20, (3.36)
(F¥] i
atatyso
where P(8,) is a polynomial; assumption iii makes (3.36) true at 8x=0.
~ H da, exp(- 2 a,m? ) 2 I (=7aSretH) ()| < 2
S a=l N'eT s'eny S
’"‘Kj) m{B) » +21-1 11-1 e2ia1. (2 1- )m(H‘)
xZ % [ as gt exp(-8mi)PE) | T@BET) 1l (dX‘—lH—’— :
1Py ! 1 1 Py A (HI)! (3.37)
afzo 47 70 o m(’H'Ji)BO

i
All the integrals in (3.37) exist because of Lemma II 5.

The proof of the theorem is then completed by noting that

US,={a:0< @<}, and that U =W
£ r&w/R(g)

(the sum over all equivalence classes of nests is the sum over all nests).

IV. APPLICATIONS TO FEYNMAN AMPLITUDES
A. Feynman amplitudes

The integrand of a Feynman amplitude, in a Euclidian space of dimension D, and expressed in the Schwinger
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representation, as defined in Refs. 4, 7, and 10, is

Za={ o(Z L) (+ 2% em|- T (i e agian, (p,+ 5 ) o]

as1 2V

a, aéa faf=l

In (4.1), the derivatives 8/36 take care of Feynmann
amplitudes with spin or derivative couplings. The func-
tions Pg(a) and [dg'(a)],, as well as the matrix¢,, are
characteristic of the topology of the graph. In the ex-
ponential we sum over the vertices ¢ and all lines q, as
well as over the vectoriel indices of the Euclidian
space.

It is important to note that /() does have the “simul-
taneous Taylor series property” with respect to every
nest AV of subgraphs.!° Then, by application of the
theorem of absolute convergence, the renormalized
amplitude is defined as

1
I(pym)= [ 1 da, exp(- T am R} (4.2)

a=1
It can be shown that the 8/35 derivatives can be taken
through the R operator and outside the ¢ integrals. The
R operator is independent of the topology of the graph.

B. Oversubtractions (O.S.) rule

In Sec. III, the operator R is defined as

1+ 1 (reuSreesyy
NSENS

where the sum runs over all nests // of subgraphs. Then
the theorem of absolute convergence holds if the over-
subtractions coefficients C(S) are non-negative and
satisfy C(§,)= C(§,) if §,25,. If now, we impose to
the non-negative coefficients C(§) to satisfy the stronger
condition

c(S,VUS)=cl)+el$,)-c8,nS,)

for any subgraph §, and §,, it is shown in Appendix B,
that R can also be written in any order as I[T1¢c.(1
2§ 1#C)  where the product runs over the (2* —1)
subgraphs of G.

(4.3)

Definitions: Two subgraphs §, and §, are said to
overlap if they have at least one line or one vertex in
common and if §, ¢ 5, 0r S,&5,.

A forest 7 is a set of non overlapping subgraphs,

A set of subdiagrams is said to be misjoint if they
have no lines in common and if the number of loops in
their union equals the sum of the number of loops in the
individual subdiagrams.

An extended forest & is a set of subdiagrams such
that any subset of mutually noninclusive elements is
misjoint,

Now, if the rule (4. 3) is satisfied for §, and §, dis-
joint, the operator R can also be expressed as

(1+2 1 (-,--21(5‘)@(5‘)))’
3 S€7 §
where we sum over all forests; if the rule (4. 3) is satis-

fied for §, and §, misjoint, the operator R can be
expressed as
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4.1)

[\

b=l db

6a=0

—

Q +2, 0 (-,-zus‘)«vC(S)),
£ See §
where we sum over all extended forests. These defini-
tions for R are now dependent of the topology of the
graph.

Definition: A subgraph § is said to be one-vertex
(one-line) reducible if there exists a vertex (line) such
that upon its removal the number of connected parts of
S increases. When R is expressed as

T (- 7=25rc(S)
(1+§§Ex( T-g ))’

the sum over X can be reduced to the sum over all (ex-
tended) forests of one-line irreducible subgraphs if the
oversubtraction coefficients C(§) satisfy

c($Hr=csn,

where § is a one-line reducible subgraphs and §’ is its
maximal one-line irreducible component. The sum over
X can be further reduced to either a sum over all forests
of connected, one line irreducible subgraphs, or a sum
over all extended forests of connected, one-vertex ir-
reducible subgraphs; such a reduction can be achieved

if the oversubtraction coefficients C(§) satisfy

(4.4)

n n
c(u Sp< (S, (4.5)
i=1 $=1
where any two subgraphs § ; have no common lines (for
extended forests), or no common lines and vertices (for
forests).

Definition: A subgraph § is said to be divergent {con-
vergent) if

(S)=L(D =25 +a(H+c(5) {4.6)

is positive or nul (negative). In (4.6), L(5), 1(§), and
d(§) are successively the number of loops, lines and
derivative couplings of §,

The sum over X is then further reduced either to a
sum over all forests of connected, one-line irreducible,
divergent subgraphs, or a sum over all extended forests
of connected, one-vertex irreducible, divergent
subgraphs.

Definition: A generalized vertex is a connected, one
line irreducible subgraph § such that any other sub-
graph with the same vertices as those of § is contained

in §.

If §, is a one-vertex irreducible, connected subgraph
but is not a generalized vertex and if, given §, as the
generalized vertex with the same vertices as §,, the
oversubtraction coefficients satisfy C(§,)= C{§,), then
the sum over X can be further reduced to a sum over all
forests of diverging generalized vertices.

Those theorems are proved in Appendix B and are al-
ready valid in the special case of minimal subtractions
(C(5)=0). The purpose of the O.S. rule is to preserve
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this structure of the R operator when considering over-
subtractions. The condition C(§,)= C(§,) if §,55, is
compatible with (4.4) only if C(§)=0, when L(§)=0.
Taking into account that (4, 3) and (4.5) are compatible
only if we impose the equal sign in (4. 3) and (4.5) when-
ever §, and §, are disjoint (or misjoint}), we can state
the O.S. rule as follows:

c(§)=0, (4.7a)
C(p)=C(5)=0 if L(5)=0, (4.70)
c($Y=c($*) for §o 57, (4."7c)
C(S,VS,)=Cc(§)+C(S,) for §, and S, disjoint (4. 7d)

The above rule is such that we preserve both, the ab-
solute convergence of the oversubtracted Feynman am-
plitude, and the recurrence property of the R operation
as stated by BPH!"?!1 in terms of generalized vertices.
Then, the R operator must be expressed as a sum over
nests or a sum over forests. If in addition, we want to
express the R operator as a product of (1 - 7), (for
practical computation), or as a sum over extended
forests (useful for infrared problems?), we need to re-
place (4.7c) and (4. 7d) by the stronger condition

C(SlUSz)ZC(SI)+C(52)"C(SlnSz)’

with the equality sign required when §, and §, are
misjoint.

(4.7e)

We now give two examples of oversubtractions which
were described recently in the literature. The over-
subtracted normal products (isotropic or nonisotropic)
are defined through a subtraction scheme based on
forests.

Isotropic novmal products®: An isotropic normal pro-
duct is denoted by N,[P(¢)], where P{¢) is a monomial
of the fields ¢ and its derivatives and & is an integer
larger or equal to the degree d of the polynomial P (d
is the number of factors of ¢ plus the number of deriva-
tives 3,). A Feynman amplitude derived from the time-
ordered product of many normal products

(T[N, [Py(9)](x,) == Ny [P x) ] (4.8)
is defined by the following assignment of
oversubtractions

C(p)=C(5)=0 if L(§)=0,

C(S)= 22 (6, ~d,), (4.9)

»es
for § one-line irreducible and connected. Then the num-
ber of subtractions of the Feynman amplitude due to the
subgraph § is given by the superficial degree of diver-
gence of §+ C(§)+1 if this sum is > 0. The addition of
(6, — d,) subtractions coming from the vertex x; is in-
dependent on which lines of the {th normal product are
contained in §. Thus, it is called isotropic normal
product.

The choice (4.9) for the coefficients C(§) satisfies
the O.8S. rule [(4.7a)—(4.7d)] but fails to satisfy (4.7e)
as it can be seen by taking §, and §, misjoint with x, for
common vertex,

Nonisotvopic normal products®: Consider the ordered
pair [(f,, /s, -+ ., f.), m), where (f,,...,f,) is a sequence
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of fields ¢ and their derivatives and m is a function that

maps every subset of the set I of integers 1,2, .. .,n,
to a nonzero integer satisfying
m(p)=0, (4.10a)
m(R)=0, (4.10Db)

if R is a subset of I containing only one integer,
m(R)zm(T) fR2T. (4.10c)

Then, this ordered pair defines a non-isotropic normal
product by the following two rules:

(i) The lines of this normal product in a Feynman
diagram are f,f,, . . .,f, for a given vertex x;.

(ii) The oversubtractions C(§) of a one-line irreduc-
ible, connected subgraph § is defined by

)= T m[r,(5)],

xig_s

(4.11)

where Ri(S) is the set of the indices of those fields, in
the normal product at the point x,, that lie in the sub-
graph §. Let us mention that such anisotropic normal
products are used to prove the equivalence theorem®®
under a field transformation ¢ =~ ¢ + F(¢).

The oversubtraction rules [(4.10a)—(4.10c)] satisfy
the O.8. rules [(4.7a)—(4.7d)]. To satisfy (4.7e) it is
necessary to change (4.10c¢) into the stronger rule

m(R, YRz m(R)+m(R, ) - m(R,R,), (4.104)

with the equal sign required whenever R, R,= ¢.

C. Some other examples

Soft mass subtvactions.® The function

nel

1
Z(a)=expl- (2 aui+ 2 pldH @)y p) ) Po(e)] 2

1yl
(4.12)
also has the “simultaneous Taylor series property”

with respect to every nest AV of subgraphs. The re-
normalized scalar amplitude with soft ¢ mass
o 1

i
Io(p,m,u):f I da,exp(- 2o a;m?)
a=1

0 g=0

1
xR {exp(- 21 a,u2)
a=1
n=1

% exp(— 2 pldiMadlyp;)  [Pe(a)]P/2

i,i=t

(4.13)

is absolutely convergent in Euclidean space. This re-
sult can be extended to the case of derivative couplings.

Mellin tvansform of a Feynman amplitude.”’ The
Mellin transform of a renormalized scalar Feynman
amplitude in a Euclidian space of dimension D is

a=1

w 1 !
My(p,m,x)=3T <—)2—C> f 1 da, exp(- ZE a,m?)
0 a=

n=1

xRA{( 20 pld (@), p,)*"% [Pgla)]P/2

i,5=1

(4.14)
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This integral is absolutely convergent for any complex
x. This result can be extended to the case of derivative
couplings.

V. CONNECTION WITH BPH

In this section, we intend to show that the R operator
introduced in Sec. III and used in Sec, IV A, fulfill the
recursive solution to the problem of renormalization as
given by Bogolubov, Parasiuk, and Hepp. !»*!! Thus,
such an R operator can be used to construct in perturba-
tion, a field theory which is Poincar€ invariant, unitary,
and causal. For simplicity, we remain in Euclidian
space since the algorithm of the R operation is similar
in Euclidian and in Minkowsky space.

Let us define the Feynman amplitude with cutoff »> 0,

i
Ry p,m)= [~ i da, exp(- 2 a;m?)

r gqel a=l

X1+ T (=S (q), (5.1)
N SeN §

where Z;(a) is defined in (4.1) and is characteristic of

a Feynman amplitide with derivative couplings and

spinors. Then, in Sec. III, we have seen that

lim R%(p, m) = Iy (p,m). (5.2)

=0
Now, in Appendix B5, we show that the R operator can
also be written as a sum over forests of diverging gen-
eralized vertices if the oversubtraction coefficients
C(5) satisfy the O.S. rule [(4.7a)—(4, 7d)].

Let [/ ©© be the set of all those forests of diverging
generalized vertices of G that do not contain G. Then,
because of the cutoff »> 0, we find

R'G(p,m:;z(p,mw XZ(p,m), (5.3)
where
- H
T\”G(p,m)=fmfll da, exp(- 2 a,m?)
r g=l asl
I (_ +21(SrecS
x(1 +3§0(G)S€ 3( 7; W g(a), (5.4)
and 1
Xp,m)= [~ o da, exp(— 22 a,m?)
r a=1 =1
x(1+ Z o (- T-ZI(S)*C(S)))
jeJ<c)S€}
X (- 7RHOOEN T (), (5.5)

From (3.1), (3.2), and (4.1), we see that the 7 opera-
tor acting upon the a’s of the entire graph G is equiva-
lent to a Taylor T operator acting upon the external legs
of the entire graph G,

TEzz(mc(c)ZG(a): T:i(c)w(c)zo(a), (5.6)
where
w(G)= L{G)D - 21(G) + d(G), 5.7

and where L(G), U{G), and d(G) are, respectively, the
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number of loops, lines, and derivative coupling of
G. Then

‘)'({;(p,m)z - T,‘:(G)’C(G)R_E(p,m).
By Fourier transform of (5.3) and (5. 8), we obtain

Ry (x,m)=R(x,m)+ xt(x,m),
with

X (x,m) = — MR%(x,m),

and where the operator M is defined by (5. 8) and the
Fourier transformation. If x in (5.10) means » vertices
(%15« « «»x,), Xi(x,m) is a quasilocal object of the form
Z(3/8x,)0(x, —x,) ***6(x,.; —%,).

In the expression for R%(p,m), we may sum over
those forests having common maximal generalized
vertices, and then sum over the set of these maximal
elements

(5. 8)

(5.9

(5.10)

Rypm)= 2 [ I da, exp(- 22 a,m?)
[RyvesssRy} 7 asl a1
><1£I A+ 2 mn (- T-zn(S)w(S)))

§=1 }Ga(ni) Se 3 R

X (= TPHRDCRD)]Z (g), (5.11)
1

where {R,, . . . ,R,} is a set of disjoint divergent gen-
eralized vertices.

The application of each 1}2: E+C(R ) gperator upon the
function Z (@) gives an expression of the form?s1°

- r,;f“Rc’*sz’ZG(a)

W R PR
1 ( 3 3
- I (G 5 Za @)
Z g e, O )
q ‘=
ZlG/Rl (5.12)

b
1 (k‘l""'k‘q)

where [G/R,] denotes the reduced graph obtained from

G by shrinking R, into a point; the momenta %,’s are
external momentum to the subgraph R, and are a sum

of external and internal momentum to the graph G. In
the ¢ representation, a derivative coupling on an inter-
nal line ¢ is denoted by (-1/V'a,)a/as, [see (4.1)]. Then,

€ia 0
k,=p,+ o (5.13)
I «€t6/rp Ve, 90, ’

where ¢, is the incidence matrix of the graph G.
Finally,
VATYIR (o)

/R‘ (k“_n.nk,q)

e € 3 3

Nfp,+ > . %)\~ (a,——,é)
={j=l< Y scte/r Va, 9% (G1Ry) 96 5m0

(5.14)

with /;(a,3/36, ) given by the inside of the curly
bracket { } in (4.1). In (5.12), summation over all pos-
sible external momenta &,’s and over vector indices is
understood.
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From the definition (5. 4),

]” N deexp(- 2 a,m?)
A

a(—:R‘ aER{

we get

x(1+ g (- 7-21(5)*0(S>))

3 CU (R,) S

X (= 2R PCR D) ()

w(R+C(Ry)®
- > L (__3_ cee B
= 2=0 q! akll ak,' i

XZ‘G’Rﬂ(rz roeosh )(a). (5.15)

i
q

Using (5. 8), we can write fi’c(p, m) as

o

R(p,m)= L 0 de

{RypsuesR;} Jr a€1G/UR]

xexp(- 2
aE‘G/URU

LERPY
X{ H X’I‘Zi(pj+
i=1

o, m?2)

2
> _gli__,m>
a€te/rp Va, 9%

2
X Zigrurp a’ﬁsﬁ)} ; (5.16)

where UR, means the union of all the subgraphs R,.

To calculate R" (x,m) in position space, it is con-
venient to remmd the reader what the curly bracket {}5
{}5 .o in {5.16) is in momentum space, 1°

{buo /" T d%,

=% aClG/UR 1

t-
XTI x5 (p; — 2.

(b €1aRg, M) Il
i=1 a€IG/Ry)

4EL6 /URy]
x (k,,s exp(- a.k2))

X Il
n€lG /UR ]

where the k,’s take care of possible derivative couplings
or spinor on the line g and the 5P? distributions de-
scribe energy momentum conservation at each vertex
n. The right-hand side of (5.17) is a convolution and
its Fourier transform is the product of the ¢ functions
x{x,m) times the Feynman amplitude for the reduced
graph (G/UR,], where at each contracted point R,, the
external momentum is EJER,PJ- Consequently,

5@V (p — >,

aELG/URY)

€.k, (5.17)

na-a

Ry(x,m)= 22 T1 Xk, (x,m)
(RpseonsR ) d21
x I A D egx,), (5.18)
a€1G/UR,] nS LG/ UR;)

where {R,, . ..,R,} is a set of disjoint divergent gen-
eralized vertices and A% are Feynman-like propagators
with ultraviolet cutoff ». Equations (5.9), (5.10), and
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(5.18) define the recursive solution to the R-operation
as given by Bogolubov, Parasiuk, and Hepp. !:?!!

VI. CONCLUSION

Most problems on renormalization were solved in the
past by using recurrence arguments. In 1973, Zim-
mermann® introduced a renormalized Feynman amplitude
written in compact form in the momentum representa-
tion. This new result was the starting point for the nor-
mal product algorithm.® In the same spirit, this paper
defines a renormalized Feynman amplitude written in
compact form in Schwinger parametric representation.
Let us mention some features of this representation:
the subtraction R operator is independent of the topology
of the graph; the generalized Taylor operator T relative
to subgraphs which form a forest commute; we avoid
completely the problem which occur in momentum
representation of defining a permissible set of internal
momenta. The R operator turns out to be easy to manip-
ulate for practical computations like Zimmermann’s
identity, !° calculation of the coefficients of all
logarithms of the leading power in the asymptotic be-
havior of a renormalized amplitude,’ infrared and ultra-
violet convergent amplitude, etc.

Finally, let us remind the basic property of
Feynman amplitudes expressed in the a representation
which makes such a R operator to exist: the a-
Feynman integrand has a simultaneous Laurent series
in the dilatation variables corresponding to subgraphs
which form a forest.
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APPENDIX A: GENERALIZED TAYLOR OPERATORS

The generalized Taylor operators have been defined
and extensively employed in Ref. 4. Here we want to
further generalize the definition over a class of func-
tions flx) which behaves like x” at x =0 (where v is not
necessarily an integer).

Definition: Given a function f(x) such that x™f(x) is
C” in [0,2> 0, ] we define the generalized Taylor opera-
tor 7 on f(x) as
(A1)

T"f(x) — xres T"""{x’“‘ﬂx)},

where x> — E’(v) is an integer, E’(v) is the smallest
integer =Rev, and e= E’(v) —v. In (Al) 2 is an integer
and T is the usual Taylor operator.

The above definition is X independent. The purpose of
introducing e is to remove the cut of flx) at x=0. Let us
mention the following properties:

™fx)~x¢ at x~0 with Reg <n, (A2)
(1-m™Ax)~x2 at x~0 with Req>n, (A3)
™x)=0 if n—-E'(»)<0. (A4)
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By using the formula for the remainder of the Taylor
expansion, we have
' 1 (1= gy gnast
(- T")f(x)=J; oy T W{E"“ﬂxa}-

The ¢ in (A5) is essential to ensure the existence of the
integral. In this equation, A= sup(- E’(v), —n).

(A5)

The generalization of the definition of 7 to functions
of several variables is straightforward but in general the
the T operators do not commute. We observe the
properties

T';XT;'yﬂx,y)
{ x* for x~0, y#0, and Req <n_, (A6)
~ y* for y~0, x#0, and Reg<n,,

(1 - 7)1 -~ m)f(x,y)~x® for x~0, y#0, and Reg>n,,
(A7)
but nothing can be said on the behavior at y~0, x#0.

see(lom)eeethecef=0 if ', <ny, (A8)

Corollary
-.a(l_T;':)-"f:o--(l_1‘21)..-(1_12})...}‘ if nisn“
(A9)

"’T,':i"‘fZ"'T';i"'Tzi"'f it nf<n,, (A10)
4

where «+°means a sequence of T operators. The
integral representation for the remainder of the Taylor
expansion is not always generalizable to functions of
several variables. Indeed in (1 -7,)(1-17,)f, ¢, is gen-
erally different for each term in (1 - 7,)f.

Finally, let us define the 7 operators relative to a
family of variables. Given a function of several variables
variables fi{x},{y}), where {x} and {y} are families of
variables, we define

ey S {yD =75 fox}, YD),y - (A11)
APPENDIX B: DIFFERENT FORMS OF
THE R OPERATOR

In Sec. III, for the proof of absolute convergence, it
was convenient to use the R operator as a sum over all
nests /A of subgraphs. Here we prefer to define the R
operator under its original form (see Ref. 4)

RZ(@)= I (1 -7 2(y), (B1)
ScCe )
where the product runs over 2! -1 subgraphs of G. This
form is independent of the topology of the graph and

RZ(q) turns out to be independent of the order of ap-
plication of the 7 operators.

1. The nested forest formula
Theovem: If Z(x) has the “simultaneous Taylor series
property” in regards to every nest,

n _ 215t S)H
Sgc(l T'S’ V(ar)

—(1+2 I (—71euSrecs
( +/v SeN( s NZ(a), (B2)
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provided that the oversubtraction coefficients C(§) satis-
fy for any two subgraphs §, and S,

C(S]_ U.S‘z)2 C(Sl)+c(52) -C(Sln.gz)-

Proof: The proof is by recurrence. We consider
21-1

I
m(1- r;:(j,)w(S,))Z(a)zznl (1- r}z(Sl)w(S‘)
1

{=1 i i=m

(B3)

<1+ © o <-r2”9’*c<5>>)2(a),) (B4)
NEEpa SEN S

where & _, is the set of all forests of nested elements
built from the subdiagrams in W__,={S,,...,5 .}
For m=2, it is trivially true, while for m=2%, it re-
duces to (B2). If we assume it to be valid for m=n -1,
then it is valid for m =# provided that

211-['1 (1- T-fz(f,m(S,))(_ ngl( SpeecS

$=n+l i

x n (- 1"-2“5)*0(5))2(:1)_—_0, (B5)
NeEl  Sen 3
where &’ is the set of all forests of nested elements

n=1
built from the subdiagrams §,,...,S5 ., with at least
one element either disjoint or overlapping with § .
Hence, the nested forest formula (B2) is proved by
establishing (B5).

We use the © construction of § ,-maximal nest g . To
each nest Ve £’_, corresponds a §,-maximal nest (.
g can be decomposed into B, K, and # and every nest
A with § -maximal nest § is of the form BUK U/, with
H*CH. Now, some elements of / do not belong to &_;;
when we group the nests of & ;-1 into equivalent classes,
we obtain from the left-hand side of (B5), for each
equivalent class

2t
o (- T‘f“si)"C(Si))(— T-Ez(s,,)»«c(sn))
i n

fen+l

x I (= 72SHecd I

(1—1"2”5"'“5’)2((!).
SeBUK S SeHMpy S
(B6)

Then, using the property (A9) of the 7 operators, (B6)
becomes

2la
M1 (1 = 7215 pseCSpy(o r221(S yeei S )
i=n+1 Y Sn

x Il

SE BUK(_ 2-21(5)+C(S))52H (1 - 7?5.21(5)+c(5))z(a).

(BT

Now, the proof is similar to the proof of absolute con-
vergence; we dilate the a’s in B, by £%, the a’s in K, by
0%, the a’s in H, by x% and the o’s in §, by #%. Then,
Z(a) becomes Z(a, tg,0,/8,8x,). After application of

the 7 operators in BUK|, and after using the remainder
formula for the elements of //, we obtain a sum of terms
each of them containing in factor the term g, with

p>S(21K,) ~ 21(H,) + CH,) - C(K,)]. (B8)
P

Now, if the oversubtraction coefficients satisfy the re-
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lation (B3) then, by the same derivation as (3,24), we
get

% [CH))-ClK)]=C(S,), (B9)
sl

so that
p>=2US,)+C(S). (B10)

-21
Then, the application of Tjn‘sn"C(SM in (B7) gives zero
by (A4), and this proves (B5) and consequently (B2),

This theorem shows that if the condition (B3) over the
oversubtraction coefficients is satisfied, the R operator
used in Sec. III, namely,

R2(@)=(1+2 T (= r3Sre$Hn7(q), (B11)
N SeEN S
is the same as the R operator defined in (B1). This

property is true without any reference to Feynman
graphs.

2. Forest formula

From now on, the function /(a) is related to a
Feynman graph. We shall generalize the nested forest
formula for those functions /(&) which have Taylor
series in the dilatation variables corresponding to the
diagrams of some forests in addition to the forests of
nested elements, after all common factors have been
removed. (Definition of a forest given in Sec. IV B).

Let us note that any forest which is not a nest has
some disjoint elements. Given a forest, a set of dis-
joint elements of this forest is said to be maximal if
any element of the forest that does not contain all of
them, is contained in one of them, If no such set exists,
then the forest is a forest of nested elements. We group
all forests which are not a nest into pairs of the form

{$1,...,5,, resttand {S,u-+-US S ... 5 rest}
(B12)

where {§,...,5,} is the maximal disjoint set of ele-
ments and where of course §;U+--US does not belong
to the rest of the forest. Either Z(a) has a Taylor
series property with respect to both forests of the pair
or with respect to none. If Z(&) has a Taylor series
property, the 7’s relative to the elements of these
forests commute and we can form the sum

can(lo 7023(,U5i »c (U 51))(_ 7-3211<51)+c<_§13), ..

X (= T-z:l( Sect S")Z(a)’ (B13)
which vanishes by virtue of (A2) and (A3) if C(U §),)
22;’=1C(5,). Summing over all such pairs of forests and
adding the result to the nested forest formula (B11), we
obtain

2t.1
I (1 -7 2SS 2(q)=(1+20 T1 (728557 (q),
i=1 A 353 5

(B14)

where the sum runs over all forests which have the
Taylor series property. Then, the left-hand side of
(B14) is independent of the ordering.

The same demonstration applies to establish the
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extended forest formula, In the above proof we just
have to change the words “forest 7” into the words
“extended forest £,” “disjoint” into “misjoint” (defini-
tions given in Sec, IV B).

3. (Extended) forest formula of (one-vertex) one-line
irreducible connected subgraphs

From now on, we consider the function Z(a) given in
(4.1). In this subsection, we want to reduce the sum in
the right-hand side of (B14) into a sum over a subset
of (extended) forests, each (extended) forest containing
only connected, (one-vertex) one-line irreducible sub-
graphs as defined in Sec. IV B.

Theorem: The sum of all (extended) forests, each
containing at least a one-line reducible subgraph,
vanishes on Z(a) if the oversubtraction coefficients
satisfy

c§Hr=cln,

where § is a one-line reducible subgraph and §” is its
maximal one-line irreducible component.

(B15)

Proof: Any such (extended) forest has at least one
minimal one-line reducible subgraph §. Let §’ be its
maximal one-line irreducible component. We gather the
following terms:

ser (1 - 7 @SOS 7RSS (), (B16)

After dilatation of the va’s belonging to § by p and to §*
by i, the function Z(e,p, 1) can be written

Zla,p, w)=(ou)*2(a,pu,p), (B17)

where Z'{a,pu,p) has a Taylor expansion in pu and p
(this property is proved in Ref. 10).

Then, (B16) becomes

eer(l = T-zz(,S')w( Sy T'ZI‘S)*C(S)»)
® o
2 Z,, (pu¥rpte,
By sk,=0 12
Using (A2), (A3), and (B15), we see that the expansion
(B18) vanishes.

(B18)

Theorem: The sum of all (extended) forests, each
containing at least (a one-vertex reducible or/and) a
disconnected subgraph vanishes on Z(a) if the over-
subtraction coefficients C(§) satisfy

n
c($)< 2 ¢(S), (B19)
i=1
where the subgraphs S¢ are the n (one-vertex irreduc-
ible) connected components of the subgraph §.

Pyoof: Any such (extended) forest has at least one
minimal (one-vertex reducible or/and) disconnected
subgraph §. Let us partition § into # (one-vertex ir-
reducible) connected subgraphs §,, . . . ,Sn, such that
§=Ur, S, and let us sum over all (extended) forests
containing § but which differ only by the number of sub-
graphs §, (7 from 1 to n); we get

cer(l - T:S_zll(Sl)oc( 51)) - 7-5_:1( Smect Sa)
x(_Tg_zz(S)oc(S))Z(a)_ (BZO)
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Since Z(a) has the simultaneous Taylor property in
regards to the subgraphs §,,...,5, and § with common
powers K,, ..., Hu, and 37, 4,, the above expression
vanishes by virtue of (A2), (A3), and (B19).

4. (Extended) forest formula of divergent subgraphs

Theorem: If § is a convergent subgraph (definition
given in section IV B)),

7521(5 1) 7(4)=0.
The proof is a direct application of (A4).

(B21)

5. Forest formula of generalized vertices (definition
given in Sec. IVB)

Theorem: The sum of all forests, each containing a
subgraph which is not a generalized vertex, vanishes on
Z(a) if the dimension of space D= 2 and if the over-
subtraction coefficients C(§) satisfy

c(§)=cC(§) for §,08,. (B22)

Proof: Any such forest has at least one maximal sub-
graph §, which is not a generalized vertex. Let us add
to §, n lines to obtain the generalized vertex §, such
that §, and §, have the same vertices. §, has x lines
and n loops more than §,. We gather the following
terms:

(B23)

After dilatation of the va’s belonging to §, by p and to
S, by i, the function Z(a,p, 1) can be written

cee(l- 73‘2;( Sareeq 52))(_ T-;zl( SpretS N7 (a).

Z(a,p, m)=p* JUel Sl’”f"”Z’(cx,pu,p), (B24)

where Z’(a,pH,p) has a Taylor expansion in pu and p
(this property is proved in Ref. 10).

Then (B23) becomes

cee (1o To2M SPHLCSpmipect S,y Tp-ZI(Sl)*L( SppeccS))

o

ZkaZ(P“)kIPkZ- (B25)

Ryyky=0

By (A2), (A3), and (B22), the above expression vanishes
for D> 2,
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Similar results as those of subsections 3, 4, and 5 of
the appendix can be also obtained from the complete
product of (1 - 7)%s:

(- T_‘S.Z”S’*C‘S’)Z(a)=

Ia- -Z'I(S')#C(S')
S 58 TS Kia),

(B26)

where the product on the right hand side runs only over
divergent generalized vertices. Such a reduced form
turns out to be useful for practical computation of the
renormalized integrand.
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On the structure of the multiplicity-free Wigner

coefficients of U(n)

M. K. F. Wong

Fairfield University, Fairfield, Connecticut 06430
(Received 2 April 1976)

It is shown that the isoscalar factor (or reduced Wigner coefficient)

in U(n) is essentially a doubly stretched 9-j symbol in U(n—1). The connection between the isoscalar

0 : (') [
Myn Mp-1n D, Myp my_1n 0
6 ’ '
Myn-y Mp-1n-1 q, Myn-y Moy-y1n-1
factor
.. A I}
Min' "~ Mnn p. 0 Min" " M pn
0 ’ PR
LEWS My tn-1 q, Myn-y Mp.1n-1

and the 9-j symbol of U(n) and U(n—1) is also noted. This result immediately implies that the Weyl
coefficients of U(n) are basically 6-j symbols of U(n—1), a result first noted by Holman. The finite

transformation matrix D ["n
(m )n-l(m)n—l

either in terms of generalized Euler angles or double bosons can thus

be written down in a simple way. The stretched 6-j symbols of U(n) are obtained in a simple form,
involving no summations. The generalized beta functions of Gel'’fand and Graev for U(n) are found to be
connected with the stretched 6-j symbols of U(n—1) and an isoscalar factor of U(n—1). The 144 Regge
symmetries of the 6-j symbol of U(2) can be interpreted as the symmetries of the Weyl coefficients of the
double boson state of U(3)* U(3). In the Appendix we give the phase relations between the Wigner
coefficients and 3-j symbols of U(n), a result which is by no means trivial, and is of some practical

importance.

INTRODUCTION

Although the explicit expression of the multiplicity-
free Wigner coefficients of U(n) has been known for
some time, =% it is still useful to study its structure so
as to obtain more information from it, and also to
recognize its symmetry properties. In this direction we
would like to offer the following suggestion: The
isoscalar factor

0 mi, o, 0

p, 0

°

q, 0

mln' M1,

’

’
MY a1 ® ° My par

My per® " " Myy et

where

nal n=1 -1

nel n
p: Z;min— Zm;n’ q= Z>Wlin-l__ Zm;n-l
i=1 1=1 j=1 i=1
is connected with the 9-j symbols of U(n - 1), and the
isoscalar factor
p, 0
q, 0

My, * "My, min.'.m:m

4
Myt oM MYt My

neln-1

is connected with both the 9-j symbols of U(n) and Uln -
-~ 1), A consequence of our result is the result obtained
by Holman?®: that the Weyl coefficients of U(xn) are
basically 6-j symbols of U(n—1). This is easily under-
stood when one considers the case of U(3). There a 9-j
symbol in U(2) becomes a 6-j symbol when one of the
terms (i.e., p —¢q) becomes zero. This is precisely
what happens when one calculates the Weyl coefficients
of U(3).

By putting another term (i.e., ¢) equal to zero in the
9-j symbol of U(n), we are able to evaluate a
“stretched” 6-j symbol in U(x), which involves no sums.
The generalized beta functions of Gel’fand and Graev'?
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for U(n) are found to be connected with the stretched 6-j
symbols of U(n ~ 1) and the isoscalar factor of U(n —1).

Another result is that the transpositional symmetry
of the isoscalar factors, which is a consequence of the
commutativity of upper and lower patterns of the boson
polynomials, can now be interpreted as the transposi-
tional symmetry of 9-j symbols, while the Regge sym-
metries of the 6-j symbol of U(2) can be interpreted as
the symmetries of the Wey!l coefficients of the double
boson state of U(3)* U(3).

In Sec. 1 we shall show that the isoscalar factor

e 0 7 e ea 7
My, My, O |p, Ollmi, om0
- ) P eee gt
g1 ®* Mgt gt | €5 Ol MY pr = omy 1y

in U(n) is connected with the doubly stretched 9-j sym-
bol of U(n —1) and that

p, 0

g, 0

My, e, mi, e oml,

’

’ Py ’
MY ,1° Mg g

(AR RRE M

is connected with the 9-j symbols of both U(z) and
Upn -1).

In Sec. 2 we discuss a consequence of this result,
i.e., the Weyl coefficients of U(n) are basically 6-j
symbols in U(n - 1), a result first obtained by Holman.®
With this result the transformation matrix DE:}:): -
for U(n), either in terms of Euler angles or in netiM e
terms of bosons a4{, can be written in a very simple
form. Furthermore, we propose that the D matrix
parametrized in terms of Euler angles should be diag-
onalized according to labels, denoted as z, by us, which
have simple properties under R conjugation, i.e., 2z}
=-2z;. In SU(3) these are just the isospin and hyper-
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charge quantum numbers. Therefore, the D matrices
diagonal in these quantum numbers will have direct
physical applications. The D matrix of SU(3) diagonal in
isospin and hypercharge obtained by Yeh' is explicitly
given. Its relation with the boson polynomials is also
given.

Another structural property that becomes clear in the
double boson polynomial is that the Wigner coefficient of
U(2) is contained in the double boson polynomial of U(2),
and can therefore be written down by inspection. This is
certainly the easiest way of deriving the Wigner co-
efficient of U(2).

In Sec. 3 we derive the expression for the “stretched”
6-j symbols of U(n), which involve no summations. The
“stretched” 6-j symbols of U(n - 1) and the isoscalar
factor in U(n - 1) are then found to be connected with the
generalized beta functions of Gel’fand and Graev.

In the Appendix we give the phase relations between
Wigner coefficients and 3-j symbols of U(n). This is by
no means a trivial problem, since there is already dis-
agreement in SU(3), when one considers that the phases
of the “1-j” symbol in SU(3), obtained by de Swart!?

(or Resnikoff®), Ponzano,* and Baird and Biedenharn®®
are all different, Our principle is that in the case of
U(2), the phase convention should be that of Egs.
(3.7.3), (3.7.5), and (3.7.6) of Edmonds, ™ a point on
which almost everybody agrees. Then this phase should
generalize to U(n). In doing so we find that one must
use labels corresponding to j and m in SU(2), which
have simple properties under R conjugation. These
labels are denoted by ¢ A, and z;, i=1,2,...,n-1,
by us. When these labels are used one finds that the
phase convention of U(2) generalizes to U(n).

1. MULTIPLICITY-FREE WIGNER COEFFICIENTS OF
U(n) AND 95 SYMBOLS OF U(n-1)

To prepare ourselves for the desired result, we first
define singly stretched 9-j symbols in U(n), following
basically Sharp and von Baeyer,'® who did it in the case

of U(2). The 9-j symbol is defined by
(a)n_%(;ﬂ)"_l [a], (2] la], [o], |L4],
oot @ /|G ) \ (@t @ (9,
lel, \ |ldl, \ /lel, [al, |l#],
s /1)1 ) \Dgon ©s| (),
Wit

(9),,-1 (K),,-

(a)n-l(B)n-l

)
ol
oo

=462, 01 |( (M),1
€ ()
[£1,l1,
[a], [e],
(Q)"_l (7 n=1 "'1

1659 J. Math. Phys., Vol. 17, No. 8, August 1976

(a1, \ /lo), [dl, |L&l.

X18),.1 / \(8),o1 (8),1|(9),1
(1. (gl |lel [a], (0], (41,
©n (0)n | (o) / X |le]a 4 ),
(1. L&, [el,

x(dim 7], dim[#], dim[ f],dim[ g],)*/? (1.1)

where a square bracket means a row of numbers, thus,
e.8., [f],=(fins fons - + « »fan)s While parenthesis means
a Gel’fand pattern. Throughout this paper we are deal-
ing with the multiplicity-free Wigner coefficients of
U(n); therefore, the Wigner coefficients need not carry
a multiplicity label, or an upper operator pattern.

Max means that the state is in its maximum weight.
Thus, e.g., for U(2)

[e]n €12 €32

(@) nax €1,

Take the scalar product of (1,1) with

a, 0 ¢, 0
@pa /() /s
max max

the left side is

2 |8l \ /a, 0 [6l, i1, \ |ld],
8, .
(0),..1(9;,,_1 (B)"-l (a)l:;; (B)"_l (e)n-l (6)"-1
¢, 0 [dl, |[x],
((.:),,_1, (5),,_1 (e)n-l_ (9)"_1
WAt &), |lel,
’ (1.2)
(9)"_1 (e)n~1 - (e)n-l (e)n-l
Since the state
a,0
(@)1
is the conjugate state of
a, 0
(,) s
we can write the Wigner coefficient
a, 0 [o], |[4],
@nh<mw<mm
. j 0|[5]
vy [] n )1 & []]" @ "
- @) \on,o e, ) @9

where y is some phase factor. In the case of U(2), for
3l + a=3[b],, (-1)*=1. We have obtained the phase
factors for U(n). The details are given in the Appendix.
There it is shown that y is a function of [b]n only, if
nonvanishing. Similarly we have
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(."’ 0 [d]n [k]n X [a ;_ ¢ O]H [g]n [e]n
(E‘),,_1 y (8)rjle), = (6) @+ €)pers @)y |(€),y
max max max max m
J(dimkL\"” / (k] ¢,0 [d] [a, 01,  [s], 4],
=(-1p4 Fimld] " .
max " (e)n-l ( )"_1, (e) ( )n-l XX [C: 0]7! [d]n [k]n
- = (1.9) la+e, 0], [g], e,
On the right the only value of [f],, limited to the X (dim[ ], dim{#]_dim[ g]_ dim[a+ c,0] )*/2. (1.5)
conjugate of the totally symmetric representation | £, ] . " " T '
+[fl,=la+e,0] ,. This limitation ensures that the Again we can write
Wigner coeff1c1ents in (1.1) are multiplicity-free. Thus .
the right side becomes la+ec,0), g, |lel,
le (b1, (d], @+c) | (o), 11,
o1, (9)’1_1 (e)n-l _ (e)n-l max max max
max °
[ (1o (Gmfel§ 7 (el ave, O L)
o],  ldl, L&, dimlgl./ Ny ., 0 |le),
n=13 -
(e)n-l’ (e)n-l = (9)n_1 (e)n-l max max
max max l (1 . 6)

Now take the scalar product of both sides with

(oL \ | ), B, (@, |,

@ ), (e),,_l—(e)n_1> (8), 1, (e), 1= (8, |(e)ys /°

we obtain

(2,0, (o], [4],

N M>< w0l |6\ /(e )
(ot 6,0, gl [el, | N Dy = Ot @/ @y 6O Ny = Oy 0 () - (01

G, [k, lel, la+e,0,|[g], \"
"N\, (&), (0)_, (@)s (e),,_ 0 (@)s

max
X{(dim[a + ¢, 6],, dim([b], dim[d], dim[e] )*/2(= 1)@ *storvte) 1.7
To obtain the result for U(n), let us first consider the case for U(3). The scalar product of the boson polynomials
T T
mis 0 My
mis Mis »90 M3 Mag
0 mis mhs O Bl p0O miy My 01 10 (1.8)
M1y Mip q0 Myz Moo
Mia 0 miz

can obviously be evaluated in terms of the bosons in U(2) XU(2) only, since the irreducible rep. labels (m 3 myy 0),
(p 0 0) and (m]5 mj; 0) can all be considered as tensors transforming within U(2)XU(2) entirely. Using the rules
for the coupling of bosons, ' we find that the scalar product in (1.8) is equal to

2 ’ ’ 2
Mmip + My ~ mis + Py’ 0 Mip Moy —Mys + Py
’ ’
Wiz Myo q0 Ny Maa p ) 12
(m 1555
7 ?
pzz). Myp Mgy O Blq00 mi, mh, 0 [WMSzméz)
3 ’ ?
Wiyp Migp g0 Miyy M2
’
M, 0 "o
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=

0 0 0 0

0 W4 — p2r 0 0 0
p-q0 w5 0 p0 | a0 [ p-q0
LARRE !
LT R LN 00|g00|p-q00
w,00{Blp-q00} | W00 [Wg!] TP b q p-q
00 00 q0 | poO 00

!
12 M3y 00 My Moy

’
0 mi,

’ 2 ’ ’ ’ 27
Wi -p3 mip+ mhy — M3z + ps
3 Mas Mlyp Moo
w, 0
Mg May 0 | W53 00 My Myp 0 s
Nyg Moz 00 Mg Mgz
?
0 mi,

— r 4 (4 —_
Wa=mya+ Moy = Myp = Myy, Wim=miytmis—mi, —mp, Witp—qg=W,.

where

M is the measure

n n
/M:H(min+n—l)‘/n (Wli"*ml"+j‘i)
$=1 i<i

Using (1.7), we find (1.9) is equal to

My Map|q Omiy miy 1 1/2
| 0w ) [ ormar (s Doma =g+ 1p+ Dy =gy + 1) |
/M %(1’ —‘Q) —lz'Ws %W':;
Wo! Mimgmg,) | 22
X[WZT lm ilzsz:)] X| 20 Bomg = mz) Slmia = miy)
%P %(mxa—mzs) 2(m13 Ms)

On the other hand, the scalar product in (1.8), according to the factorization lemma,' is also equal to

14 4 ’? 7 7 4
M( NEE Mz Moz Of|p 0 Olismis miy O Mo Map|q O miy miy Myg Mas | p 0| mis mi,
Wy3Mas) o
? ? ’ ? ? ? ’ ’
/ (migmis) Miyp Mg q 0 ||mi, m3, Mz 0 My ms 0 Mg

Equating (1.11) and (1,12), we obtain

4 4
Mz Mas 0 p 00 Mt Mas 0 :[/M(Wl!,.s més)Wal/n(Wllz mzz) 1z [ P! 1z
Mg Moy || q O mi, M, m(mm mzs)Wélmizméz) (p—q)lq!
%q %(mlz — Mys) %(miz - méz)
X[(mi3—m§3+1)(m12—m22+1)(W§,+1)(p+1)]1/2X %(P—q) %Ws %Wé

%P %(mm - mza) é(mis - més)
This result agrees with Alisauskas® and Holman.® Let us also note that in the case of U(2) the analogous
result of Eq. (1.13) becomes

%j1+2j5, 0 2j3, 0

25,, 0 , .
T [/}7(2]1)/”(]1+12 m2w<h+:2+ml+mz>]“2

Jitietmytmy|jatma|jytm, /M(2]1+2]2yn(]1 ml” (j1+m1)
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Wy~ p3’ | mis = Wi+p
m} w0 mi, m) 1
Mz M3y 3 12 Miap ip 3 (mys —mgg)  |3(mis —mby) Momtmzs) V20 Mmgamgs)
i mla O W00 | mipmly 0 [’WML_] _Tu_a]
is M35 0| Ws e 5p, My =5y + myg) | 5lm iy —mbs)/ | Wil M(miams,) | (Ws Y (myames)
m}

1/2

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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(jo +my) %(]1 +jpmy+ my) %(]1 +my)
(1.14)

1
z
M(24,) 1/z . -
x [/n(]z — mgW(jj:*' my) X %(]2 - my) é(]l iz - - my) 5(j, - my)
72 Jitiz hr
where the 9-j symbol is in U(1), and is of course, equal to 1. Equation (1.14) agrees with the result in U(2), i.e.,
Clriz h1¥2 :[(2] (27,)1(2,)! (]1+]2+m1+m2) (1 + Jp = my = my)! 12 (1.15)
N - T T e o L ey H e '
The argument used for U(3) can undoubtedly be extended to U(n). Thus with the 9-j symbol defined by (1. 7)
and with the mapping
(a, b>= (Zz, 0)* (p—q, b) (c, 6) (2:, 0)* (q, 6)
0 a o /7 Vo /¢ o/
[b]n . Wn! 0 jn W;r’ 0 [d]n ml n=l A mn-l n=1s 0 {k]
(9)"_1 (9)".1 , (6)"_1 (e)n-l , (e)n-l (e)n-l ( )n-l - (9) (e)"_1 - (9)"_1
’ max .
, Wyt 0
’ RS 4
My et *** Mpap nats0 [g],, - mlfn ter Moy ,0 [e]n ~ Min et 0,0 W/, — piets — pn=2s 0
(€),..— (6, (), (@),.. @) max (0),.,=
max max max ) e max e N
W, =pyteee—p,
(1.16)
Ter  =Zpies 1=2,3, .,n-1. We obtain
n= n
Myt g, O|p, 0| mi,eeomiy,, 0 /M(m; -'°mf,_1,,)W"! L My ey * > Mgt )P
. 7 o ees — g
My M1 |45 0 min-l'-.m -1 pel n’ "’ mn-ln)W;,! /n(mln-l My 1pe 1)(P q)q
XAim(m{ .y * * * Mpoi ne) dimiom, w1t My El {dim{w_, 0],,_1 dim[ p, E)]"_I]I/2
g, 0],. 1 [m, n=1"* My ,.-1] (]t s s Mieinal
{(w,, 0], [ws, o] . (1.17)

[Wl{,, < Mgy n-1]

[
x( l)y(m oy )*y(W")*y(ml ""-mn_ln)xX [p q, 0]"-1
[P, o]n-l

[ml n' My ,,]

Though the 9-j symbol defined in(1, 7) is singly stretched, the 9-j symbol we obtain in Eq. (1.17) is doubly

stretched, since W/ +p—-g=W,.
The isoscalar factor in (1.17) does not exhaust all possibilities of multiplicity-free Wigner coefficients of U(x)

The most general multiplicity -free Wigner coefficient is
by Oy iy o,
q, 0‘

Without loss of generality one can rewrite the state on the right so that m
have to be zero. In this case the isoscalar factor will truly depend on the 9-j symbol of U(xn) as well. Proceeding

in the same fashion as before, we obtain the following equation for U(3)

my My,
(1.18)

’
mi n-1 i .mn-l n=1

(LTS T (L |
¢, =0. However, m _does not

[p_Q)O’O] [W;,0,0] [W35010]

[m;z,mém 0] [m127m22’ 0]

My Mgy Mag||p 0 0|\ mis miy O X |{q, 0,0]
y b
’ 4
Myp Moy q 0 || mi; mi [p,0,0] (s, mis, 0] [mys, myy, msy]
Myg Mgy Mag || p O Ofmis mig O . 1M (o 55) ] h
Ly~ Mg [(p - g /M(miymj,)

?
Mz Moz =

p0

_[/”(mmmzm ) ]"2
B /jJ(Mismés) Miyg Wigg
5 W, 00 |p—gqOO] W200 My Mgy O q 00| mi, mse O
X
p3e W, ~ g;o p=-q0 ||W;~ g' Uar m22+P3 —masfl g 0||mi, m;2+p§'—m33
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W, 00
W, -p3' 0

Ny3 Mgz Mgy Myp My 0

X Y
My Moy T P3° — Mg

My3 Mog

[(W, - p¢ + 1mis — mps + D]/

1 L ’ ’ 3
%q 5(m12_m22+m33—pg’) z(m{y — myy — b3 +m33)

x[(mlz = Mgy + Mgy — g’ + 1)(1) + 1)]1/2X %(P —q)
1
2p

W, - p¥

2(my3 — mys)

(Wi -p3")

2(mis = mss +myg)

(1.19)

The isoscalar factor on the left side of (1.19) has been evaluated by Chacén et al.,” Alisauskas ef al.®
All the other isoscalar factors in (1.19) do not involve any sums, Thus we can use (1.19) to evaluate the 9-j sym-
bol of U(3) on the left of Eq. (1.19). In the case of U(3), this 9-j symbol, like the isoscalar factor, contains a
sum over two indices. In U(xn) the 9-j symbol will contain a sum over (z —1) indices.

Jucys'® and Holman® have obtained transpositional symmetry for the isoscalar factor in (1.19). In view of (1.17)
and (1.19) this symmetry, when applied to the 9-j symbols, just means the transpositional symmetry of 9-j sym-
bols between rows and columns. However, as is pointed out by Bincer'® and Louck and Biedenharn, '*¢ the transposi-
tional symmetry of U(2)x U(2) gives the new Regge symmetry®® for the 3-j symbol of U(2), which goes beyond the
“classical symmetry” of the 3-j symbols. In Sec. 4 we shall discuss the Regge symmetry® of the 6-j symbol of

u(2).
2. CONSEQUENCES OF THE RESULT

It has been shown by Holman® and Louck and
Biedenharn'® that the boson polynomial in U(x)x U(x) is
connected with the isoscalar factor of the totally sym-
metric representation (p,0). Thus

(m’)

Mim)*/2B| [m] |(4,)

n

(m)
_ 5 [ln|le, 010w, 0
‘“‘n(-bl")”():f)) m)| () (1)
[, ] (07, 0| (1], /
’ ~1/2
Ny | w0 |/ Loreeal
(0) ((b')) (1)
xB\[6,0] | (4,)81[6,01] 4)B|[u]a) (4

(b) (0) (1)

2.1)

This time, without loss of generality, we can put m,,
=0. Then Eq. (1.17) can be applied to the first term on
the right-hand side of (2.1).

The Weyl coefficients of U(n),
[m], [m],

(], (77 ] s

n-1n

can be most easily evaluated by equating the boson A, to

1
1 0
A= (a)= .
1
0 01
10
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Thus the bosons ai=1, for i=1,2,...,n-2, a7,=1,
a’'=1 and all other bosons in Eq. (2.1) must be
equated to zero. This gives the constraints:

W =W and W, =W form<n-1. (2.2)
Then (2.1) immediately gives
{(m")
M) 2B Y [m] [(A)
{(m)
My, M, O b,z) MY pe1® My gy O
- [m]n-1 W,,-u 0 [m]n-z
XGW",W;,_I‘S(m)n_z(m')"_Z
y m{n.x““m:.-ln_l W:,-la 0 fm, S (Y 0
(m) ez W2 0 (m)n-s
[ y ; [m],..l b, 0 [m]n-z
x{ptw:_ 1 -1/2 o
n=1 [m]n-z] (m)n-z W"_Z,O (m)"_3
2.3)

Since the Weyl coefficient is independent of (m), __,, we

can take (m),_, to be max. Then we have
172

[m']n-]. Wi [m],,.z :(W’_ll)‘/z m[m]n-z X
e | 0 |m), 7 Je
(2.4)
[m] -l b; b[m] ~2 /H[m -2 1/2
n i n — (b' )1 /2 n .
(m)n“2 0 (M)n-z /”[m n=l (2. 5)
Thus we have
(], [m],
[m]n-]. Wit n [m']"-l
= /n[m n/n[m]n-z e [m]n p’ 6 [m,]n-l
/}’I[m'],,-;mm]n-x [m]"_1 b, 0 [m],
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—_ (_ l)ﬁn_ll(m

x[dim{m’],_, dim[m],_,]'/?

-; +(m? - d
1 ped™Mnal pet! (m§ nel m'n_l n_l)*W"*W"l

[ml [ERIRERIEY (] ,,] [ml el Mpay n-i] [W"’ 6]n-1

[ml,.-z"”mn-zn-zo] [mln 1Tt my ,,..1][.9, 0],,-1 '

(2.6)

The Weyl coefficient obviously occupies an important
position in the finite transformation matrix of U(x). In
the case of U(3) this has been calculated by many
authors, among whom are Chacbn and Moshinsky, %2
Holland,*® Lezuo,?* Majumdar and Basu,? Akyeampong
and Rashid, ?® and Holman. ° Our result agrees com-
pletely with Chacbn and Moshinsky’s, including the
phase. Apart from phase, all other results agree with
each other. Let us briefly mention the connection be-
tween these results.

Majumdar and Basu’s 6-j symbol is the same as our
(2. 6) when we put n=3. Then we have

Mg My 0 M3 Mys 0

W2 3

’ 4
Myp Mag My Map

=(- )"'12"’"12""11[(7”12 = Mgyt 1)(”’12 -mi, —myy+ 1)]1/2

X8
m, _+m_ = wm__ym’ +m?! ~m
13 23 M2 22 e Tee 11

x 2(m13 -~ mzs) (my, - mzz) (15 + Mg — Myp = Mp,)
zm u f(miz — M3,) E(mlz + Mgy — Myy)
2.7

Chacbn and Moshinsky’s expression is related to (2.7)
through the Regge symmetry, and so is Akyeampong
and Rashid’s. Holland’s result is equivalent to
Akyeampong and Rashid’s Eq. (2.5). Holman’s expres-
sion is the same as (2.7), with the first row and second
row interchanged (a difference in the definition of the
6-7 symbol)., Finally Lezuo’s expression can be trans-
formed into (2. 7) in the following way. First write
Lezuo’s Eq. (13)as an

b+f-d+1, c+f-a+l, f-a-c, f-b-d
3
f-e-a-d,etf—a-d+1, 2f+2
2.9
with
a=3(o, +az"'a3+n)—%(mlz'*'m{z"mza—mu)’
b=3(a +am)_2(m13+m23—m12 Mgs),
Z%( + CY12)= E(mlz + M ‘mu)’

(2.9
d=73la +¢le+a13+n)'z(mu+mzs Mgy — Mhs),
':%(0{14'012+dlg—n)=§(m13+mu-—mzz—-miz),
f= %(a1+ azt ag,t n):%(mls'*' Mgy — Myp - mba).

Then (2. 8) is related to ,F,(W,1) through Minton’s®’
Eq. (7), and ,F,(W,1) is finally related to the 6-j sym-
bol through Minton’s Eq. (9). The 6-j symbol thus ob-
tained is the same as Chacon and Moshinsky’s. Thus
all the results on the Weyl coefficients of U(3) are
expressible as (2. 7).

It is also clear that the Weyl coefficient is central to
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the structure of the finite transformation matrix

pimy, in terms of Euler angles. From the
(m? 5, 1 (m el

parametrization of U(n) by Murnaghan®® in terms of
Euler angles and the work of Chacbn and Moshinsky??
on U(3), it is clear that all one has to know in obtaining
the finite transformation matrix D!ml, is the Weyl
coefficient W, . The rest can be' ™ n-1™n-1 obtained by
recurrence, or induction on %. In this regard it is in-
teresting to observe that the finite transformation
matrix for U(n) is a product of 6-j symbols in its sub-
groups and U(2) DJ, matrices.

In view of the significance of the labels z; defined in
the Appendix, which possess the following two
properties:

(1) Z’{:—Zi,

W4 5 @
(2) 2, + 2,

(2.10)

=2,, (2.11)

it is desirable to construct the D matrices in terms of
these labels, In the case of SU(3), these are just the
isospin and hypercharge labels: z,=2I,, 2,=3Y. They
have therefore direct application to physics. The D
matrix diagonal in isospin and hypercharge in SU(3) has
been obtained by Yeh. ' It is

D(a, * - a,)=exp(il,a;) exp(iYa,) exp(iX,a,) exp(il,a,)
X exp(iXqa,) exp(iX,a3) exp(il,oq) exp(iY ay),
(2.12)

where X, +++ X, are the Gell-Mann®® matrices. The finite
transformation D§;%; 11,00 (@) 18 (p=m1q — Mg, g = my,)

D?;nyl!'m'y’(a)
—explilma, + m’ag+ya,+y’a,) 2o Nexplim,a,)
myly
(zal)dI (22,)

1/2¥3y /4 omy /24y =y M
de 14292 m’ (2‘13)’ (2.13)
where

N= (= 1)@ /3y /211 (91 + 1)1 /221 + 1)1 /2(21, + 1)

XW(a bc die YW@ b ¢’ d'; e’ f),

a=(p+q)/6-2v,
b=(2¢ -p)/6-m,/4+y/8+3(I+1),
(p-2q)/6-y/8+3U+1)+m,/4,
={(p+q)/6+y/4+3m,,
=(2p—q)/6-3I+y/8+ 3] —m,/4,

f=(2p —q)/6 -3l —m/4+3I-y/4,
a’=(p+q)/6+y/4+ 3my,

b =(2g -p)/6-y/8-m/4+3(L,+ 1) +y'/4,
C—(p 2q)/6+y/8+ 3L+ 1)+ m,/4-y/4,
(p+q)/6-3y",
(2p-q)/6-y/8-3L +5I'+
(2p - q)/6 -v/8+ 3(

H

I|

%(y' "ml)’

f’ I, -+ 3y —m,).

The D matrix can, of course, also be written as
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boson polynomials. The relations between the bosons
and the eight angles are as follows:

@ =[c,c,explia,/2) ~ 5,¢,5; €xp(— i,/ 2)]
xexp{il3(as + @) + (a; + ag)/31},
& =[c,ssexplia,/2) + s,c,c exp(- 3ia,)]
x exp {i[i(a; - ag) + (aq +ay)/31L
@ =s;s, explil 5(— oy + o) + (@, - 2a,)/3]},
al= ~[s.csexplisa,) + ¢,cy85 exp(— izay)]

x explil3(~ a; + a,) + (@, + ay)/31}, (2.14)

2= [~ 5,8, expliz ) + ¢,0,; exp(~i30,)]
xexpli[5(- a5 - ag) + (@, + a,)/3]},

a3=c,s,explil3 (- ay ~ a,) + (a, ~20,)/37},

al=s,ssexplilsa+ (~2a,+ a,)/3]},

@i = —s,cyexplil - 3o + (- 20, + a)/8]},

a.

ad=c,exp[-i(2a,+2a,) /3], where s; =sina;, ¢;=cosa,.
The inverse relations are (D,, = a})

X (D23D31D12 - D23D32D11)

(1 - D33D11D22 + D33D12D21)

cos?a,=D;3D Dy, = Dy3D, 5Dy, , |

cosla, = )

cos®ay =(DypD;3D;, — Dy,D\D,,)/ (1 - DyyDy; Dy, + DyyD,, Dy, ),
explia,)= (iD 3Dy "' DY8(D,,D,,) 2

X(D,3Dgy Dy = DpsDgy Dy ) /2

x (D13D32D21 - DlsD:uDzz)l/2

X(Dy,Dps = Dy13Dyp) *(Dyy Dy — D13 Dy ) /2

X(Dy, Dy — Dy,D,, )/

x (1 _DasDuDzz + D33D12D21)-1/2:
exp(ia;)= D3 Dy (Dy;D55D5 = D1y DyyDs,) 12

X(1 = DyyDy Dy, + DyiDy,Dyy)

x (D13DszDzl —013D31D22)'1/2, (2-15)
exp(ia,) = iD31/2D33/2D33(Dy,Dys — Dy5Dyp) /2

X (DIIDZB - D13D21)3/2
expia,)= D33/t ”Dgilqu;;“(DuDzz = Dy,Dy Y /4

X (D12D23 - 1)131)22)l /4 (D11D23 - D13D21 )1 74

b4
eXp(iaB) = il/zDE; /2D§1/4D§2/4(D11D22 - D12D21)1/2

% (Dy,Dp4 ‘Dszz)-l'“i (DllDza —Dszl)‘”",

Thus the structure of the boson polynomial in U(n)x U(n) is further clarified. Let us make one more remark
on U(2). That is, the Wigner coefficient of U(2) is itself contained in the boson polynomial of U(2)x U(2).

Procf: The normalized hoson polynomial in U(2)* U(2) is

IJ’ll

«l/2
Mm-1zB MMy,

[(myy =~ mpp) (myp = my ) (B — ) (myp = 1)t ]2

LT
-1/2
y [&m&&n_a‘_] " - atal)
(mlz_m22+1) 1442 1“2

TS s Wy = Mgy — S Mgy = Mgy — S gy =y — gy + g + S)

ati_ tm__*§

m. § Ki1=moo=S -M,,=S LS TR
22,18 2K 1172278 )y MpgS g2 1711 22

1 %1 2

2

=222 {[(m_u: mg)t (myp =y ) (1) — Mgl (myy — L)) ppt )y — gy + 1)]/2(- 1)

Sy x

Sy = Mgy — SN My = Mgy — $) M1y — Mgy — Ly + Mgy + 8) x5, — x)!

X[(m12 +1)! ]-1/2[(75’*'3)! (mu ~x =) (K ~x - s)! (m12+ Mg =My — Ky +x+ s)! ]1/2}

a; 1

+s =(x*s) - -
1% az”'u aluu-(x*s)aimlznnzz LITRLITAE AL

[(x+s)!(mn —x_s)! (’Jvu —x—s)! (m12+m22—m11 - “n+x+s)!]lﬁ

(2.16)

Now putting ¢ =x+ s, we find that ZI{ }in Eq. (2.16) is the Wigner coefficient in U(2),

iydgds _ C(muom 2-;;}1)/2 wo./2 (mm-mzz)/z

mymgmg = Tmy, =E=lmy,

M1y Moz

11 —_
Mopmhy ) /2 a=b)y /2 my =(mig+mgg) /2
my

-1 <m12 Moz
=(=1)"s2

My Ofmiyy+ map ~ by, 0>

My - o

Ky 0>
o/

[}

wi, 0

my -«

m

Thus knowing the double boson polynomial U(2)* U(2), one can write down the Wigner coefficient of U(2) by
inspection. This is certainly the easiest way of deriving the Wigner coefficients of U(2). If one wishes to write

the expression ¢/,7,7,
my mpmytmgy

My =j1tjat ja, Ma=j,+ iy =d5, my=ji+ja+tm+m,,

One then finds that /192743
Eq. (3.6.11), mymgmy+iy
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uuzzjz,

one merely has to make the following identification:

a=j,+ m, (2.17)

as given by 3 { } in Eq. (2.16) is identical to the expression given by Edmonds, **
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3. STRETCHED 6-/ SYMBOLS OF U(n)

In this section we shall derive an expression for the stretched 6-j symbols of U(xn). This is done by putting g =0
in Eq. (1.17). We then have

[y, omyy, 0] P,b [m{"“-m'ln,o] Mim’] !
n ~1n n= . w.! /2 o
—=(= 1)y<:m1"_1>+y<rm1")[ M InWn ] dim[m]_, dim[w_,0 1/2
[mln-l R (Y n-l] 0 [ml S I (S n-l] [m]"W;! [ ]n-l [ " ]"-1]
( 1)5 (» W) [ml n=1 e M n-l] [m; nt"" m:r-l n] [W':’ 0],,_1
x(_ -1 *m"_-m_n_*m -m__ _*:1 . . .o
n 1ne1""pe1 na1"™1 ™™ po1 patl (5, 0],.-1 [W",O]"_l [mln mn-ln] ) 3.1)
The 6-j symbol in (3.1) is stretched because p + W, = W,,
Now the left-hand side of Eq. (3.1) has been evaluated by Chacon et al.” and the result is
(17‘ )1/2 Sn n-l(ml n ° uWln-l nd 0: my n=1 °re mn-ln-l)srm(mln. °° mj-l n’o;ml a’ '’ mn-l 1 0) (3 2)
R .
Sn rl-l(nlli n tee m:r-l n!O;ml n-l. ot mn-l n—l)snn(ml n e Mpoy n? O’m;.n °er mrlt-l n’O)
where
m & =l n 1/2
Soplhyors hig,* e g,)= [H D(h,—gq,+k-s)/ 1 I (qk—hs+s—k—1)!] . (3.3)
k=1 s=1 k=1 g=h+l

Equating (3.1) and (3. 2), we obtain the stretched 6-j symbol in U(n - 1):
[ml n-1"°"M, 1 n-x] [mi nt M,y ,,] [W:., 0],,-1
[l;s 0],,-1 [W,.y 0],,.1 [m1 PR (] n]

-2 +2m, ~2m

n-2 7
= (= 1) Umlg*9llm] ) (_ 1)par(B,m +E{=2”‘in-1 1" Ma-1 el

£=2"{n

’ ’

1
x (p! W'I'!) /z(dim[m; eevm!, ]dim[w_, 0] 1)-1/zsnn-1(”"‘i nt Mgy O ot oy ) )
n n? e

1 n-ln ’ .o ’ - .o
w,! Snn-l(mln' My Oy gt Mypat pat

Xsn n-1(m1n se mn-l ny O:ml =1 n-l) vee mn-l n-1)' (3' 4)

oo ! ees !
Sh n_1(m1n Moyt ns 0>mln My n)

In the case of U(2), (n=3), Eq. (3.4) gives

i

2(myy — M) %(mis - m3) %(mis FMGy — My — M)
1 1
2(m g+ Mg =iy — mbs) s(miy + myy — my, —my,) %(mm — M)

1 1 1 . .
— 5(m 5 = my,) 3y — Myg) 3(m13+ May — myp — M) _. )z L+,
. =
2(Myg + Mgy — miy — miy) z(mis + M = My — Mgy) %(mis - méa) L1 1

(21! (21,)! ]”2 Sag(migmts05msm53)S sy (1), 05m o1 5,)
(21, + 21, +1)!1(21; + 1) Saz(mlamzaoimiaméa)Ssz(mfamés();mlzmzz)

= (= 1)™13*m22 [

(22,)! QL) (mayg = myp)! (myy = gy + 1) (g — mpp)! mly = mgs)! (myy —ms) ! ] 1z
21y 20, + 1)V (myy =~ mps)! (mys = ms) (mys — mbs + DT (g — mis)! (miy —myp)!

= (— 1)"‘13’"'22 [(

[ 1 1/2
X
(M5 = Mgs + 1) mfy ~ 1mz0)! ] ' 3.5

Equation (3.5) agrees with Eq. (6.3.1) of Edmonds. **

Next let us compare the stretched 6-j symbol of U(n) with the generalized beta function of Gel’fand and Graev.!°
It has been shown by Louck and Biedenharn®®c that the generalized beta functions can be written in terms of isoscalar

factors:

(m?) (m)
Bl [m] JU+te,,)=B| [m] JU+te,,,)
(m) (m?’)
/}']([m]) 1/2 [m]n [b’O],, [m,]n-uo [m'],,-l [b”b]n—l [m],.-l ,
:5(".)"_2(,.:)"_2 [m[”m—]n_—l)] ml .l o (m],., [m], 0 (], £, (3.6)
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Without loss of generality, we can put m,,=0, then
[5,0],|{{m"] 1,0
0 [m]"-l

[mln.. .mn-lnyo]

[m]n-l

1/2 -2 -2 .
=(- 1y ttml,_Prallmi) [%ﬂ'_]]n‘;_’w‘/n'_] (- 1)6"'1(}:{:2"'“'51":2 My par?2my=2m "'1)(dim[m],,-1 dim[ Wm 0]"_1)1/2
Mgyt

x S [mln-l s mn-l n-l] [mi n=1 te m:x-l n-l] [W;: 6]n-1

. 3.1
z [byo]n-l [W,.;O],,-l [mln" 'm,...1n]
The other term is an isoscalar factor in U(n - 1), whose value is equal to
(m],0 ) (67,00, || [2],
[m]"-z 0 [m]n-z
= (b1 )1/2 Sty oy M1 13 pen* *  Mp pp) S et (ML g e oy i g Gy ) (3.8)

n=1n=2 mln-l °e .mn-l n-l:ml n=2 v mn-2 n=2

’ ’ .
Sn-l n-l(ml n-1"" ¢ mn-l IS TY (SR B ([} n—l)

Thus the generalized beta function is connected to the stretched 6-j symbol of U(n — 1) through Eqs. (3.6), (3.7),
and (3. 8). Many of the terms in Eq. (3.8) are similar to the terms in the stretched 6-j symbols of U(n-2).
However, they cannot be entirely identified; so we shall leave (3. 8) as it is. Thus we conclude that the generalized
beta functions of Gel’fand and Graev can be written either as the product of two isoscalar factors, one in U(»n) and
one in U(n - 1), or as the product of a stretched 6-j symbol in U{x — 1) and an isoscalar factor in U(n - 1).

4. REGGE SYMMETRY OF 6-/ SYMBOLS OF U(2)
AND WEYL COEFFICIENTS OF U(3)

Louck and Biedenharn!® have shown that the Regge
symmetry of 3-j symbols of U(2) are connected with
the boson polynomials of both U(2) and U(3). For U(2),
the relation is

Gy etm j o tm,j—m
+j 1T )2 Gy + g 1 171 1

2j, Jot My jy —my

J1¥ s

:leijS
mymom

4.1)

Then the transpositional symmetry j; — w;~—=j, + my or
my +my = j; — j, is the Regge symmetry as discussed
by Bincer.!®

For U(3), the relation is

k

kk Jitmy ji—my —jitjp+i
Clek k) jotmy ja—my ji—jy+j

kkk j=m jH+m  ji+j, -7

_ i 2(k1) YVE i
R

with j, +j, + j = k.

(4.2)

A similar question can be asked about the Regge
symmetry of the 6-j symbols of U(2). As Jahn and
Howell®® pointed out, the 144 symmetries of the 6-j
symbol can best be understood if one writes the 6-j
symbol {{17243} as

Ry kg kg

Jod1 Jp J;
K, K, K,
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| .
%(J0+J1'K1) %(Jo'*'Jz ‘Kz) %(J0+J3 _K3)

I+ Iy -K) 3(d,+d, - K,) 3, +J,-K,) “.3
with
Jo+d +dy+d, - K, - K, -K,=0,
Jo=g1+Ga¥ia, Jy=ji+hythy, Jy=j,+k +k,,
Ja=Jstk,+hky, K =jy+ij,+k,+Eks,
Ky=j +j,tk,tky, Ki=j +is+k +k, (4.4)

Or, conversely,
jlzé(J0+J1—-K1), sz%(Jo'*"Jz—Kz); js:%(J0+J3—K3)’
b4 30,4 03— Ky), k=300~ K,), k=3, 4, - K),

(4.5)
the Regge symmetry is then composed of the products
of separate permutations of J,, J,, J,, and J, with
separate permutations of K,, K,, and K.

Since the 6-j symbol of U(2} is connected with the
Weyl coefficient of U(3), we now investigate the sym-
metry of the Weyl coefficient of U(3). We have seen that
the Weyl coefficient of U(3), W,,, imposes the
constraint

— 4 4
Wy =Wy, Mgt May =My — Moy ~ My — Mg+ my =0,

(4.6)
We can now make the following identification:
m Jy+J; - K,
mi, Mh, Jy K, =J,
Wy Of |03 iy O Yy =W, of |K, J,+dJ,-K,; 0
My Moy Jy K, —dJ,
My Jyt+d,~K,
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=(- 1)m12+m'12-mu[(m12 - Mgy + 1), —-mg, + 1)]1/2

1 1
z2(m s - Mas) 5(m,y, — M) %(mla + Mg ~ 1M1 — M)

1 1
2y, z(miy —miy) %(m12+m22 - my)

JO Jl J2 J3
=(- 11 (J, - K, + K, +DY3J, - K, +J.)/2
s z ! z 2 ° Kl KZ KS
i o jl j2 j3 (4 7)
= (= 1)2* 3*R2*R3[ (22, + 1)(2j, + 1)]*/2 ’ :
ky ko By

where W,, is the boson

oo =
o O
O = O

It is clear that, as far as the Weyl coefficient is con-
cerned, the labels of the J and X in the state

Jy+J, - K,
J2K2_J0

K, J,+J,~K, 0
Jy K,—d,
Jy+d,—K,

are separately permutable. Thus we obtain the 3! x4!
=144 symmetries of Regge from this state. Moreover,
the constraint equation (4. 6) is just equal to the con-
straint imposed by Jahn and Howell:

Jytdytdy+dy—K, K, —K, =0. (4.8)
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APPENDIX: PHASE RELATIONS BETWEEN WIGNER
COEFFICIENTS AND 3/ SYMBOLS OF U{n)

The phase relations of Wigner coefficients are closely
connected with R conjugation. The R conjugation has
been discussed very thoroughly by Baird and
Biedenharn. !* We shall denote the conjugate represen-
tation by star *  Thus, for Ulxn)

* =

T T e (A1)

ny

All relations between Wigner coefficients themselves
as well as between Wigner coefficients and 3-j symbols
can be derived from the two relations:

(mu)’ m(Z), m(a)): (__ 1)r{m(1),m(2),m(3)*}’

{m(l)’ m(z)’m(a)}: (_ 1)s{m(1)* ,m(z)* ’m(s)*}

(A2)

= (- 1)* 0dd permutation of columns of {m*?, m@m ®}.

(A3)
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In the case of U(2),
Y=4y =t mytm,, {Ad)
s=j tiz+js. (A5)

Clearly what one has to do in U(n) is to extend the
labels j and m to higher groups, so that they retain the
same properties under R conjugation. These labels are
not arbitrary at all. In U(2), under R conjugation, we
have j* =j, m* = -~m. In U(3), the corresponding labels
are A=myg = Myg, =My, 2,2 2m=2my; — (my, +my,),
2,=3Y =3(m,, + my,) — 2(m 4 +m,3), so that, under
conjugation,

N=p, wr=X z¥t=-z, 2t=-12z, (AB)
Thus we can define the following labels:

2. =22m=2my, — (my,+my,),

2,=3Y =3(my, + myy) ~ 2(m g + mgs + Mgy,

25 = 4(myy + myg + Mmgy) - B(myq+ Mpt Mgy + myy),

i+1

i
ziZ(l"*'l)jZ;lmH—iZl My, ie1e (A7)
= j=

Under R conjugation, we have

ZF=-z (A8)

1

Moreover, since the z,’s are diagonal operators, they
have the property

Z§1)+ Z:Z):z;:’.)' (A9)

Next we define the following labels, corresponding to
A= m13 — my,) and u{=my,,) in SU(3):

M=M= My s M=M= My, - .

A, =0

" Ai =M= nli*l,n)

(A10)

These labels have the following property under R
conjugation:

M=, MR, ... N =), (a11)

y A )\: = 7\" =0.
We can now extend the phase relations in (A2) and (A3)

to Uln):

(83

(MY, m® m3)

(- 1)(zi”+z(2“+... 4-2,(13) /2*(2{2)#zé2)+ ---u,('g{)/Z

(1) (1) 2) (2)

(— 1)En(m1 n "Mnn Y=Eplmy “Mun ){m(l)’m(Z),m(Ci)*}, (A12)

[mD, m® )= (- 1)entmi=miem{Z)omiZ) em{3) -m 30y

e (mtD_ (D (2) (2) () (3>)
{mu)*’m(z)*’mm*}: (= 1)Ly Mgy My =y oy Sm

odd permutation of columns of {m‘",m'?,m>}.

(A13)
where
enzé for n=2+4k
1 for n=3+4k
$ for n=4+4k
0 for n=5+4k, £=0,1,2,--- . (A14)
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In the case of U(3), we obtain
(1) (1Y (1), (1)
(771(”,7)’1(2),7”(3)): (__ 1)"‘11’"‘12 +m22 Moo

s 199 (3)

[((iilirrnnnrfq(m] (m' Y, m %, m®*) (A15)
This phase agrees with Baird and Biedenharn for R
conjugation, i.e., (=1, 1™y in their notation.
It should be noted that this phase differs from de Swart!?
{(or Resnikoff®) and Ponzano.* However, we can use
Resnikoff’s method to obtain our phase if we define the
basis state as

"
(h—q)ip! o e
‘)\U-,(Y>:1V()t/l:(1)k2(k> (u—q—kq)!(pp_y.;,k)!glp [¢ k)nl B

O (640 (- 087N (63

Since (A16) is the more natural definition of the basis
state and is, in fact, the one used by many authors,
e.g., Akyeampong and Rashid,?® Majumdar and Basu,®
we suggest that the phase of the “1-;” symbol in SU(3)
should be written as in (A15).

(Al6)

Baird and Biedenharn'® stated that an over-all phase
is arbitrary in U(z) R conjugation. In view of (A12) and
(A13), we think that even that over-all phase can be
determined for U(n), and is therefore not completely
arbitrary.

Applying Eqs. (Al2) and (A13) to Eqs. (1.3), (1.4),
and (1.6) in the text, we obtain, e.g.,

(k)n,(c’ 0) D), Y =m® D, mt ™)

0
—(-1p (c’ O),(d),,,(k),, ,
b n
where
n=1 n-1
y==3 2 zﬁ” + 25 zi‘S) + 3en(m{1") -—m'("f’) + Zen(mif,) - mr(:,))

=1 i=1
with (A1T)

(3)
i

y=0 for U(2),U(3),U(5), ..., U@k +1),

(n 2y
Z; + 2y =2z

nel
2.m,, for U(4),U(6), ..., U(2k).
i=2
1569 J. Math. Phys,, Vol. 17, No. 8, August 1976

Thus y is a function, if nonvanishing, of [d]" only, where

[d]nEm(3):[m1"’ L. ,m’m]_ (A18)

The other cases are similar to the one discussed above.
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A “nonstandard” approach to the thermodynamic limit. II.
Weakly tempered potentials and neutral Coulomb systems*

A. Ostebee, P. Gambardella, and M. Dresden

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794

(Received 22 January 1976)

Nonstandard analysis is used to prove the existence and uniqueness of the thermodynamic limit for a
number of physical systems. Included are neutral Coulomb systems and systems described by weakly

tempered potentials. The basic feature of the method is the application of the transfer theorem of
nonstandard analysis to the inequalities for the free energy for finite systems. Nonstandard transcriptions of
packing theorems are also needed. The nonstandard procedure has the great advantage of providing an
explicit separation of the physical and geometric elements in the proof. This allows a unified treatment of
several distinct cases, so that the demonstrations—in spite of unavoidable technical details—become

physically intuitive and mathematically straightforward.

I. INTRODUCTION AND GENERAL IDEAS

It was suggested recently! that the methods and
concepts of nonstandard analysis might be suitable for
the investigation of systems with infinitely many de-
grees of freedom. As a concrete application of this
suggestion, the existence and uniqueness of the thermo-
dynamic limit was demonstrated for systems whose in-
teraction potential satisfies a strong tempering condi-
tion. (See Sec. II, or Ref, 1, for definitions, ) Although
the use of nonstandard analysis allows a straightforward
proof to be given for strongly tempered potentials, ! it
could be argued that this case is basically simple what-
ever method of proof is employed, so that the simplicity
of this proof does not yet provide convincing evidence of
the effectiveness of nonstandard analysis in physics. It
is the purpose of the present paper to develop the sug-
gestion further and show that the uniqueness and exis-
tence of the thermodynamic limit for weakly tempered
systems and Coulomb systems can also be derived using
nonstandard analysis. Furthermore, the logical struc-
ture of the proofs for these cases is exactly the same as
that for the tempered case (treated in Ref. 1). The sys-
tems considered here are more complicated than the
strongly tempered systems; the available proofs of the
existence of the thermodynamic limit for these systems
are a good deal more involved and demand more power -
ful analytical techniques than do the corresponding
proofs for the tempered case.?* It is, therefore, satis-
factory that the nonstandard proofs proceed along the
same pattern in all cases, although certain technical
refinements are needed to handle the more complicated
cases.

Nonstandard analysis is based on an ordered field *IR,
which is an extension of the field of real numbers IR.
[For more details on nonstandard analysis, one could
consult the book of Robinson,® Luxemburg® or, especial-
ly, Robinson and Lightstone.” Some explanations are
contained in Ref. 1: an exposition of the field designed
for physicists is in preparation (by Gambardella,
Ostebee, and Dresden). ] *IR contains, in addition to
the real numbers, infinitesimals ¢ (¢ is smaller than
any arbitrarily small real number) and infinite num-
bers H (H is largey than any arbitrarily large real num-
ber). All algebraic operations and relations valid in R
are equally valid in *R; for example, it is meaningful

1570 Journal of Mathematical Physics, Vol. 17, No. 8, August 1976

to assert that H, > H,, even if H, and H, are both infinite.
With each function f defined on R is associated the
natural extension *f, which is defined on *R.? The main
result used in the sequel is the transfer theorem. This
theorem states (very roughly) that results established
for a class of finite values of certain entities can be
transferred to results valid for infinite values of these
entities. It is this result which replaces the process of
taking the limit in the usual treatment by the substitution
of infinite values for appropriate variables in the
present discussion.

Since there are a number of technical details, which
might obscure the basically simple pattern of the proof,
it might be helpful to outline the separate steps in-
volved. The remainder of this section summarizes the
qualitative features of the argument. The discussion is
purposely kept on a heuristic level. Details and precise
statements are contained in the succeeding sections,
The basic object to be studied is the free energy per
unit volume g,

1
g(ﬁ,p,Mfm logZ(8,N,A).

In (I.1), A is a domain, V(A) its volume, N is the num-
ber of particles in the system, Z is the canonical parti-
tion function, 8= 1/kT is the inverse absolute tempera-
ture and p is the density defined by p= N/ V(A). All
quantities so far considered are finite. The interaction
potential of the system will be called U. Different as-
sumptions about U characterize different physical sys-
tems, but it is necessary to make a number of physical
assumptions about the behavior of U before the system
can reasonably be expected to exhibit thermodynamic
behavior. These assumptions lead to inequalities for g,
and a careful use of these inequalities leads, in turn,

to the demonstration of the existence (and uniqueness) of
the thermodynamic limit. Involved are the following
steps:

(I.1)

(a) A condition on U is needed to eliminate a
catastrophic collapse; the stability condition (see Refs.
2 and 3) is

U= - NE,. (1.2)
This condition gives rise to an upper bound for g,

g(B,p,A)<C(p,B) for all finite A. (1.3
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Since A is a finite volume, g is finite,

-0 < g(B,p,A)<C(p,B) for all A, (I.4)

The shape of A does not enter condition (I.4) at all; it
is valid for all finite volumes V{(A).

(b) It is further necessary to assume something about
the long-range character of the potential. This is ef-
fectively an assumption about the forces between two
clusters of particles, separated by a distance R> R,;

R, is a characteristic distance. From such “tempering”
conditions it may be shown that other inequalities result,

(I.5)

g8,0,0)2 2 %g(ﬁ,p,,ﬂ,) -R.

In (5), @, is a set of subdomains of A of volume V(82,),
g(B,p,;,9,) is their local free energy, and R is a remain-
der term which vanishes for strongly tempered poten-
tials. The analysis of (I.5) yields further inequalities
necessary to demonstrate the thermodynamic limit. To
use (1. 5) effectively, the subdivision of A into sets Q,
(and perhaps a remainder) has to be chosen judiciously.
This introduces packing questions which deal with the
way in which a domain A can be filled up (partially
filled) with subdomains §2, of a particular type. It is

at this point that the ¢ype of domain A and the nature

of the subdomains Q, becomes of importance.

Both the standard and nonstandard proofs of the
thermodynamic limit start from inequalities (I.4) and
(I.5). (Different subdivisions &, are used for the
Coulomb, strongly and weakly tempered potentials., )
In the standard proof, the inequalities are used to prove
the convergence of a sequence of g values, calculated
for suitably chosen sequences of volumes. These vol-
umes A, must be packed in an appropriate way with
subdomains 2, so that (5) can be applied. In the non-
standard method, by contrast, the transfer theorem is
used to let A be an infinite element of *R. It then re-
mains to show that stg is independent of the particular
infinite value A* chosen. To apply the tempering con-
dition (I.5), the volume A* must be packed with ap-
propriate domains ;. Typically, the result obtained
has the following form [See Ref. 1 for the definition of
the standard part, as well as more details for the
argument given after (I.7):

stg(B,p,A*) = st g(8,p,) for all finite cabes 2. (I.6)

In this case a volume A* (of van Hove type) was packed
by an infinite number of finite cubes Q. Applying the
transfer theorem and recalling that st g(B, p, A*) itself
is finite for infinite A* leads to the conclusion that

stg(B,p,A*) = stg(B,p, ) IT.mn

for all cubes, be they finite or infinite. The generality
of this result (obtained from the transfer theorem), al-
lows an easy demonstration that sfg(B, p, A*) is inde-
pendent of A* (whenever A* is infinite), and thus the
uniqueness of the thermodynamic limit.

From this brief outline, it is clear that the subdivi-
sion of A* (where A* is infinite) into subdomains, to-
gether with the appropriate packing theorems for in-
finite domains, are the main technical tools used. The
scheme of the proof proceeds from conditions on U to

1571 J. Math. Phys., Vol. 17, No. 8, August 1976

inequalities for g when N and V(A) are finite, The trans-
fer theorem is used to obtain g for infinite volumes A*.
Next the transfer theorem is applied to the inequalities
for g and to the packing theorems. These results are
combined to show that s{g becomes independent of A*,
when A* is infinite. Of course, stg does depend on A,
when A is finite.

The remainder of this paper is devoted to a detailed
elaboration of the scheme outlined so far in general
terms.

Ii. DEFINITIONS AND ASSUMPTIONS

In this section we collect the definitions and notations
which will be used throughout this paper. When we
consider systems which have hard cores the hard core
radius will be denoted by 6 and the maximum close
packing density by p_. In the case that there are no hard
cores, =0 and p,=. For densities p < p, the free
energy per unit volume is

g(B,P,A)EIleulogZ(B,N,A), (1. 1)
where Z(B,N,A) is the canonical partition function, A is
a bounded open set in *RY (a v-dimensional Euclidean
space), V(A) is the volume of A Lebesgue measure),
p=N/V(A), and 8 is the inverse temperature =1/k7T.
Classically,

A—VN
Z“%N’A)?ﬁ?f fd% s dPry expl- BU(r; -+ 1)
(11.2)
where
2 h*
2mmkT”
Quantum mechanically
Z{B,N,A)=Tr[exp(- fHy)], (I1. 3)
N ¢2
Hﬁ? g F Uy(r, oo ery). (IL. 4)

Here Uy(r, ««-r,) is the potential energy of the N parti-
cle configuration; r, and ¢, are the particle positions
and momenta respectively. Clearly, whenever p<p,
and A is a finite volume, g(8,p,A) will be finite. For a
given domain A, the function g{8,p,A) is defined only
for densities which are integral multiples of p,=1/V(A).
Following Fisher,? we extend the definition of g{p, 8,A)
to arbitrary p by

g(B,p,M)=g(8,p",A,) +n[g(B,p" + py, A) - g(B, ", A)],
(11. 5)

when

p=p" +1np,, p’'=np,, nis an integer, 0s7u<l1,

Using nonstandard analysis, we may extend the defini-
tion of g{3,p,A) to domains A in *R* which have an in-
finite volume. The problem of proving the existence of
the thermodynamic limit of the free energy is to show
that the standard function G(B,p) defined by

G(8,p)=stg(B,p,N) (IL. 6)

for p in the half-open standard interval [0,p,) is the
same for all infinite domains A, Thus, the problem is
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to show stg{(8,p,A)=stg(B8,p,A’) for any pair of infinite
domains A and A’, It is important to remember that the
nonstandard extension of the standard function G(g, p) is
not g(B,p,A). It should be noted further that Eq. (II.5)
leads to the result that if V(A) is infinite and p is not
infinitesimally close to p,, g(8,0’,A)=g(B,p,A) for all
p’ =p. This result plays an important role in the proofs
presented in this paper. However, it does not imply
that G(8, p) is continuous.

We make the following physically sensible
assumptions:

(A) Uy(r;+-+ry) is symmetric under the exchange of
particle coordinates and translationally invariant.

(B) U satisfies

UN1+N2(r1 ot rzvl,ri tee rfvz') - Uzvl(rx i er)

— Uy (r)+- - Th) < N,N,W,/R™, 1. m
whenever |r, —r/| > B> R, for all i=1,...,Ny,
j=1,...,N,, and ¢, R,, and W are finite positive

constants. The potential is strongly tempered if W,
=0, otherwise weakly tempered. This assures that the
repulsive part of the interaction falls off sufficiently
rapidly with distance, so that the system does not
explode.

(C) It is assumed that the system (Hamiltonian) is H~
stable. The Hamiltonian Hy is H-stable if

Hy= - NW,. (II. 8)

For classical systems it is sufficient that the pofential
U, be stable; that is

Uglr,reery)=—NW,. (I1. 8a)

This requirement eliminates catastrophic interactions.
If the Hamiltonian H, is H-stable, then there exists a
finite function C(8,p) (independent of A) such that

g(B,p,A)€C(B,p) for all A, (11. 8b)

This is the only place where H-stability is used in
this paper. (IL. 8b) is a more precise version of the
upper bound mentioned in Sec. L.

(D)® We assume that A is a bounded open set in
*RY such that st V(A)/d(A) > 0, where d(A) is the
diameter of A. [The “diameter” d(A) is the maximum
distance between any two points on the boundary of AL]

(E) If ke *IR is such that #/V(A)'/* =0, then
V,(A)/V(A)=0, (I1. 9)

Here V,(A) is the volume of the set of points of A lying
within a distance % of the boundary of A. Geometrically
(E) asserts that “surface effects” should be negligible.

Together (D) and (E) are equivalent to the condition
used by Fisher (see Appendix A) to prove the existence
of the thermodynamic limit for systems with weakly
tempered potentials. However, we feel that (E)is a
much more natural requirement to impose.

If the potential U, is strongly tempered, it is suffi-
cient to require

(E*) If h is a finite standard real number, V,(n)/
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V(A)=0, This condition is the nonstandard analog of
van Hove convergence to infinity.

IHl. PACKING THEOREMS

In this section we collect several results on the pack-
ing of domains with cubes and balls. These theorems
are purely geometrical in character and have a priovi
nothing to do with physics. However, the use of temper-
ing inequalities such as I. 6 requires results about the
manner in which particles can be placed in subdomains;
these in turn require packing theorems. We summarize
one lemma, {due to Fisher), one packing theorem due to
Lieb and Lebowitz, which are used in the proofs of two
new packing theorems, These new results will be tran-
scribed to infinite domains, since they are needed in
that context, Theorem 1 is formulated directly in non-
standard terms; Theorem 3 can be directly transcribed
(and is used) in the nonstandard framework.

Lemma 1 (Fisher): If a domain Q is filled with cubes
T of side d, lying entirely within &2, the volume remain-
ing when the maximum number of cubes has been
inserted is less than V,(R), where h=vvd and V, is
defined in Sec. II,

The following packing theorem for infinite domains is
needed when the potential U, is weakly tempered. It
allows us to fill all but an infinitesimal fraction of the
volume of an infinite domain A with infinite cubes so
that the distance between any two of the cubes is infinite.

Theovem 1: If A is a bounded open set in *IR”, satis-
fying condition E, V(A) is infinite and ¢’ is a standard
real number such that ¢/v(v +¢)>¢’ > 0, then there
exists a positive integer m (i.e., m € *IN*) and a posi-
tive real infinite number w such that:

(i) m cubes Q of edge hi=(1+1/w)™? V(A)/ ) may
be placed in 4,

(if) mV(Q)/V(A) ~1,

(iii) the m cubes may be placed in A so that they are
separated from each other by a distance of at least 2R,
where R=(1+ w)™? (V(A)/ e,

Proof: Choose a~0, so that o(V(A)) is infinite; T
=¢/v—e (v+e).'° Then

wz[(aV(A)T)I/(W”—l] (Im. 1)

is a positive infinite real number. Let d=h+ R=
(V(A))/=*) and m be the maximum number of cubes
T of edge d which can be placed in A so that they lie
entirely within A. We can use Lemma 1 to obtain

mV(T) 1= Ve (AA)
via) Vi)’
where B’ =1'/24. Since A was assumed to satisfy £,
V,(A)/V(A) = 0 and so we must have
mV(T)/V(A)=1,

Centered in each of the cubes I we place a cube £ of
edge k. Clearly, the cubes Q are separated by a dis-
tance of at least 2R. Now

1> (T 2)

(II. 3)

W/ d=1+1/w)t=1, (111. 4)
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since w is a positive infinite real number. Thus, V(2)/
V(I')=1 and we have

mv(Q)Y/ V(A)=1.

This proves Theorem 1.

(II. 5)

Theorem 2 describes a procedure (first given by Lieb
and Lebowitz—Theorem 3.2) for the packing of a cube
with balls such that the packing 7 is exponentially fast.

Theorem 2 (Lieb and Lebowitz): Let a,= (2" ~1)2Vv,
0, be the volume of an open ball of unit radius in R,
and g,=2"0,. Let p be a positive integer and 1+p=> «,
+g;'. Then it is possible to pack U7, (n, balls of radius
7,) in an open v-dimensional cube of volume o, where
n;=p' "1+ p¥ 1 and »,=(1+ p)~. The fraction of the
volume filled after the balls of type j have been packed
is 1~ ¥/, where y=p/(1+p).

The meaning of the phrase “exponentially fast” is just
that the fraction of volume left unfilled after the balls
of type j have been packed, is [{p/(p+ 1))} which de-
creases as a power with j.

If the potential U, includes Coulomb interactions, the
application of (1.5) requires yet another packing
theorem. We need to pack a cube with a finite number
of balls such that the particle number density in each
ball is less than p.. In addition, we require that the
balls be separated from each other by at least R, where
R, is defined in assumption (B). Theorem 3 establishes
a sufficient condition on the size of a cube so that this
is possible.

Theorem 3: If an integer k and positive real numbers
p and », satisfy the conditions

(@) p,>p>p,

(B) 75> 20172(1/6 = 2(p)H¥ - 1,

() ry> (pla, )7,

(d) (p-1/#50,) (L = ¥")(A +R/¥)">p,

where R is a positive constant and 6 is the hard core
radius, then a cube T of edge d= (R +7,)(1 + p)kal/¥
can be packed with U, (», balls of radius R,), where
R, = 7,(1+ p}*7 such that

(II1. 6)

(i) The distance between any two of the balls is at
least 2R and the distance between a ball and the boun-
dary of T is at least K;

(ii) At least M =pV(I') particles can be accomodated
in the balls without the density in any ball exceeding p;
and

(iii) Particles can be placed in the balls in such a way
that the density p in any ball of type j satisfies the
inequality

=1V, <psp+1/V,<p, (I1. 7a)
where
p’=p(l-7*Y(1+R/r,)* and V,=RY0,. (111. Tb)

Proof: Using Theorem 2 we pack the cube T with
balls of radii R} =(R+7,) (1+p)*7 where j=1, ... k.
Concentric with each ball of radius R} we place a ball
of radius R;. Clearly, the distance between any two
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balls of radii R, and R, (1<j, I <k) will be at least 2R
and the distance between any ball of radius R, (1<j<p)
and the boundary of I" will be at least R. This proves
(1.

Lemma 1 implies that the maximum number of
particles N} which may be placed in a ball of radius R,
satisfies the inequality

N> (Ry =26V /%0, (I1. 8)
i (26)
Now,
pV; p(28)”
N, S(1-zc3u1/2/152j)" =1 (IIL. 9)

by condition (b) of the hypothesis. Since [pV,]<pV,,
where [ ] denotes the greatest integer function, we con-
clude that at least [[—)VI] particles may be placed in a
ball of radius R,. Let @=U%_ (x, balls of R;) and M’ the
maximum number of particles which can be placed in
£ with the density in each ball, not exceeding p. Using
the result (II1. 9) we have
k
M= 2 ACYAN

j=t

(1. 10)

Condition (c) of the hypothesis requires that pV,> 1, so

we can write
EVk=J+§, (T, 11)

where J> 1 is an integer and 0 < £<1. Since V,
=V, (1+p)*" we have
[(pV,]= (pV, = £)(L + p)e=i”, (I11.12)

We use (12) to rewrite (10) as

k
M=@p- 5/Vk) > n, Vk(l +p)(k-}')u
i=1

k
=(B-&/ V) LimV,. (II. 13)

From Theorem 1 we have

énm:u— AV, (I 14)
where V= [7o(1 +p)F] .
Now
v o\’
V_(f‘_j :(R +7’0) ’

so that (14), (15), and condition (d) of the hypothesis
may be used to obtain

(IOL 15)

M >pV([=M. (II. 16)

This proves (ii).
Condition (d) of the hypothesis gives

p>p'+1/V,>p'+1/V,; forj<k. (OL 17)

We recall that
k

p’ gn,v,:pV(r):M, (IIL. 18)

so that
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Zn,(p -1/V,)V <M<En (p"+1/Vy)V,.  (IIL19)

This proves (iii) and the theorem.,

After exhibiting these geometrical theorems, we re-
turn to the physical situations, where these results
will be used.

IV. WEAKLY TEMPERED POTENTIALS

In this section we present a proof of the existence of
the thermodynamic limit for a classical system with an
interaction potential satisfying conditions (A)—(C). The
arguments remain essentially unchanged for quantum
systems.

The assumption (B) may be used to derive the
inequality?

B,ph l) BWBP RE{\e) ’

Ays > V)
B, py ) izz)l V(A)
where UJ,; @, CA, ;1 Q,;=¢, and the subdomains §,
are separated from each other by a distance R> R,
Further, pV(A) =310, V().

This inequality (IV. 1) and the upper bound (II. 10}
may be used to prove the existence of the thermo-
dynamic limit for cubic domains. The proof of this
statement, using nonstandard analysis is not very dif-
ferent from the proof given by Fisher. We assume this
result, without casting it in the language of nonstandard
analysis. The proof of the existence of the thermo-
dynamic limit using nonstandard analysis for general
domains is quite different from Fisher’s proof. For
that reason it is presented here while the proof for
cubic domains is omitted,

(av.1

Let A be an infinite volume bounded open set in *R”
satisfying assumptions (D) and (E). Choose ¢’ e R to
satisty the inequality ¢/v(v +¢) > ¢’ > 0. We may apply
the inequality (IV.1) to the packing of A* with cubes
as described in Theorem 1,

¢6,0,0%)> B0 o(6,00, 0 - pwopt B0, w.2)
where
p’=V(A*)/mV(Q)p=p and R > R, is defined in
Theorem 1. (Iv. 2%

The existence of the thermodynamic limit of the free
energy for cubic domains and the fact that V{(A*)/R"*
=a =0 (a is defined in the proof of Theorem 1) imply
that g(8, p, A*) is bounded below by a finite number,
Since a finite upper bound for g(B3, p, A*) exists by virtue
of the bound (II. 8b) we may take the standard part of
(Iv.1). This results in

stg(B, p, A*)= stg(B,p’, 2)=stg(B,p, Q).

The last equality follows since p’ =p. Let 2* be an
infinite cube enclosing A*, such that st (V(A*)/V($2*))
=u > 0. The existence of such a cube follows from con-
dition (D). Let a’ be an infinitesimal chosen such that
w'=[a’V(*)¢/* P}/ " ig infinite. Define Ry= V(Q*)/?/
w’ and let T'* denote the set of points of Q*\A* (the
complement of A* in Q*) lying at least a distance R,

(Iv.3)
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from the boundary of A*, We place the particles in the
domains A* and I'* in such a way that the density in A*
is p and the density in T'* is p’ = (V(Q*) - V(A*))/V(I'™*)p
=p.

Since R{> R, we can apply the inequality (IV. 1) to
the subdomains A* and I'* of Q*,

A*)

g(8,p, %)= *VE—Q*—)g(B V(I

V(Q*) g(ﬁ’ pls F*)

p, A%) +

2 V(RF)

P (IvV. 4)

— BWxgp
Now V(Q*)/Ry**=a’~0, so that we have

stg(B,p, ¥*)> pstg(B, p, A*)+ (1 - u)stg(B,p’, T*).
(Iv. 5)
The result (IV. 3) holds for any infinite domain A*
satistying (D) and (E); it does nof depend on Q2* being a
subdomain of E. Since I'* satisfies (D) and (E) we can
write

Stg(B, p, W*)= usig(B, p, A*) + (1~ p) stg(8,p’, O*).

(Iv. 6)
This implies directly that
stg(B, p, %) > stg(B, p,A%). Iv. 1)
Equations (IV.7) and (IV. 3) yield the main result,
stg(B,p, %) =stg(B,p, A*%). Iv. 8)

Since (IV, 8) holds for all infinite domains satisfying
(D) and (E), this proves the existence of the thermo-
dynamic limit for general domains A*, This completes
the proof of the thermodynamic limit for weakly
tempered case. It is noteworthy that once the packing
theorem is established, the remainder of the proof is
identical with that in the strong tempering case.

V. NEUTRAL COULOMB SYSTEMS

The Coulomb interaction is not even weakly tempered,
so a different proof of the existence of the thermo-
dynamic limit is needed, If all the particles in the sys-
tem have charges of the same sign, the Hamiltonian of
the system is H-stable, but obviously there is no
thermodynamic behavior, We, therefore, consider only
systems which are ovevall neutral. For these systems
we can anticipaie thermodynamic behavior whenever the
Hamiltonian is H-stable, If, in addition to the Coulomb
interaction, there is a tempered interaction which in-
cludes a hard core, the Hamiltonian will be H-stable,
in both classical!! and quantum mechanics. !2 Dyson and
Lenard® and, more recently, Federbush!* and Lieb
and Thirring, !* have shown that the purely Coulomb
Hamiltonian is H-stable in three dimensions if all the
positively charged particles, and/or all the negatively
charged particles, are fermions.

We now restrict our considerations to overall neutral
systems in three dimensions (v =3) and assume that all
the negatively charged particles are fermions (i.e., we
deal with veal matter). In addition to a Coulomb inter-
action, a rotationally invariant inferaction satisfying
(A)— (C) may be present.

The method of proof used here may be easily adapted
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to the case of a classical system (e.g., a neutral sys-
tem of charged particles with hard cores).

A. Neutral Coulomb case and weak tempering

1t is advantageous to give separate proofs for the two
cases where the non-Coulomb part of the potential is
strongly and weakly tempered. In this section, we will
discuss the second case. When describing particles (or
mixtures of particles having different charges) and
densities we will use, throughout, the language in-
troduced by Lieb and Lebowitz?4 of a fundamental mul-
tiplet of particles, which is overall electrically neutral.
Densities and particle numbers are understood to be
given in terms of this multiplet as a basic unit, In
principle, the density p should be treated as a vector if
an arbitrary mixture of particles is considered. Since
the main purpose of this system is to demonstrate the
use of nonstandard analysis, p is treated as a scalar, It
takes only minor (mainly notational) modifications to
generalize the results to arbitrary—but overall
neutral—mixture of charged particles. The basic out-
line of the proof is again the same: Using the H-stabil-
ity of the potentials and the tempering inequalities,
bounds are established for g. Then the transfer theorem
is applied, eventually leading to the independence of
stg(A*) on A*, In the present Coulomb case, a basic
tempering inequality (analogous) to (IV. 1) was estab-
lished by Lieb and Lebowitz! (Theorem 2.86). Adaptad
to the present case it reads:
k
g(B; py Q) = ]ZI\I. VV('(BS;; g(ﬁ’ pj’ Bj)

+ %g(B)pA’A)

V(2
- oW, 5 v.1)
In (V.1), Q is the domain under consideration, A is
a subdomain of @, and the B; are disjoint open balls
which are subdomains of Q/A, i.e.,

a> 0B, UA,
=1
Further, the B; are separated from each other and
from A by a distance larger than R, Finally, the net
charge in each ball B; is zero, and the local densities
p; and p, satisfy
k
PVQ)= 2 p;V(B)) +paV(A). (V. 2)
=
The conditions on the domains together with the

properties of the Coulomb potential enable us (Lieb
and Lebowitz!) to obtain an inequality which has the
appearance of a tempering inequality even though the
Coulomb potential has no tempering properties. To
apply the inequality (V.1), special packing procedures
are necessary and special domains will be selected.
This is why the packing theorems—especially Theorem
3—are so essential. We will present the proof of the
thermodynamic limit for arbitrary domains @, satisfy-
ing (D) and (E), assuming the result for ball domains
(as given by Lieb and Lebowitz), The derivation of the
result for general domains is simplified most by the
use of nonstandard analysis. (It will, of course, be
possible to show the thermodynamic limit for ball
domains, using nonstandard analysis, but that would en-
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tail little more than a repetition of the Lieb and Lebo-
witz argument, combined with the method of Ref. 1,
so it can be omitted. )

Since g has an upper bound for all finite A (from the
stability condition), g(A*) is finite even when V(A*)
satisfies the requirements (D) and (E). Pack A* first
with cubes I' of infinite edge. Next, use Theorem 3
(Sec. III) to pack the cubes I' with balls of infinite
radius. It is clear that the nonstandard version of The-
orem 3 is presupposed in this discussion. We then
apply inequality (V. 1) to obtain a lower bound on the
free energy g(B3, p, A) in terms of the free energy of an
infinite ball, We then use the same method to obtain an
upper bound on g(B, p, A). Together, these bounds may
be used to establish that stg is independent of A, which
demonstrates the uniqueness of the thermodynamic
limit,

Let ¢/ be a standard real number chosen so that
¢/v(v+e)>¢' >0, Also let a be an infinitesimal real
number, and 2 an infinite integer chosen such that A
is infinite (p is a finite positive integer),

A= a(V(A)/2@+9-¢(1 + p)E, (V.3)
Define

R=a(l+py*at (VAN /", (V. 4a)

ry= (1~ a)(1 +p) Rt /(v (A /e, (V. 4b)

Notice that both R and 7, are infinite, (0, was defined in
Sec. III, Theorem 2.) If p is chosen as a standard real
number such that p,>p > p, then the numbers p, 7, R,
and k satisfy the hypothesis of the nonstandard exten-
sion of Theorem 3 (Sec, IM). The cubes I' of Theorem 3
are of edge d = (V(A))*/*-¢. Since d/V(A)!/¥=~0, there is
an integer m € *N* such that m cubes I' may be placed
in A and

mV(T)/V(A)=1, (V.5)
(See the proof of Theorem 1, ) Define M and 8 by
N/m=M+6/m, 0<6<m, M, 6c*N" (V.6)

Here N=pV(A). Now place (M + 1) particles in each
of 0 of the cubes I', and M particles in each of the rest.
Then the particle density in each of the cubes I is less
than p (by construction) because

M+1 _ V) 1
VD) mvD)? T vm TP

(v.7

(By assumption, p is a standard real number greater
than p and thus greater than any real number infinite-
simally close to p.) We, therefore, may apply the in-
equality (V.1) to the packing of cubes I' described in
Theorem 3 to obtain

_ mV(T) k n;V(Bj)

g(ﬁ, pj, Bj)

vs)
RV+E ’

- BPZWB (V. 8)
where B, denotes an open ball of radius R;. The balls
B; (j=1,...,k) are all finite so p; =p by Theorem 3.
From the existence of the thermodynamic limit for ball
domains, we conclude that
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g(B) pj’Bj)ZSt (g(By p9 Bo)) +77j’
n;=0.

(V. 9a)
(V. 9b)

Here B, is any one of the infinite balls; the free en-
ergy of the different infinite balls can only be infinitesi-
mally different. Use (V. 9) in (V. 8) to obtain

26,0,0> "V 16105, 0, B 4] 2 2V ED
j=1

V(A) i
- BPZ WB%;%)
Iy
(V.10)

where i’ =Min; n; =0, and y was defined in Sec. II. Now
V(A)/R¥* = (ac;t /%)= ¥*9 =0, so that using (V.5), and
that # is an infinite integer we have

stg(B,p, \)> sig(B,p, By). (V.11)

Next let Q be an infinite ball enclosing the domain A,
such that st (V(A)/V(2))=p > 0. The existence of such
a ball follows from condition (D). Let ' denote the set
of points of & A at least a distance R from the boundary
of A. Since @ and A satisfy the requirements (D) and
(E), so does Q'. We place the particles in 2’ and A in
such a way that the net charge in A is zero, and the
density in A is p, The density in @’ is then p’

=(V(Q) - V(A)/V(Q)p =p. Since st (V(2)/V(Q)=1~p,
we have d/(V(Q'))!/*~0 so that we can pack ' with the
same cubes I' used before, That is, there is an m’

€ *IN” such that m’ cubes I' can be placed in €’ and

m' V(D)/ V() =1, (V.12)

The arguments which led to (V. 8) may be repeated to
derive the inequality

Vi) m!' V(I & njV(By)
g(B’ Py Q) = V(Q) g(By P, A) + V(QI) jZ-->I V(I") g(By pijj)
_ szWs% (V.13)

where
p;=p’ forj=1,...,k,

The arguments which led from (V, 8) to (V. 11) can now
be applied to (V. 13) and yield

stg(B,p, By) = stg(B, p, A).

Equations (V. 11) and (V. 14) clearly imply that

stg(B,p, B)) =stg(B,p,A) for any A satisfying the re-
quirements (D) and (E). This establishes the indepen-
dence of stg on the infinite domain A, hence the unique-
ness of the thermodynamic limit for the weakly tem-
pered Coulomb case,

(V.14)

B. Neutral Coulomb case and strong tempering

In this section we sketch, rather briefly, the modifi-
cations necessary in the proof, in the case that the
additional potential is strongly rather than weakly tem-
pered. It is, of course, true that strong tempering
implies weak tempering, so in a sense this proof is not
necessary. However, it is interesting to see that the
strong tempering condition allows the demonstration of

1576 J. Math. Phys., Vol. 17, No. 8, August 1976

the thermodynamic limit for more general domains
[satisfying condition (E*) rather than (E)]. Thus the
tempering conditions influence the fype of domain for
which the thermodynamic limit can be shown to exist,

Consider again an infinite domain A of volume V(A)
and density p=N/V(A). The method of proof is similar
to that employed in the neutral Coulomb and weak tem-
pering case, with the main difference that we must now
pack the infinite domain A with finite rather than in-
finite cubes. Choose p, #,, and k to satisfy the condi-
tions of Theorem 3 (Sec. II). Let R=(», +R,)
X(1+pol’¥ where R, is the “strong tempering dis-
tance” defined in Sec. I. Further, whenever R appears
in Theorem 3 it has been replaced by R,. We can pack
A with m (which is infinite) finite cubes I of edge R so
that

mvV(Q)/ V(D) =1. (V.15)
Define M and 6 by the relations
N/m=m+6/M, 0s6<m, (V.16)

Now place (M +1) particles in 6 of the cubes and W
particles in the rest.

Let p’= (V(A)/mV(I)p=p. Then

M+1 _
vy P

7{0) $p'+%z <p. (V.17)

In (V.17), V, is the volume of the ball with smallest
radius, and condition (d) of Theorem 3 (Sec. III) has
been used. We now apply Theorem 3 to the cubes T,
i.e., each I' is packed with balls B;, satisfying (i), (ii),
and (iii) of Theorem 3. Applying the fundamental in-
equality (V.1) to this subdivision leads to

mV(I) & n;V(B;)
V(A) JE=1 v(I)

g(B,p,A)Z g(B;pj’Bj)- (V18)

The p; are selected as in Theorem 3.

Notice, parenthetically, that a “mechanical naive
neglect” of the last term in (V, 8) would just yield
(V.18). However, in (V.18) we know that all the B; are
finite [something a naive use of (V. 8) could not be
establish}, since further p; <p, for allj, ¢(3,p;, B;) is
a finite standard number for all j. In addition, g(8, p, )
has a finite upper bound (from H-stability). Therefore,
we can take the standard part of (V. 18), giving

L3 .2
stg(B,p, )= ;31 7y ViB; g(B,p;, By). (V.19)

V(T)
Equation (V. 19) holds for any 7, and % satisfying the
conditions of Theorem 3. If ¥, and & satisfy these con-
ditions, so do all #§ and &/, satisfying { >, and k' >k,
We can, therefore, apply the transfer theorem to
(V.19), which establishes the validity of (V. 19) for all
infinite values of 7j <€ *IR and # € *N*, Thus Equation
(V.19) also applies to infinite balls B,; then by Theorem
3, p;=p. The arguments following Egs. (V.9)—(V.11)
can just be repeated to yield the result

Stg(,B, p’A) Z ng(B’ D, BO)'

The remainder of the proof is pretty much a repeti-
tion of that given in Sec. I Part A, Let Q be a ball en-
closing A, such that st(V(A)/V(2))=p >0, {4 is a stan-
dard real number.) Let  denote the set of points of @

(V.20)
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exterior to A, which are a distance greater than R, from
the boundary of A, Since @’ satisfies (E*), we can pack
it with finite cubes of side R, As before, we pack these
cubes with balls B,;, Applying the inequality (V.1) to

this subdivision of the ball 2, yields an inequality simi-
lar to (V.13),

26,0, 9> S £(6,0, 1) +

o~

m V(T) (V(Q'))

V@) \ V(@)

Ek 1;V(B;)

2 TV (v.21)

g(B, py, By).

The argument proceeds now as before [Eqs, (V. 8)—
(V.11)]; to avoid repetitious detail, just the result is
recorded,

ng(,By p) BO) B Sl‘g(ﬁ, p;A)-

Equations (V. 20) and (V. 22) imply the existence and
uniqueness of the thermodynamic limit for neutral
Coulomb strongly tempered systems with the conditions
(D) and (E*) on the domains.

(V. 22)

VI. CONCLUSIONS

The proofs presented in this paper would seem to be
reasonably direct demonstrations of the existence and
uniqueness of the thermodynamic limit for the weakly
tempered and Coulomb systems. The physical input re-
quired consists of inequalities satisfied by the free en-
ergy as a consequence of the stability and tempering
conditions of the interaction potentials, These results
were taken from the basic studies of Fisher, Ruelle,
Lieb, and Lebowitz. However, from these results, with
the use of the packing theorems, repeated application
of the transfer theorem of nonstandard analysis leads
in a direct way to the existence and uniqueness of the
thermodynamic limit, Comparison with the work of
Fisher, Ruelle, Lieb, and Lebowitz shows that the
nonstandard method avoids the limiting process (N— <,
V — =) which is usually both difficult and delicate. It is
pertinent to observe that this limiting process becomes
more involved as the systems and domains considered
become more complicated. By contrast, the nonstan-
dard method of proof remains much the same for dif-
ferent systems and domains. The tempering inequali-
ties—which are needed in both approaches—become
more involved, but the main complication of, say, the
weakly tempered, compared to the strongly tempered,
or the Coulomb proof, is the appropriate subdivision
of the domain to which the tempering inequalities are to
be applied, The needed packing theorems for different
domain are the expression of this additional complica-
tion, but only need to be applied once. With the results
of this paper, we believe that we have demonstrated the
effectiveness of nonstandard analysis for questions deal-
ing with the thermodynamic limit. It should be stressed
that so far we have reproduced krown results, albeit
with different and, we believe, more straightforward
methods. It would seem that all the known results on the
thermodynamic limit can be obtained in this manner.
Much more interesting is, of course, the question of
whether new physical results can be obtained with these
methods, We have some partial results, pertaining to
the thermodynamic limit of correlation functions and the
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uniqueness of the equilibrium state (which is the state
reached when the time ¢ —~ «), It appears that the great-
er the part of the analysis. that can actually be carried
out in *R, the more effective the use of nonstandard
analysis becomes, It takes some time and some effort
to become familiar with that language, but it seems
fair to conclude that nonstandard analysis is a suffi-
ciently promising method to continue its further ex-
ploration, The results on the correlation functions and
the uniqueness of the equilibrium state will be reported
in a future publication.

APPENDIX

Fisher? makes the following assumptions about the
domains A, considered in the proof of the existence of
the thermodynamic limit of the free energy, for sys-
tems interacting via weakly tempered potentials:

(i) A is a connected, bounded open set in *RY;

(if) limy . V4(A)/V(A) =0;

(iii) there exists a shape function 7(a) satisfying
(iiia) lim, ., 7(a)=0,

(iiib) there is a finite constant «’, so that for
a<a’,

Vi) VA < 7(a),
where h=aV(A)!/Y,
In this paper, conditions (ii) and (iii) were not as-
sumed, Other conditions were encountered in the con-

text of our proof, which at first sight appeared more
natural,

(i)’ if B/(V(A)/*=~0, then V,(A)/V(A)=0;
(iii)’ if d(A) is the diameter of A,

B= St<dz/(\/;‘)’> > 0.

(i)’ and (iii)’ have the advantage that no shape function
need to be introduced. (ii)’ asserts that for infinitesimal
“skins” the volume of the skin is infinitesimal, which is
a reasonable condition. (iii)’ gives some condition on the
shape of the volume.

It is the purpose of this Appendix to prove that the
conditions (ii)’ and (iii)’ are, in fact, equivalent to the
conditions (ii) and (iii) of Fisher. Condition (ii)’ clearly
implies (ii). We now show that (ii)’ and (iii)’ imply the
condition (iii). We have from (iii)’ that

1= V(A)/ @)= u. (A1)
If a cube of edge d(A) enclosing A is placed in the
center of a cube of edge 2d(A), we see that
ViA) o
1 = ZV(d(Q))U = 2v - (Az)
Further, for any 2 <:d(A),
Vi(A) < 2°(d (M) = V(A). (A3)
From (A2) and (A3) we obtain
Va(d) _ 2°d(A)) ov
< -1 = -1, A4
YA V) m )
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Clearly 2/u -1 is finite and positive [see (A2)]. Now
consider the function 7(a) defined by

m(a)= Vo(A)/V(A), (A5)
where
h=a(V))/", (A5")

It is clear that 7(a) satisfies condition (iii) of Fisher
for a <o’ <d(A)/2(V(M))/*, since the domain A was
assumed to satisfy condition (ii)’. Thus, (ii)’) and (iii)’
imply (ii) and (iii).

Fisher proves that (iii) implies that A can be enclosed
in a cube T', with V(A)/V(I')= u> 0, where u is a stan-
dard real number, which is precisely condition (iii)’.
Assumption (ii) also implies (ii)’. We have shown here
that (ii)’ and (iii)’ imply (ii) and (iii) of Fisher, while
Fisher showed that (ii) and (iii) imply (ii)’ and (iii)’.
Hence, the equivalence is established.

*Work supported in part by the National Science Foundation
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The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is
also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure
requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it
as a purely mathematical concept. It also permits the construction of an entropy function from heat
measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of
the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The
integrability of the differential form of the first law can be examined independently of Caratheodory’s
theorem and his inaccessibility axiom. Criteria are established by which one can determine when an
integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a
realization of the first law is constructed which is suitable for all systems whether they are solids or fluids,
whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not

present.

INTRODUCTION

Thermodynamics, perhaps more than any other
physical theory, can be said to pervade the fabric of
science. Its history is measured in centuries rather
than decades. Its range of applicability appears to be
limitless. Its fundamental principles seem to be almost
trivially simple. Its practitioners, both contemporary
and historical, are legion. Yet in spite of all of these
things, many students and practitioners of thermo-
dynamics feel a vague, and sometimes not so vague, !
uneasiness about the subject and its fundamentals. Much
of this malaise can be ascribed to the second law of
thermodynamics and the concept of entropy because the
zeroth and first laws seem to be quite readily accepted.

Heat engines, partitions of various kinds, and com-
posite systems form the substance from which thermo-
dynamic theory is generally constructed. Thus, for
example, heat engines are the devices which were used
in the early formulations of the entropy concept, and
their use for this purpose has persisted to the present.
Partitions are used to control the transfer of heat and
various forms of work between a system and its sur-
roundings or among subsystems forming a composite
system. If thermodynamics is viewed solely as the
study of heat, work, and their interconversion, then
this is a perfectly acceptable procedure with a great
deal of operational significance in connection with ex-
periments. In fact, however, contemporary thermo-
dynamics could more appropriately be described as a
study of the intrinsic properties of matter, Certainly
intrinsic properties of matter should depend neither
upon the surrounding partitions nor upon heat engines.
To say they are so dependent is akin to saying that the
intrinsic properties of matter are dependent upon bound-
ary conditions, and hence these properties are not real-
ly very intrinsic. It follows that it should be possible
to study some of these intrinsic properties without
reference to boundary conditions. This is not to say
that partitions cannot be used to deduce useful informa-
tion about intrinsic properties, for, indeed, they have
been used in just this way. The question is, rather,
how much information can be deduced without their use.
To clarify this outlook, consider an example from the
study of the solutions of ordinary, linear, differential
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equations. One can study the solutions of a particular
differential equation in two ways. Either one can at-
tempt to find all the independent solutions and study
their properties, or else one can select a particular
solution from the infinite set of all solutions by im-
posing boundary conditions and then study the proper-
ties of this solution. Both methods yield useful informa-
tion about the properties of the solutions of the differ-
ential equation. The first procedure, if it can be car-
ried out, is more economical in its use of concepts for
it has no need to introduce the idea of boundary condi-
tions, But, by itself, it cannot answer the question of
how the solution varies when boundary conditions vary.
However, it is easy to see that the information gen-
erated by the first method can be applied to a study of
boundary value questions by subsequently adding bound-
ary conditions.

Even though the second law of thermodynamics re-
ceives much of the blame for the difficulties associated
with the understanding of thermodynamics, a portion
of the onus must be placed on the first law, The reason
is that the first law is one relation connecting three
quantities, heat, work, and the interpal energy incre-
ment and can be used as the definition of only one of
them; the remaining two must be given independent
definitions. Thermodynamics tries to use the first law
to define both the internal energy increment and the
heat and attempts to give an independent definition only
for work. But there are problems even with the inde-
pendent definition of work. Clearly, there is no difficul-
ty when one is dealing solely with mechanical work and,
of course, the early experiments which served as a
foundation for the first law did rely on mechanical work.
Subsequently thermodynamics was applied to phenomena
involving chemical reactions and electromagnetic fields
and in both cases it was necessary to introduce an ap-
propriate expression for work. The definition of
“chemical work” was an ad hoc procedure which pre-
supposed the existence of an entropy and which seemed
to work quite well. The definition of “electromagnetic
work” was, and is, complicated by the existence of
several alternative definitions.

Reformulations of thermodynamics have appeared
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from time to time; however, none of them specifically
deal with the questions I have raised. Can a formula-
tion of thermodynamics be given which is totally devoid
of partitions, composite systems, and heat engines?
Does such a formulation clarify the concept of entropy?
Does it expose any assumptions which are implicitly
made but not explicitly stated in the conventional formu-
lations of thermodynamics? Does it provide a sufficient-
ly general expression for thermodynamic work?

Many more objectives could be listed for a theory
of thermodynamics in addition to those posed by the
foregoing questions. High on the list would be an answer
to the question of how dependent is thermodynamics
on the form of the expression for work. Another impor-
tant objective would be the recognition, from the outset,
that thermodynamic states of matter are, after all,
rather special states. They are special in the sense
that they can be completely described by a small num-
ber of parameters in contrast with more general states
which require a large or perhaps even an infinite num-
ber of parameters for their description. The theory
should interrelate the two types of states. Certainly
somewhere on the list of objectives for a thermody-
namic theory would be the removal of the temperature
variable from its position of preeminence among other
thermodynamic variables. Since this preeminence was
achieved largely from the zeroth law, it can be rescind-
ed only by an abrogation of this law. In essence, does
a viable thermodynamics exist which includes the notion
of temperature but excludes the zeroth law? Finally,
a theory should both possess intuitive appeal and as-
siduously avoid implicit assumptions. This combina-
tion of intuitive appeal and explicit assumption enables
one to delimit rationally the region of validity of the
theory by experimental testing of the assumptions
built into the theory.

Only some of these objectives indicate a suitable
starting point for a formal theory of thermodynamics.
Others merely serve as guideposts in the development
of that theory. For example, it is obvious that a theory
without partitions and composite systems must effec-
tively be a local theory of thermodynamics. Concomi-
tantly, a local theory has no need for the zeroth law
since the zeroth law deals with thermal equilibrium
among three systems which are formed pairwise into
composite systems. Thermodynamic states can be
recognized as special states simply by partitioning the
collection of all states into thermodynamic and non-
thermodynamic states. By contrast, it is possible to
establish the degree of dependence of thermodynamics
on the form of the work expression, partitions, and
composite systems only by avoiding any statements
about them as long as possible. Similarly, to endow a
theory with intuitive appeal one should work with con-
cepts that are readily interpretable experimentally and
that are likely to be familiar to many people. That is,
there should be an almost obvious correspondence be-
tween the elements of the mathematical theory and their
physical realizations, Furthermore, the collection of
physical states should be given a minimal mathematical
structure and additional structure should be imposed
only as the need arises. This implies that one should
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try to establish as much of thermodynamics as possible
by purely algebraic arguments since some algebraic
structure is certainly a prerequisite for topological
structure. It is not at all obvious that the set of thermo-
dynamic states need be given any topology, and certain-
ly it is less obvious just what that topology should be.

If topological considerations become a necessity, then
a reasonable attempt should be made to justify the
chosen topology by making some concrete statements
about it. This attitude would prevent the ad hoc as-
sumption of, say, a metrizable topology without justi-
fication. It also would prevent the use of an arbitrary
topology for the deduction of thermodynamic conse-
quences from topological axioms which might not be
satisfied by a particular topology or, indeed, by any
topology.

Despite the long history of classical thermodynamics,
only a comparatively small number of distinctly differ-
ent theoretical formulations of thermodynamics exist.
These theories will not be discussed in detail, but I
shall be content merely to point out a few significant
features. Undoubtedly the best known of all thermo-
dynamic theories is the one associated with the names
Clausius, Kelvin, and Carnot. It is by far the most
common and its exposition can be found in many
thermodynamic texts. For example, it can be found
in the books by Adkins,? Wilson, ® and Zemansky. ! This
description of thermodynamics is replete with parti-
tions, composite systems, and heat engines. A com-
paratively more recent theoretical structure is based
on the work of Caratheodory® more than 60 years ago.
More recent expositions have been written by
Landsberg, ® Buchdahl, " Bernstein, ® and Boyling. ? In
some respects this thermodynamics is very similar
to the Clausius, Kelvin, Carnot formulation, complete
with partitions and composite systems. It differs from
the latter chiefly in its approach to the second law,
which is obtained not from a heat engine but from an
axiom that contains topological considerations. The
axiom could aptly be called the adiabatic inaccessibility
axiom. The chief function of the axiom is to assure the
integrability of a Pfaffian form, the first law of thermo-
dynamics, and so to introduce the entropy. Landsberg
assumes the topology to be a metric topology and appar-
ently so do Buchdahl and Bernstein. Boyling (1968) as-
sumes a separable topological space, while Boyling
(1972) uses a differentiable manifold and hence a
separable Hausdorff topology.

Yet another theory of thermodynamics is the work of
Tiszal® and Callen. 1! It differs significantly from other
theories because it presupposes the existence of an
entropy with prescribed properties and makes no at-
tempt to derive either the entropy or its properties
from more fundamental assumptions. It is an excellent
pedagogical device, particularly in Callen’s presenta-
tion, since it systematizes a great deal of the thermo-
dynamic formalism used in applications. This thermo-
dynamics, like most others, relies heavily on parti-
tions and composite systems.

Numerous conceptual similarities exist between the
theory of Falk and Jung!® and that of Giles, !* although
the concepts are implemented differently. Both theories
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place a heavy reliance upon the composite system and
both represent processes as ordered pairs of thermo-
dynamic states. Neither introduces entropy through
integrability of a Pfaffian form. Significantly, both
theories are considerably more algebraic in character
than most other theories of thermodynamics, although
they are not wholly independent of topological
considerations.

A degree of kinship is also exhibited among the
thermodynamic theories of Buchdahl, 1* Buchdahl and
Greve, ¥® Rastall, ¥ and Cooper. " These authors base
their analyses on the adiabatic inaccessibility axiom
of Caratheodory. Buchdahl and Buchdahl and Greve use
it in connection with a separable, connected, metric
space, Rastall employs it in an arbitrary topological
space, and Cooper uses it in a separable topological
space. In fact, Buchdahl (1962) assumes the usual
topology on a Cartesian product of the reals. In each
paper the topological structure is involved in the deduc-
tion of an entropy; however, this is accomplished with-
out Pfaffian forms in contrast to Caratheodory-like
theories. All four papers use adiabatic processes; ad-
ditionally Rastall introduces so-called energic process-
es which are generalizations of Buchdahl’s! isometric
processes. Again all four papers utilize composite sys-
tems, although Rastall points out that he makes only
sparing use of them., Hornix!® attempts to establish a
connection between the thermodynamics represented
by the work of Falk and Jung, Giles, and Cooper and
the Tisza—Callen approach to thermodynamics. Al-
though Hornix does not specify his topology, his reli-
ance on the work of Cooper implies the use of a separa-
ble topology.

My approach to the theory of thermodynamics,
presented on the following pages, represents an attempt
to deal with the previously stated objectives. 1t is
broadly subdivided into four parts and each portion
deals with a different aspect of the problem. Thus,
successive sections deal with algebraic, topological,
integrability and continuum considerations. Each sec-
tion is independent of all succeeding sections but draws
freely on concepts introduced in preceding sections. In
fact, the physical interpretation of a concept becomes
progressively more transparent the farther one pro-
ceeds with the development of the theory. The reason
for this is that only those aspects of a concept are
introduced in a given section which are needed in that
section; additional facets of the same concept are de-
fined in subsequent sections as they become necessary.
The rationale for this fragmentary method of definition
is that is permits one to draw conclusions subject to
the least restriction and hence capable of the widest
applicability.

Instead of immediately proceeding to the development
of the theory, let us briefly digress to discuss a related
topic. We are considering the formulation of a physical
theory and hence it would be well to reflect on the
nature of physical theory and attempt to delineate what
we can or cannot expect of it. Broadly speaking, a
physical theory might be characterized as a mathema-
tical structure capable of mirroring phenomena,
thermodynamic phenomena in our case, that occur in
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the real world, Thus, in some sense the mathematical
structure and the real world “coincide” for a physical
theory. But in what sense can the two be the same
since it is obvious that mathematics can and does exist
independently of the real world and certainly the real
world exists without reference to any mathematical
structure. The various “morphisms” such as homeo-
morphisms and several kinds of homomorphisms and
isomorphisms provide a precise definition of the equiv-
alence of mathematical structures in mathematics.
There is no counterpart which serves the same function
for a mathematical notion and a physical phenomenon.,
In a sense the correspondence between the two is es-
tablished directly by using names for the mathematical
objects which are also interpretable in the real world.
Thus, it is possible to conclude that the function of a
physical theory is not to give a physical interpretation
of a mathematical object but to serve as a predictive
device for physical measurements, which are the
source of our quantitative knowledge about the real
world. As an example, we cannot expect the theory to
define equilibrium states unless they are definable and
recognizable by measurement. Nor can we expect to
give a physical interpretation of a wholly mathematical
concept unless that concept can be reduced to the con-
cepts which are interpretable as measurements. It is
important to remember that an acceptable physical
theory must necessarily be based upon impeccable
mathematics; by contrast a mathematical structure
may represent perfectly respectable mathematics but
not necessarily respectable physical theory.

I. ALGEBRAIC CONSIDERATIONS

Conditioned as we are to expect physical properties
to be representable by continuous functions, it might
seem strange at first to expect to construct a thermo-
dynamics which is independent of the topological notions
of continuity and nearness. Nonetheless, it is possible
to cast a substantial portion of thermodynamics into a
purely algebraic mold by using only quite elementary
algebraic ideas. Most of the prerequisite material is
available in any one of a number of introductory texts
on abstract algebra; an excellent choice would be the
book by Paley and Weichsel. 1° Two options are available
in the construction of algebraic thermodynamics. The
first is to develop the mathematical and physical ideas
simultaneously, while the second is to separate the
mathematics and physics by as wide a gulf as possible,
I choose to proceed by the second mode since it pos-
sesses the advantage of cleanly separating the two kinds
of ideas and results in a precise pinpointing of the phys-
ical assumptions. Furthermore, the development of
the physical ideas is then unencumbered by mathema-
tical asides. The chief disadvantage is the difficulty in
supplying an adequate motivation for the reader whose
primary concern is the physics and not the mathema-
tics. I feel that the advantages of the chosen approach
outweigh the disadvantages, for my aim is to clarify
the fundamentals of thermodynamics and such a purpose
is not necessarily consonant with pedagogical aims.
Nevertheless, some motivation is desirable and, in-
deed, essential in order to indicate the purpose behind
some of the mathematical definitions and theorems
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which will precede the thermodynamics. The mathe-
matics to be developed will involve two physically
relevant concepts which are of fundamental importance
for thermodynamics. One is the notion of states of a
physical system and the other is the idea of processes
connecting these states. The development of the mathe-
matics of these two concepts will concentrate on two
topics. The first is a complete and precise characteri-
zation of reversible processes and an elucidation of
their function with respect to the states. The second is
a similarly careful treatment of the ordering of the
states and a determination of the connection between
order properties and processes. Once this has been
achieved, the thermodynamics can be developed in a
relatively straightforward manner,

States and processes will be an integral part of the
definition of the mathematical object, called a physical
system, which will be the subject of our mathematics.
For the present these two notions will be treated as un-
defined concepts since their detailed definition will in
no way affect the algebra. However, we shall become
more definite about them as the analysis progresses,
and ultimately they will assume the roles conventionally
assigned to them,

Axiom I.1: A physical system is the quintet
(X,Z,1, F, f), where (1) X is a set called the set of
all physical states, (2) £ CX is a subset of X called
the set of all thermodynamic states, (3) II is a set
called the set of all simple processes on =, (4) F is
a function F: Il —Z X2, and (5) f is a function
f:isL 1T satisfying fof =1, where 1 is the identity
map on I1. If p is a simple process, that is, pe Il and
F(p)=(a,b), then a and b are said to be the initial and
final points, respectively, of p. Further, f(p)=p* is
called the reverse of p, and F(p)=(a,b) if and only if
F(p*)=0,a.

Henceforth I shall use € for is a member of, ¥ in
place of for all, A for theve exists, = for implies, and
either iff or <=> for if and only if. The negation of
these symbols will be indicated by /, the null set will
be represented by ¢, and the logical or will be used in
the sense of either A or B or both. Some mental
imagery would undoubtedly enhance the understandabil-
ity of Axiom I.1 as well as the subsequent algebraic
manipulations. For this reason, and for no other, itis
helpful to view states as points in some finite-dimen-
sional space and simple processes as directed curves
connecting pairs of these points, the initial and final
points of the process. This is illustrated in Fig. 1.

We are now in a position to make some observations
about the content of Axiom 1.1. First, it presupposes
that a distinction already exists between physical states
and thermodynamic states, although it does not exclude
the possibility that they coincide (X=Z). Second, it
restricts initial and final points of simple processes

to the set = (since the range of F is T XZ) rather than
permitting them to be arbitrary physical states. How-
ever, in terms of the mental image of a process, it
does not require the directed curve to lie within Z nor
does it require p and p* to be superimposable as shown
in Fig. 1. Third, it does not assume that only one sim-
ple process can have a,b < Z as initial and final points
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in Z, nor does it assume that each pair of points in =
is connected by some simple process; equivalently F
has not been assumed to be 1—1 and onto. Such an
assumption would contradict experience since there are
many routes one can take to convert a gram of ice to

a gram of steam, for example. Finally, the adjective
simple is appended to the word process merely because
I wish to reserve the term process for a combination
of simple processes which will be introduced shortly.

Algebra of reversible processes

I shall now begin to develop the mathematical ma-
chinery that will be used to erect the algebraic struc-
ture of thermodynamics upon the foundation established
by Axiom I.1. This subsection and the following one
will examine to what extent it is possible to use pro-
cesses to induce algebraic structure on Z. Here we
will use reversible processes to induce equivalence
relations on Z. In the following subsection processes
will be used to induce order properties on T. The ma-
terial in these two subsections will be of a purely math-
ematical nature and will not utilize any thermodynamic
concepts or, indeed, any physical concepts whatsoever
apart from those introduced by Axiom 1.1. For ex-
ample, the first two theorems are immediate conse-
quences of Axiom I.1.

Theorem 1.2: (p*)" =p ¥ peIl. Also py=p, iff
pr=07 ¥ pypell

Proof: (p*)*=f(p*)=f(f(p)) =f of (p)=1n(p)=p. The
remainder of the theorem follows from the fact that f is
a 1—1 function. Thus, p;=p,=>f(p;) =f(p,) since fis a
function, and f(p,)=f(p,) => py=p, since f is 1—1,

Theovem I.3: The map F induces an equivalence rela-
tion = on II. That is, ¥ py, p,< I, the relation = defined
by p1=p, iff F(py) =F(p,) is an equivalence relation
on II.

Proof: An equivalence relation is reflexive, sym-
metric, and transitive. The relation = is (1) reflexive
since F(p) =F(p) ¥ pc Il because F is a function and
therefore p=p. (2) symmetric since p;=p, = F(p,)

FIG. 1. An example of a simple process p, with initial point a
and final point b, and its reverse process p*.
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=F(p;) = F(py) =F(p;) = p; =py, (3) transitive since
p1=py and pp = py=> F(py) = F(p,) and F(py) = F(py)
=> F(py) = F(p3) => py = p3.

As a result of Theorem I. 3 it is apparent that the
equivalence classes of the relation = can be put into a
1—1 correspondence with ImF, the range of F, even
though it may not be possible to do this with II itself.

Definition I. 4: A simple process pe Il is said to be
null, or a simple null process, iff p*=p.

Theorem I.5: Let pc II. If p is null, then F(p)=/(a, a)
for some ac Z. If F(p)={(a, a) for some ac =, then

p*=p.

Proof: Suppose p* =p. Then (a, b) =F(p)}=F(p*)
= (b, a) and therefore a=>b. From Axiom L. 1, F(p)
=(a, b) iff F(p*)= (b, a) and therefore b =a=> F(p)
=F(p*).and hence p=p*.

Thus, while the initial and final points coincide for
all simple null processes, if the initial and final points
coincide, then we may only conclude that the simple
process and its reverse are equivalent but not neces-
sarily equal.

Subsets of II play an extremely important role in the
algebraic theory being developed. Indeed, it would be
difficult to overemphasize their importance. Substan-
tially all of the following definitions and theorems will
be statements relative to some subset of II. The first
of these is

Definition 1. 6: Let 8 CII be a collection of simple

processes. A simple process p< II is said to be reversi-

ble in B if pe B and p*< 4. If p is not reversible in 4,
then it is said to be irreversible in 4.

It is a trivial consequence of the definition of p* that
Y pc I, p is reversible in II. This is not, however,
true for other collections of simple processes as is
shown in the next theorem.

Definition 1.7: If AC I, then 8* CII is defined by
B*={plpeT, p* A}

Theovem L. 8: If SCII, then, for any simple pro-
cesses p, (1) p*e f*iff pe B, (2) p*c B iff pe B*,
(3) (B8*) =4, and (4) p is reversible in A iff

peBNnA*.

Pyoof: By Definition 1.7 we have p* ¢ 8* iff p*c Il
and (p*)* =pec B where Theorem I. 2 was used. To es-
tablish (3) consider that (8%)*={plpec 11, p*< 8*}
={plpe I, pc A}=A, where part (1) was used together
with Definition I.7. To establish (2) we can use (3) and
(1) since p* < B iff p* e (BM)* iff pe B*. The last part
of the theorem follows by using part (2) and Definition
1. 6 since pc AN A* iff pc A and pe B* iff pe B and
p*< B, and hence p is reversible in 4.

We observe two things. First, it should be obvious
from Theorem I.8(4) that p is irreversible in £ iff
pe B -ABnA*, the relative complement of AN A* in A.
Second, the symbol * applied to a subset of IT can be
viewed as a map induced by f on the power set of II,
that is, the collection of all subsets of II. A trivial
consequence of Definition I. 7 is

1583 J. Math. Phys., Vol. 17, No. 8, August 1976

Theovem I.9: Let 0 < II be the set of all simple null
processes. Then 0*=().

Proof: By Definition 1. 4, p< () iff p=p* and there-
fore O*={plpec 1, p*=pc 0}=0.

Further development of the reversible—irreversible
concept is possible and, indeed, essential if it is to be
utilized in a thermodynamic theory. Perhaps the most
obvious extension would be to consider the reversibility
of arbitrary subsets of Il rather than the one element
subset {p}. Thus, we make

Definition 1.10; Let A CII, let A be an index set, let
{C.ICycl, ac a}be the collection of all subsets of IT
such that p is reversible in(, ¥ p= 3, and let
{D41Ds €8, ac A} be the collection of all subsets of
A such that p is reversible in 8 ¥ p</),. The reversi-
ble superset of A is the set (8)" =N,z ala, and the re-
versible subset of 4 is the set (B),=U,calq.

Theovem I.11: Let SCII. Then (1) (8)" and (4), are
unique, (2) if C C1I such that p is reversible in
Cvw peB, then (B)"c(C, (3) if ) CA CII such that p
is reversible in 8 ¥ p< /), then ) C(A),, and (4)
(B)=BULB* and (B),=ANB*. Also (B) =(A), iff
B=8*.

Proof: To establish (2), observe that if C is a subset
of II such that all elements of 3 are reversible in C,
then Ce {C, |ac A} and by the property of intersections
(B =N 4=aCaCC. Part (3) can be establish by sup-
posing that each element of /) €A is reversible in A.
Then /) < {Da la e A} and by the property of unions
0 CUuc sl o= (A),. To prove the uniqueness of (A)7,
notice that wp<c 3, p is reversible in(C, wa= 4, and
hence p is reversible in Nyc oaCo=(B)". I B is another
reversible superset of A3, then by (2) we have 8 C (8)7
and (B)" Cf, and thus B=(A)". The uniqueness of (4),
is derived analogously since Vpe (8),, pc/), for some
a < A and hence p is reversible in 4. If A is another
reversible subset of A, then from (3) we have Ac(A),
and {£),C A, and therefore £ =(A),. Only (4) remains
undone. From the definition of 8* it follows that
BUB*e{C,lac A} andby (2) (B)'CBUAB*. Now
pe A is reversible in C, iff p, p* e C, by Definition I. 6,
Since this must be true ¥ p<= A, it follows that
BcC,, B¥*c(, Y ac A, and therefore SUAR*C(,
Vacaand AUAB*CNaeala=(AR). Thus (B)
=/AUA*. From Theorem I. 8(4) it follows that
AnB*c{h,lacaland by (3) BN B*<{AB),. Sup-
pose p< (f),; then by definition of (4), it follows that
p is reversible in A and by Theorem I.8(4) p< 8N AB*,
and therefore (8),CANA*, and then (8),=A40N A*.
Finally, suppose 8 =/7%; then 8UA*=AnA*. Con-
versely suppose A UA*=AnA* and A#4*. Then
BUB*-AnB*=0@and A pc A and p& A* and there-
fore pe S UA* and p# AN A*, and hence pe U B*

- AN A%, which contradicts BUR* - AN A* = .

This theorem has now established that for any subset
A CI, there exists a largest subset (4), such that all
elements of (f), are reversible in B and, further, there
exists a smallest superset (4)” with the property that
all members of A are reversible in (4)”. What about
the reversible subsets and supersets of (#)” and (5),?
This is answered by the following corollary.
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Lby=ag=by=as

FIG. 2. A process on T of length five with initial point ; and
final point b;, For clarity the simple null processes after p;
are not shown.

Covollary 1.12: Let AT Then [(B)],=(BY =L(B)])
and [(8),],=(A),=0(A),T.

Pyoof: If B=4%, then SUR* =4 and AN A*=4.
Hence, if it can be shown that [(B)]* = (8)" and [(B),}*
= (3),, then this corollary is a direct consequence of
Theorem I.11(4). The definition of the * operation ap-
plied to sets is given in Definition 1. 7 and, applying it
to (B)7, we tind [(B)*={plpel, p*< (B =BUB*}
But using Theorem 1. 8(1, 2), we obtain p*c A UA* iff
p*eB*orp*c B iff pc B or pe B* iff pc A ULA*. Hence,
By ={plpen, pec BUB*=(BY}=(A). In a like
manner [(B),F={plpen, p*=(B),=8nA*} But
p*e BN A* iff p* <= B and p* < A* iff pe B* and pe A iff
peBNBR*=(A),, and thus [(B),]*=(A),.

Ultimately it will become necessary for us to have
available a generalization of the notion of a simple pro-
cess. This generalization is supplied by the next
definition,

Definition I. 13: Let N be the set of positive integers.
A sequence of simple processes is a map P :N—1II,
where P{n) =p,c II. A sequence of simple processes is
said to be finite of length ny< N iff p, is not null and
ppis null V¥ n>n; It is said to be finite of length zero
iff p, is null ¥ < N. A process P on Z is a finite
sequence of simple processes such that b,=a,,4 ¥ n< N,
where F(p,) = (a,, b,). More particularly, a process
P such that ImPC A C1l is called a S-process on Z. If
P is a S-process on Z of length nyc N, then P is said
to B-link x,x'< 2 iff x=a; and x’=b,,. This is repre-
sented by x £ x’, and x,x’ are the initial and final points
of process P,

An example of a process of length five is schemati-
cally shown in Fig. 2, where, for clarity, all simple
null processes after ps; have been excluded from the
sketch. However, note that from Theorem 1.5 p,
might be a simple null process. It is apparent that each
process P induces a sequence in Z, namely, g:N—Z,
where g(k) =a,, but this then raises the possibility of
considering a process to be an infinite sequence of
simple processes with convergence of this sequence
determined by convergence of the induced sequence in
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%. While this is certainly possible, such a procedure
would violate my avowed intention to eschew topology
in Z; convergence of an infinite sequence in £ can only
be defined in terms of topological ideas in £. Finally,
the fact that each process P has an initial and final
point can be regarded as an extension of the map F to
the set of all processes from the set of all processes
of length one since a process of length one is effective-
ly a simple process. Equivalently, F induces a map
from the set of all processes to T XZ.

Naturally the observation that F can be extended from
simple processes motivates us to look for other exten-
sions. The extension of the concepts of null processes
and reversible processes is accomplished in

Definition 1.14: Let P be a process of length n, on Z.
The process P is said to be (1) null iff #,=0 and (2)
reversible in S C1I iff P(n), P*(n)c S ¥ nc N. The
process P is irreversible in A iff it is not reversible
in A. The reverse of P is a process P* :N —1II, where
P*(n) :p:o"i'" for n <ny and P*(n) is null for n> n,.

Note that for any process P there might correspond
many reverse processes since no restriction was placed
on the choice of null processes P*{(r) for n>n; With
this in mind it is possible to derive a theorem analogous
to Theorem 1. 8.

Theovem I.15: If () C1I is the set of all simple null
processes and (JC A C 11, then for any process P (1)
ImP*C A* iff ImPC A, (2) ImP*C A iff ImP < *, and
(3) P is reversible in A iff InPC AN B* =(4),.

Proof: As was pointed out above, P (n>ny) c 0N A
does not imply P* (n>ny) c ) NA*. However, if JCf,
then ) =(* C 8* and, conversely, if () TA*, then
O =0*C* and then ) C 4. Thus we have () CA iff ) C A*.
However, under these circumstances SN0 =0 =N
and hence P (n>ng)e 0N B if P* lm>ny)e ONB*. The
first two parts of this theorem now follow from Theo-
rem I.8(1,2). Now if we use part two of this theorem,
we have P is reversible in £ iff P(n), P*(n)e S ¥ nc N
iff ImP C A and ImP* C A iff ImPCA and ImP C A* iff
1mPC B0 4% = (),

The following corollary to Theorem I, 15 is of con-
siderable importance for thermodynamics.

Covollary I.16: If O 11 is the set of all simple null
processes and () A CII, then all (4N A*)-processes
[{B U AB*)-processes] are reversible in 4N A*

[BYA*]

Proof: P is a (80 A*)-process iff ImnPC A A% =(A),.
But from Theorem I.15(3) we have that P is reversible
in (AB), iff ImP < [(B),},=(A),, where Corollary I1.12
was used in the last step. Hence, all (AN A*)-process-
es are reversible in AN A*. A similar proof holds for
(B U B*)-processes.

The significance of this result lies in the fact thlgt if
Pis a (BN AB*)-process [(B U A*)-process] and x = x7,
then P* }s also a (AN A*)-process [(B U A*)-process]

and x’ £ x.

Once we have available Corollary I. 16 it becomes
a relatively simple matter to make a connection be-
tween processes on £ and equivalence relations on Z.
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This is demonstrated in the next definition and theorem.

Definition 1.17: Let 4 CII be a collection of simple
processes containing the set (J of all simple null pro-
cesses. A point xc ¥ is said to be S-equivalent to
x'cZ, xéx’, iff 3 a (BUAB*)-process P such that
x &', It is said to be S-equal to x’, x= zx', iff 3 a
(A N A*)-process P such that x £ .

Theorem I.18: Let () C II be the collection of all
simple null processes and suppose that, for each
x=Z, 3 some pe () such that F(p)=(x,x) and DB 1.
Then (1) the relations £ and = zare equivalence rela-
tions on T, (2) x= gx'=>x2x!, thatis, each equiva-
lence class of = gis a subset of some equivalence class
of £, and( 3) if A =4%, then x=, x" iff x£x’, that is,
if A =/7%*, then the equivalence classes of = zcoincide
with those of =,

Proof: We first observe that 0 cANA*C AU B*. The
relation = zis (1) reflexive since for each xc £ 3 some
pe () such that F(p) = (x, x) and hence let P be the
constant function P : N —1II defined by P(n) =p W n< N.
Then x & x and x = gx. The relation is (2) symmetric
since x = gx’ iff @ a (AN A*)-process P such that
x%x’, and then, by Corollary 1.16, P* is a (8N A%)-
process such that x’ £—x iff x’ = ,x. The relation is
(3) transitive since x= gx’ and x’ = zx” iff 3 (AN A¥)-
processes P and P’ such that x & x’ and x’ £-x", If P
is a process of length #,, then the process P”:N—1II
defined by P”(n) =P(n) for n <n, and P?(n) =P’(n — ny)
for n>ny is a (BN A*)-process and x E+x” iff x= px”.
The proof that £ is an equivalence relation follows in an
identical manner. To establish (2), we notice that
BNA*cBLUA* implies that each (8N A*)-process is
also a (B UA*)-process. Part (3) is true since
B=5*=BnA*=AUA* and hence x = zx’ iff xZxt,

Theorem I. 18 is the culmination of the efforts ex-
pended to produce a complete analysis of the notion of
a reversible process. It will play a significant role in
the development of the algebraic theory of thermody-
namics. In connection with this theorem it should be
noted that A =4* was sufficient to demonstrate x = zx’
iff x£x'. However, asserting A3 #4* does not assure us
that the equivalence classes of = gand £ 4o not coincide,
because it certainly is possible that for each (S8 U 8*)-
process there exists some (4N A*)-process linking the
same points while still maintaining A #4*.

The algebra of partial order relations

Recall that in addition to the algebra of reversible
processes we must still make a careful analysis of
order properties before we can attempt to get into the
details of thermodynamics. The treatment of order
properties to be given here represents only a modest
generalization of the discussion found in textbooks.
This generalization, however, is essential for the ap-
plication to thermodynamics and, indeed, for the
concept of entropy used in this paper. Order proper-
ties can be phrased in terms of partial orders and
strict orders. The former is defined by

Definition 1.19: A partially ordered set is a triplet
(M, <,,=)), where M is a set, =, is an equivalence
relation on M, and <, is a relation on M which satis-
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fies (1} m<, m¥ me M (reflexive), (2) m <, m’ and
m’ <y m”=>m <, m" (transitive), and (3) m <, m’ and
m' <, m=>m=y m’ (antisymmetric}. The relation <,
is called a partial order on M. Elements m, m’'e M
are said to be comparable iff m <, m’ or m’ <y, m. M is
said to be a chain, or M is said to be linearly ordered
by <, iff ¥m, m’e M, m<,m'or m’<s, m. U Mis
linearly ordered by <,, then <, is called a linear (or
total) order relation on A,

In the conventional definition of partial order the
equivalence relation of ordinary equality is used in
place of the arbitrary equivalence relation =, that was
used in Definition I.19. This is the only difference
between Definition I. 19 and the usual one and is the
generalization referred to previously, Now any subset
of a partially ordered set M can itself be regarded as
a partially ordered set, ordered by the restriction of
<, and =, to the subset. Thus, a subset inherits a
partial order. With this convention a subset of a
partially ordered set M might be a chain even though
M itself is not. Of course, every subset of a chain is
obviously a chain, To complement the definition of
partial order we have the conventional definition of
strict order.

Definition 1.20: A strictly ordered set is a pair
(M, <,), where M is a set and <, is a relation on M
which satisfies (1) m <, m’ and m' <, m”" = m<, m”"
(transitive) and (2) m <, m'=>m'£, m. The relation
<y is called a strict order on M and M is said to be
strictly ordered,

Manifest differences exist between the definition of
partial order and that of strict order. These differ-
ences, however, are more apparent than real, for
partial order can be used to induce strict order and
conversely. This duality is established by the follow-
ing two theorems.

Theorem I, 21: Let (M, <,, =,) be a partially ordered
set and define a relation <, by m <, m’ iff m <, m’
and m#, m’. The relation <, is the strict order in-
duced by <, and =, if (1) m =, m’= m <, m’ and
m’ <y mor 2) ms, m'and m’' =, m”) or (m=, m’
and m’ <, m”) = m <, m”.

Proof: Let m <, m’ and, by the definition of <,, this
= m <, m’ and m#, m’. Suppose m'<, m. Hence
m' <y mand m’#, m. But m<, m’ and m’ <, m=>m
=y, m’, a contradiction. Thus, m <, m’=>m'<, m.
To establish the transitivity of <,, suppose (m <, m’
and m’ <, m”)=> (m <, m’, m#,m’ and m’ <, m",
m'#, m”) = m <, m” by transitivity of <,. Suppose
m=y m”. By condition (1), m” <, m and, since
m' <y m”, = m’ <, m and, since m <, m', = m=, m’,
which contradicts m <, m’. Hence, m s, m” and
m#y m”"=>m<, m”, so that <, is transitive. If condi-
tion (2) holds, then m =, m” and m <, m’ = m” <, m'
and, since m’ <y, m”, = m’=, m"” which contradicts

! <y m”. Similarly, m=, m" and m’ <, m" = m

=, m’, which contradicts m <, m’. Again <, is
transitive,
Theovem I.22: Let (M, <,) be a strictly ordered set

and =, an equivalence relation on M with the proper-
ties (1) m<, m’ and m’ =, m” = m<, m”, ) m=, m’
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and m’ <, m”=>m<, m” and define a relation <, by
m <y m' iff m <y m' or m=y m’. The relation <, is
the partial order induced by < u and =,

Proof: The relation <, is (1) reflexive for m <, m
because m =, m, (2) antisymmetric for, if m <, m’
=m<ym’'or m=ym’ and m’' <y m=>m’< , m or
m=y, m’, then either m <, m’ or m’ <, m but not both
because <, is a strict order. In either event m =, m’.
It is (3) transitive for if m <, m’ and m’ <, m”, then
(m<ym' or m=,m') and (m’ <y m"” or m'=,, m").
The four possibilities lead to m <, m” or m =, m”
=m<,ym”.,

Examples of the duality between partial order and
strict order are easily found, especially when condition
(1) of Theorem 1. 21 is satisifed. In this case it follows
that m <, m’ and m’ <y, m iff m =y m’. One such exam-
ple is supplied by the reals R with the usual order.
Here the equivalence relation is the ordinary equality
=, ¥y <7y iff 7, — ¥, is nonnegative, 7, <, iff v, -7, is
positive, and the partially ordered set (R, <,=) is a
chain, A second example is the power set of any set.
The power set is ordered by set inclusion, where
ACB and BCA is used to define A =B. Here the
partially ordered set is not a chain, Because of the
many possibilities for partially ordered sets it becomes
important to have some criterion for judging when two
partially ordered sets can be regarded as having the
same order structure. This is supplied by

Definition 1. 23:; Let g be a function from the partially
ordered set (4, s,, =,) to the partially ordered set
(B, <z, =5) such that (1) g(ay) <z glay) iff a; <4a, and (2)
gla) =g glay) iff ;=4 a4, ¥ a;, 4y A. Then g is called
an order homomorphism from A to B, and Img is called
the order homomorphic image of A under g. If g is 1—1,
then g is said to be an order isomorphism or a similar-
ity. If Img# B, then A is said to be order homomor-
phically (order isomorphically) embedded in B if g is
not (is) 11,

Note that if partially ordered sets A and B satisfy
Theorem I,21(1), then a; =, a, iff a1 <4 a; and ay <4 a4
iff g(ay) <5 glay) and g(a,) <p glay) iff g(a;) =5 glay) and
the second condition of Definition I. 23 is redundant.

A prime concern in the application of order proper-
ties to thermodynamics is the concept of a chain in a
partially ordered set. Some standard terminology is
needed to facilitate a discussion of some important
properties of chains.

Definition I.24: Let (M, <,, =,) be a partially ordered
set. An element m"<c M is said to be the largest ele-
ment of m iff m <, m" ¥ me< M. 1t is said to be maxi-
mal iff m®<, m=>m=, m° An element myc M is said
to be the smallest element of M iff my<,, m ¥ mec M.
It is said to be minimal iff m <, my=>m =, m;. Let A
be a subset of M. An element a’c M is an upper bound
of A iff a<, a’ ¥ ac A. An element ay< M is a lower
bound of A iff ay<,,a ¥ ac A. When they exist, the
smallest element of the set of upper bounds of A is
denoted by sup(4) while the largest element of the set
of lower bounds is denoted by inf(4).

In addition to Definition I. 24 we shall also need a
well-known tool of mathematics known as Zorn’s
lemma.
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Lemma 1.25 (Zorn): Let (M, <, =,) be a nonempty
partially ordered set in which every chain has an upper
bound. Then M contains a maximal element.

Both Definition I, 24 and Zorn’s lemma are used in the
proof of

Theorem I.26: Let (M, <,,=,) be a partially ordered
set. Then (1) @ is the unique minimal chain in M, (2)
maximal chains exist in M, and (3) ¢ is not a maximal
chain.

Proof: Let ( be the collection of all chains in M,
that is, C={CICC M, C a chain} and order C by set
inclusion. Then ((, C, =) is a partially ordered set.
Now @ < since @ is the null subset of M and has no
elements and thus all of its elements are comparable.
Further, @ is minimal in ( since if Ce ( and CC ¢
then, because @CC, it follows that C = @. Suppose
feg and C is minimal. Then for any chain C such that
CcC we have C=C. Set C=@ to find C =@. To es-
tablish the existence of maximal chains in M, let 7 be
a chain in C and let D=U ¢ ;C. Suppose a, b< D. Then
ac Cq and be C, for some Cy, C,< 7 and, since 7 is a
chain, €;CCy or C;CCy and thus a, b C, or a, be C,.
But €; and C, are chains and in either case a and b
are comparable. Thus D is a chain in M. Clearly
CCD V¥ Ce 7 and D is an upper bound for 7. But then
every chain in { has an upper bound and, by Zorn’s
lemma, C possesses a maximal element and thus M
has at least one maximal chain. It is obvious that Q@is
not 2 maximal chain since for every chain C it is true
that @C C and hence this cannot imply C = @ unless
all chains in M are null, thatis, M=0Q.

Key results, for thermodynamic purposes, about the
properties of partially ordered sets are now almost
within reach, In fact, only one more definition must be
supplied.

Definition 1.27: Let (M, <,,=,) be a partially ordered
set. The relation <, is said to be a nonbranching partial
order and the triplet (M, <,, =,) is said to be a non-
branching partially ordered set iff (1) my <, my and
My Sy M3 => My Sy my OT My <y my and (2) my S, my and
Mg Sy My => My Sy my OF My Sy my My, My, Mmgs M.

A condition similar to Definition I.27 was first used
by Falk and Jung!? (see p. 124 of their paper) and the
term nonbranching was used in their paper, Giles!?

(p. 27, Axiom iv) uses the equivalent of part (1) but not
part (2). In a sense, Boyling® (1968, condition A),
(1972, postulate I1a), Buchdahl* (1958, Eq. 4.1),
(1962, Eq. 4), Buchdahl and Greve!® (Eq. 3.2), and
Rastalll® (Axiom III) used an assumption that corre-
sponds to a special case of Definition I. 27, This will
be obvious following Theorem I, 30 as will the fact that
the term nonbranching is really quite descriptive for

a partial order which satisfies Definition I, 27. As we
pursue the consequences of Definition I. 27, it should
be kept in mind that <, need not be a total order and
hence some points of M may not be comparable.

Theovem I,28: Let (M, <, =,) be a nonbranching,
partially ordered set. Then (1} if C;, C, are chains in
M such that C; N C,#@, then C; UC, is a chain in M
and (2) if C;, C, are maximal chains in M, then C;NC,
=@or Cy=C,.
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Proof: If ac C4NC,y, then ac Cy and ac C,. But
acCy=rasycyorecy<yaVcieCy and ac Cy=>a<, ¢,
or ¢; €, a ¥ ¢y C,. Since €, is nonbranching, the four
possibilities imply that ¢; <y ¢, or ¢; s, ¢y W ey e €y,
¢,< C, and hence C; U C, is a chain. To prove (2) let
C, and C; be maximal chains and suppose C;N C;# 9.
Then by (1) C;UC, is a chain and clearly C;CC,UC,
and C,CC;UC,. But since C; and C, are maximal
chains, we have C;UCy=Cy and C{UC,=C,, and
therefore C;=C,.

Theovem I.29: If (M, <,,=,) is a nonbranching
partially ordered set and C#@ a chain in M, then 3 a
maximal chain in M containing C.

Proof: Let 7(C) be the collection of all chains in M
that contain C, that is, 7(C)={C, CMIC, a chain,
ccC, Yac A} Obviously Ce 7(C). Let D=U,,C,
and suppose a, b& D. Then for some o, S A we have
ac C,, be C4 Since CCC, and CCCy, thenC, N Cy+D
and, by Theorem I1.28, C,UC;is a chain, a, be C, UCy,
and therefore @ <4 b or b <, a. Thus, we see that D is
a chain. To show D is maximal suppose C is a chain and
suppose DcC. Then CND#@and CND=Cn (U, =4Cq)

acA(CﬂC ). Hence, for some @& A, cncC, #(Z) and,
by Theorem I.27, CUC, is a chain containing C since
CcC,. This implies that CUC,e 7(C) and then
CcCuC,cD. But then CCD and DCC and, of course,
C=D. Thus, D is a maximal chain containing C

Theovem I.30: Let (M, <,,=,) be a partially ordered
set, Then the collection of maximal chains of M is a
partition of M iff <, is nonbranching.

Proof: Let C ={C,la e A} be the collection of maximal
chains in M. By Theorem 1.26(3), C,# ¢ wac A, Since
each m< M is a member of the one element chain {},
it follows from Theorem I.29 that me C, for some
a A and therefore U, ,C, =M. Finally, by Theorem
1.28, if C,#C4 then C, N Cy=@. But these three condi-
tions are precisely the requirements that make ( a
partition of M. Conversely, suppose ( is a partition
and my, Wy, myc M. If my <y my and my <, mj, then
my, My, mye C, for some @ € A since elements in dif-
ferent chaing are not comparable. Similarly, m, <, my
and mg3 Sy my => my, my, myc C, for some o = A, Hence
my S, M3 OF my S, m, and thus <, is nonbranching.

The use of the terminology “nonbranching” to describe
the partial order of Definition I.27 can now be easily
understood. It merely means that comparable elements
can never belong to more than one maximal chain or,
equivalently, that distinct maximal chains never inter-
sect. The assumptions of Boyling,® Buchdahl} (1958,
1962), Buchdahl and Greve, ¥ and Rastall!® correspond
to the simplest possible case of a nonbranching partial
order, that is, the case where M is the only maximal
chain,

Essentially all mathematical prerequisites for
thermodynamics have now been established. To close
the purely mathematical portion of the paper, I shall
show how processes can be used to induce partial order
relations. This will complement the earlier develop-
ments which related processes to the equivalence
relations £ and =,.
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Definition 1.31: Let S C1I be a collection of simple
processes containing the set () of all simple null pro-
cesses. A point x< T is said to be S-comparable to
x'e 3, x<gx’, iff 3a fB-process P such that x £ x’,

Theovem 1.32: Let A CII and suppose (1) for each
x> 3 some pec () such that F(p)—(x,x) and (2) if P is
aA- process such that x &%’ and P is a 8 -process such
that ¥’ £ %, then 3 a (8N A*)-process P such that
x £, Then (T, <5,=3) is a partially ordered set, and
x=gx' Ul x<gx’ andx’ sgx Wi, x'cZ. U B=1%,
then x < gx’ iff x= gx’'.

Pyoof: By Theorem I.18(1) we know that = gis an
equivalence relation and we need only consider the
relation < gand show that it satisfies Definition I. 19,
Since () CA, the reflexivity of < zfollows exactly as
the reflexivity of = z in the proof of Theorem I. 18.
Further, the transitivity of < zis proven in the same
manner as the transitivity of = 3. Thus, there only
remains the antisymmetry property. Suppose x < gx’
<=>xEx' Paf-process, and ' <gx <=>x' £y,

P a B-process. But then 3 a (SN B*)-process linking
x and x’, and hence x =, x’. Now if x =, x’, then

3a(f ﬂB*)—process P such that x £ x’ and, since
BNA*CTAH, x< zx. But by Corollary 1.16, P* is a

(BN A*)-process and x’£—x, and hence x’ < zx. Sup-
pose 3 =4A%; then ANA*=A. Thus, P is a S-process
iff it is a (AN A*)-process and hence x < zx’ iff x = zx'.

The situation that exists in the last part of this theo-
rem is analogous to that in Theorem I.18(3). That is,
A =R%* is sufficient to demonstrate that there do not
exist elements x, x’< Z such that x < 4zx’, However,
asserting A #A* does not assure us that such elements
exist because it is certainly possible that for each
A-process there exists some (4 N/A*)-process linking
the same points and still maintaining 8+#/4%*. Thus,

A #A* is necessary but not sufficient for the existence
of strictly ordered points.

Algebraic thermodynamics

Let us now proceed to the actual construction of
thermodynamics by implementing the information
reposited in the preceding definitions and theorems.
This can be accomplished by augmenting the assump-
tions represented by Axiom I.1 with additional assump-
tions of a phyiscal nature. Before setting down the
next axiom, let me point out that processes in thermo-
dynamics serve a dual role. The first is, obviously,
the alteration of the state of a physical system. The
second, and more important role, is their use to estab-
lish relationships between and among states, and it is
precisely this function that we have been intensively
investigating in our discussion of the relations
é, =z, <3, and <g. The capability of interrelating
points by processes is what makes processes so impor-
tant in thermodynamics. The importance of processes
is reflected in the next axiom, which deals exclusively
with processes and their properties. This axiom will
make assumptions about subsets of simple processes
which will just be adequate for the generation of alge-
braic structure on the set of thermodynamic state Z.

In particular, the axiom will introduce adiabatic pro-
cesses which will ultimately become the adiabatic pro-
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cesses of thermodynamics. However, initially, these
processes will not be connected with heat and will be
regarded merely as a distinguished subset with some
assumed properties.

Axiom I.33: The set of all simple processes Il con-
tains the subsets ) c4 < PCI, where / is the collec-
tion of all simple physical processes, A4 is the collec-
tion of all simple, physical, adiabatic processes and
O is the collection of all simple, physical null process-
es. The subsets satisfy the following conditions: (1)
pePorp*ePY¥ pell, ) (P-A)NA*=@ and A+A*,
(3) for each xc = 3 some pe () such that F(p) = (x,x),
(4) for each x, '« £ 3 some P-process P such that
x £y’ or x' £x, (5) if A A-processes P and P such that
x5 x" and x' E x then, 3 an (4 NA*)-process P such
that x £ %/, and (6) if 3 A-processes P’ and P” such
that (v' £+ x and x” £ x) or (x £+ x’ and x £%x”) then,

3 an A-process P such that x* & x” or x” & x'.

In this paper the adjective physical has been applied to
processes for the first time in Axiom 1. 33, and it might
be well to comment on the connotation of that word in
this connection. The elements of 2 and f-processes
should be regarded as the mathematical analogs of pro-
cesses which can actually be carried out, in some
sense, in the real world. Concomitantly, this interpre-
tation implies that perhaps not all processes are realiz-
able in the real world. As a matter of fact part (1) of
the axiom assumes that either a simple process or its
reverse is realizable, and part (4) makes the eminently
reasonable assertion that any pair of states can be
linked by some realizable process. An observant reader
may have noticed that a statement equivalent to part (3)
of the axiom was used in connection with equivalence
relations and partial order relations, while the equiva-
lents of parts (5) and (6) appeared in connection with
partial order properties.

Definition I.34: An A-process is called an adiabatic
process, while a P-process is said to be a physical
process. An A4 NA*-process is called a reversible
adiabatic process and a PN P*-process is said to be a
reversible process.

Immediate consequences of Axiom I. 33 are contained
in the next theorem,

Theorem 1.35: @z CANA*CPNPFCPCPUPM =TI
Let pc A and P an A-process. Then p and P are
reversible iff they are reversible in 4.

Pyoof: Suppose p< IT; then, by Axiom I1.33(1), pc f
or p*< 2, and, by Theorem I.8(2), p /?*; hence
pe PU P* and thus 1< PU P*, The converse PU P*CIl
follows similarly. By Axiom 1.33(3), 0+ and, by
Theorem 1.9, ) =(*. Since A C /P, we have
0=0n0*cAnA*C PN P*CPuUP*. Since ANA*
C P P*, it follows from Theorem I.8(4) and Theorem
1.15(3) that if p and P are reversible in 4, they are re-
versible in 2N * and hence reversible. Conversely,
suppose p and P are reversible. Then peA=p*ec A* and
p, p¥e P. But then p* & PnA* =ANA* by Axiom 1. 33(2)
and, by Corollary 1.12, pe A NA*. Thus, p is reversi-
ble in 4. Since ImMPC4, then ImP*C A4* and, since P
is reversible, ImP* C P and, hence, ImP* C PN A*
=ANA* = ImP CANA* and thus P is reversible in 4.
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As a consequence of Definition 1.34 and Pn P*c p
we see that all reversible processes are assumed to
be actually realizable in some sense. A sketch of the
relationship among various kinds of simple processes
is shown by the Venn diagram of Fig. 3.

Given the content of Axiom I.33, we can immediately
utilize some of the previously derived results in order
to introduce various equivalence relations on Z. Thus,
we have

Theovem I.36: The relations ﬁ, =4, "5, and = pare
equivalence relations on £ and, furthermore, (1) each
equivalence class of = 4(=;) is a subset of some
equivalence class of 4 ¢) and (2) the relation £ possess~
es only one equivalence class, namely Z itself.

Proof: Except for part (2) this theorem is a direct
consequence of Axiom I, 33 and Theorem 1.18. To
establish part (2) we know by Theorem I, 34 that
=/ U pP* Thus, it follows that every process is a
(P U *)-process and by Axiom 1. 33(4) each pair of
points in T is linked by some process and, hence, for
eachxe T, x£x’' ¥x'c .

Definition 1.37: If xﬁx', then x and x” are said to be
adiabatically equivalent. The equivalence classes of
~ are called adiabatic components and denoted by I,,
A€ A and A an index set. If x=, x’, then x and x* are
said to be adiabatically equal. The equivalence classes
of =, are denoted by [x], x€ Z.

The adiabatic components represent rigorous general-
izations of the sets 8, p’, 8", ***, introduced heuristically
by Landsberg (1961, p. 31). As a matter of fact, in the
next theorem we shall encounter subsets of the adiabatic
components which themselves can be regarded as gen-
eralizations of Landsberg’s B3, 8/, 8", °°".

Theovem I.38: The triplet (£, <4,=4) is a nonbranch-
ing partially ordered set whose maximal chains parti-
tion the adiabatic components. For each xc =, [x]is
subset of some maximal chain, and x = 4x’ iff x < 4%’
and x' s4x Vx, x'e2.

Proof: Combining Axiom I.33 with Theorem I. 32 and
Definition I. 19 shows that (Z, S 4, =4) is a partially
ordered set and satisfies x = 4x iff x < 4x’ and x’ < 4x.
But by Axiom 1. 33(6) and Definition L. 27 the relation
< 4is nonbranching and by Theorem I.30 the maximal
chains partition . Because AN A*CACAUA*, it fol-

R
\‘:.o,o:.:,:.o'

~

FIG. 3. Interrelationship among various kinds of simple
processes.
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FIG. 4. An example of the partitioning of the set of thermo-
dynamic states T by adiabatic processes. The I'; are adiabatic
components, the C; are maximal chains, and Ix], '], "]
are the equivalence classes of adiabatic equality,

lows that x=4x’ => x < 4x'=xZ %', Thus, each equiva-

lence class [x] meets only one chain, each chain meets
only one adiabatic component and the theorem is
proved.

The maximal chains C of the nonbranching partial
order <, can also be regarded as generalizations of
Landsberg’s 8, 8/, 87, . They can also be thought
of as the equivalent of Boyling’s® simple systems. See
postulate IIa in Boyling (1972). An example of a situa-
tion that is compatible with Theorem I. 38 is illustrated
in the Venn diagram of Fig., 4. Here there are four
adiabatic components but only the internal structure of
T"; is depicted. It contains three maximal chains and,
again, only the internal structure of the maximal chain
C, is pictured. It contains three equivalence classes
of the relation =4. The content of Theorem I, 38 can be
rephrased in terms of the equivalence classes [x],
xcZ.

Theovem I.39: Let § ={[x]ixe Z} be the collection of
equivalence classes of the relation = 4. If = is the
equivalence relation of ordinary equality in § and if
[x]<[x'] iff x <, %', then (§, <, =) is a nonbranching
partially ordered set whose maximal chains partition
§. Let I'={I', Ixe A} be the collection of adiabatic
components of = and §, ={x]lx< I',}. Then (1)
{S,Ire A} is a partition of §, (2) the maximal chains
of § partition §,, and (3) C={[x]Ix=C, C a chain in
Z}is a maximal chain in § iff C is a maximal chain
in Z,

Proof: From the fact that =4 is an equivalence rela-
tion it follows that [x]=[x’] iff x= ,x'. This, coupled
with the definition of the relation < and the fact that <,
is a nonbranching partial order relation, establishes
that (§, <, =) is a nonbranching partially ordered set
and hence its maximal chains partition § by Theorem
L. 30. Next we show that {§, A< A} is a partition of §.
Obviously, §,#@ since I',#@ and U, §, . Suppose
[x}e §; then x= © and hence x e T, for some A since I
is a partition of £ and hence [x]< §, for some A. Thus,
Scu, S, and hence §=U, §,. Finally, suppose $,N S,
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#@. Then 3 [x] such that [x]e §,, [x]e §,. and then

xe T, and xe T, ; hence, T, NT,, #@ which is a contra-
diction. Thus, {S,L Ixe A} is a partition. Now consider
the set C ={[x]lxe C, C a chain in £}, Since x Sﬂx’ or
x' < 4x iff [x] <[x’] or [x’]<[x] it follows that Cis a 4
chain in § iff C is a chain in =. Further, Cy={[x]ixc C ]
cC, ={lxllx< C,} iff C;CCy; hence, Cy=C, iff C;=C,
and thus ( is a maximal chain in § iff C is a maximal
chain in Z. Since the maximal chains in § partition §,
we need only show that if C is a maximal chain, then
Cc S, for some A, But [x]e §, iff xe T,, and hence
CcS,iff ccT,. But CcT, from Theorem I. 38.

Covollary I.40: There exists a 1—1 correspondence
between the maximal chains in § and the maximal
chains in Z,

Proof: Let {C} be the collection of maximal chains in
Z and {C} the collection of maximal chains in §. Define
the relation g: {C} ~{C} by g(C) =C ={lx}(xc C}. By
the proof of the previous theorem C;=C, iff C; =, iff
g(C)=g(C,). Thus, g is a 1—1 function. Further, if
C is a maximal chain, then C ={x|[x]e C}is its preim-
age and hence g is onto.

The “mutual accessibility” classes of Boyling” and
Buchdahli4:1 and the “frontier sets” of Rastall! are
analogous to my equivalence classes [x] with the follow-
ing clarification. My equivalence classes and the
“mutual accessibility” classes are purely algebraic
in origin and invoke only adiabatic accessibility.
Rastall’s!® “froniter sets,” on the other hand, involve
not only adiabatic accessibility but topological assump-
tions as well (p. 2958, Axioms VI and VII together with
the assumption that “frontier sets” are closed).

High on the list of important thermodynamic concepts
is the notion of equilibrium states, yet, sometimes,
this idea is poorly defined in theoretical treatments of
thermodynamics. An unambiguous definition is

Definition I.41: Let C be a chain, not necessarily
maximal in (Z, <4,=4). An equilibrium state of C is a
maximal element of C.

Three things should be observed about this definition.
First, an equilibrium state is defined with respect to a
chain and unless one is prepared to specify the chain
one cannot speak about an equilibrium state. Second, a
particular chain may not have an equilibrium state since
we are not assured of the existence of maximal elements
in a chain. Third, an equilibrium state, if it exists, may
not be unique. This is shown in the next theorem.

Theovem I,42: Let C be a ¢hain in (T, <4, =4) and e
an equilibrium state of C. If e’e [e], then e’ is an
equilibrium state of C.

Proof: Suppose e is an equilibrium state of C. Then,
since e is maximal, e < ;x=>x= 4e for xc C. Further,
e'cle]l<=>e= 4e’ iff e< e’ and e’ < 4e. Suppose
e’ < 4x and x# 4e’. By the transitivity of < ;and = 4 we
know that e’ < 4x and e < 4e’ =>e < 4x=>x=4e and,
since e = 4e’, =>x=4e¢’ which is a contradiction. Thus,
e’ < 4x=>x=4e" and ¢’ is an equilibrium state of C.

There are two ways in which one can arrive at a
unique equilibrium state if equilibrium states exist.
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One would certainly have a unique equilibrium state if
the cardinality of [e] were one. Alternatety, and more
generally, one could impose additional conditions on

the states in C which would permit one to eliminate all
members of [e] except one. This is equivalent to assum-
ing the axiom of choice, that is, endowing ourselves
with the ability to select one element from each of the
equivalence classes in C. This, in fact, represents a
generalization of what is conventionally done in thermo-
dynamics. There one encounters statements such as

(1) equilibrium is the state of maximum entropy for
fixed internal energy and fixed volume or (2) equilibrium
is the state of minimum Gibbs free energy for fixed
pressure and fixed temperature. The axiom of choice is
a standard mathematical tool and is equivalent to Zorn’s
lemma which appeared as Lemma 1. 25.

Theovem I.43: Axiom of Choice: Let {A, la c A} be
a nonempty collection of pairwise disjoint sets. Then
3 a set A such that A, N A has precisely one element
in A, for each o € A. Equivalently, let {A,lac albea
nonempty collection of sets, disjoint or not. Then 3
a function ¥ :4 —U,-, 4,, called a choice function,
such that y(a)c A, for each ac A.

The axiom of choice is intimately connected with the
extension of the definition of the Cartesian product from
the case of a finite number of factors, e.g., Z{XZ, to
the case of an infinite number of factors. This standard
extension is given as part of the next definition.

Definition I.44: Let {A,la c A} be a nonempty collec-
tion of sets, disjoint or not. Then the set of all choice
functions is called the Cartesian product of {Aa lac A}
and designated by l'IaEAAa. For < A the gth projection
map, 7%, is the function 7®: [1,_, A, —~A, defined by
() =v(B)=v*V ye [y 2 Aq-

Theovem I.45: Let C be a chain in (T, <4,=4) with a
maximal element and I1[x] the Cartesian product of the
distinct equivalence classes in C. Then for each
ye I[x] 3 a unique equilibrium state of C.

Proof: Since v is a choice function, the discussion
preceding the axiom of choice applies.

The fundamental structure of thermodynamics is now
complete and arises from only two axioms, namely
Axiom 1.1 and Axiom I. 33. This has been accomplished
solely with the ideas of states and adiabatic processes
without any mention of heat, work, the first law, tem-
peratﬁre, entropy, etc. This is not to say that these
ancillary trappings are unimportant for the applications
of thermodynamics but only that the fundamentals of
thermodynamics in no way depend upon them. The use
of the word adiabatic in the preceding development
might give one the erroneous impression that heat has
been implicitly used in the concept of an adiabatic
process. The fact is that adiabatic processes have only
been required to possess the properties listed in
Axiom I.33 and any subset of 2 with the requisite prop-
erties will suffice to generate a thermodynamics. The
choice of a name for the subset, although operationally
significant, is mathematically insignificant. The gen-
eral thermodynamics that I have developed specializes
to a form that is obviously similar to conventional
thermodynamics if one assumes that = itself is the only
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adiabatic component and is also the only maximal chain.
In effect, conventional thermodynamics is the restric-
tions of the general structure to a maximal chain,

Of course, any theory which aspires to be called
thermodynamics must eventually come to grips with
such things as entropy and the first law. The definition
of entropy presents no problem.

Definition 1.46: Let C be a chain in (T, <4,=4). An
empirical entropy for C is an order homomorphism
from C onto a subset of the reals with the usual order,
That is, ¢ is an empirical entropy iff ¢ :C —R is a
function such that (1) @(x() < @(x,) iff x4 < 4x, and (2)
@(xy) = @) iff xy= 42, W xq, x5 C.

Strictly speaking condition (2) of this definition is re-
dundant because it follows from condition (1) and the
property x =, x’ iff x <, x" and x’ <; x of Theorem I, 38.
Thus, xy=4 %, iff x; <4 2, and x, 4 x4 1 @(x)) < @(x,)
and @({x,) < o(x,) iff @{x;) = ¢@(x;). The need for restric-
ting the definition of empirical entropy to a chain rather
than ¥ itself is obvious when one recalls that the reals
with their usual order are a chain. But a chain can only
reflect the order properties of another chain if at all.
The desire to retain the notion of entropy is what dic-
tated the requirement that < be a nonbranching partial
order in the first place. As we have seen, a nonbranch-
ing partial order partitions a set into maximal chains
and hence each element of a set is in some maximal
chain. The existence of maximal chains does not guaran-
tee the existence of entropies but at least it makes it
reasonable to attempt their construction. A substantial
portion of the remainder of the paper will be devoted to
the construction of entropy functions. Definition I. 46
presents an unambiguous answer to the oft repeated
question “what is entropy ?” Simply put, it is a real-
valued function which reflects the order, in a chain,
induced by the adiabatic processes on Z. It decidely is
not a real-valued function which establishes an order
because every real-valued function induces some order
on its domain by virtue of the usual order on the reals
and this order, in general, will not be the same as the
adiabatic order. The entropy is now recognized as a
purely mathematical, rather than a physical concept
and this may account for some of the conceptual difficul-
ties surrounding the entropy in thermodynamics. Clear-
ly, the concept of entropy has no extension to all states
X unless it possesses an extension to Z and, of course,
it can only be extended.to all thermodynamic states if
¥ itself is a maximal chain. Thus it is of prime physical
importance to establish experimentally the extent of
the maximal chains in Z. The definition of entropy
makes it clear that an entropy cannot be unique, for if
¢ is an entropy, k4> 0 and k, real numbers, then the
function ¢, , defined by <pk1,k2(x) =ky@(x) + k, is also an
entropy. If we insist that an entropy exist for a chain
C, something we have not yet done, then we must ac-
cept the fact that C cannot contain more equivalence
classes than the cardinality of the continuum. This is
shown in the next theorem.

Theovem I.47: Let ¢ be an empirical entropy for a
chain C in (2, < 4,=4) and (= {[x]Ix=C}. Then( is
order isomorphic to a subset of the reals.

Proof: Define ¢ :C ~R by ¢(lx]) = ¢(x). Then ¢([x,])
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- ¢([x2]) =0 iff W(xx) ~ @(x,) =0 iff Xy = A%y iff [xi]
=[x,). Thus, ¢ is a 1~1 function. Further, this also
demonstrates that the second part of Definition I. 23
is satisfied. Similarly, ¢(lx]) - ¢(lx,)) <0 iff @(x,)

— @(xy) < O iff x; < 4x, iff [x,] < [x,].

Finally, we have reached the point where it becomes
appropriate to introduce the first law of
thermodynamics.

Axiom I.48: The First Law: Let X be the set of all
physical states and II the collection of all simple pro-
cesses on the collection of thermodynamic states Z.
Then 3 real-valued functions @ :II -R, W:II—~R, and
Au : XXX~ R such that (1) Q(p) + W(p) =Au(x,x’} ¥
pe Il and x, x’c T such that F(p)=(x,x’), (2)

QP +Q(p*) =0, W(p)+ W(p*)=0, ¥ pc II, and (3)
Aulx, x’) + oulx’, x") =Aulx,x") ¥ %, x', x"< X. The
values @(p) and W(p) are called the heat and work,
respectively, of a simple process p, while Au(x, x’) is
the internal energy increment between x, x’'c X.

A few explanatory comments about Axiom I.48 are in
order. The domain of both @ and W is taken to be I and
condition (2) is interpretable as a property of heat and
work. However, we could equally well have chosen the
domain to be the set of simple, physical processes P.
Then condition (2) would be interpreted as the extension
of heat and work from /2 to II. The reason for this is
that, by Axiom 1.33, (1) pc Por p*c P vpec Il. Also
the domain of Ax was taken to be XXX rather than
I XZ in order to imply that Au is significant even for
nonthermodynamic states. Of course the thermodynamic
applications of Au will only involve its restriction to
T XZ.

Theovem I.49: The restriction of Au to Z XX is a
skew-symmetric function, that is, Awu(x,x)=0 and
Aulx,x’) =~ Aulx’, x) ¥ x,x’< Z. The relation
U, :Z —R defined by u,. (x) =2u(x’,x) Yxc Z isa
function ¥ x’ = Z and is called the internal energy rela-
tive to x’.

Proof: Let pc Il and F(p)=(x,x’). From Axiom I. 48
it follows that 0=@Q(p) + W(p) + @(p*) + W(p*) = dulx, x’)
+ Aulx’, x) =Au(x, x). To show that u,. is a function
observe that u,.(¥) — u,(x) = Au(x’, x) - Aulx’, x) = dulx’, x)
+ Aufx,x') =Aulx,x). Thus, if x=Xx, then u,.(x)=u.(x)
since Aulx,x)=0.

We shall find it convenient to postulate that certain
simple processes have zero heat or zero work.

Axiom 1.50: (1) If p< A, then @(p) =0, and (2) if
pe (), then W(p)=0.

Note that since () A we have the fact that simple
null processes are both zero heat and zero work pro-
cesses. Further, the converses of the statements in
Axiom I.50 are not generally true. For example,
Q(p) =0 does not imply p<A. Infact we have

Theovem 1.51: Q(p) =0V pc AUA*.

Proof: If pc AUA*, then pe A or pe A* and, by
Theorem 1.8, pe A or p*= A and hence Q(p)=0 or
Q(p*)=0. But, by Axiom I.48 (2a) @(p) =~ Q(p*).

It now is a very simple matter to extend the ideas of
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heat and work from simple processes to processes.,
This extension is carried out in the next theorem.

Theorem I.52: Define relations from the collection
of all processes to the reals by Q(P)=3, @(p,) and
W(P)=3,W(p,), where P is a process such that
P :N—1I with P(n) =p, and x £x’. Then the extensions
of @ and W are real-valued functions on the collection
of all processes. Further, (1) @(P)+ W(P)=2Au(x, x'),
(2) Q(P) +Q(P*)=0, W(P)+ W(P*)=0, (3)if P is an
(4 UA*)-process, then @(P)=0, and (4) if P is a null
process Q(P)=0=W(P).

Proof: Simple null processes have zero heat and work
by Axiom I.50. Since a process contains at most a finite
number of nonnull simple processes, the sums @(P)
and W(P) are finite and hence convergent., Suppose
P=P. Then p,=p, ¥ nc N and therefore Q(p,)=Q(5,)
and hence Q(P)=%,Q(p,) =3 Q(p,) = Q(P). Similarly,
W(P) = W(P) and thus the extensions are real-valued
functions. The second part is easily established since
by Definition I.14, if P is a process of length n;, then
for its reverse P* we have P*(n) =p} .., fOr n<n, and
P*(n)< () for n>ny. Thus,

QP =T QLP*]=2; Qb s

) ny
== 21 Qbnpan) == 2y Qo) == 2 QUp) = - QP).

In similar fashion W{(P)+ W(P*)=0. The third part fol-
lows from Theorem I.51 and the definition of an

(A UA*)-process. To prove (1), suppose P is a process
of length #, linking x and x’. Then

Q)+ W) =2 [Q(pa) + W(p,)]

n

g
:"2 [Q(Pn) + W(Pn)] :'§1 Au(am bn)’

where F(p,) = (a,, b,). But, from Definition I. 13,
b,=a,, and using Axiom I. 48 (3) Q(P) + W(P)

=300, By, Gnyy) = Bulay, 8y001) = Dulay, b"o) = Aulx, x’).
Finally, to establish (4), suppose P is a null process.
Then p,e 0¥ nc N and, from Axiom 1,50, @(P)=0

= W(P).

Heat, like work and the first law, has played no role
in developing the fundamental structure of thermody-
namics, as has already been pointed out. But its role
in thermodynamics can be quite easily established in
spite of the fact that no explicit definition for heat has
been given. It turns out that heat offers us a means
for deciding whether or not two points x,x’ in a maxi-
mal chain are adiabatically equal, x= 4x’. This then
leads to a possible construction method for empiriecal
entropies. We start with a simple theorem which will
lay the groundwork for establishing these assertions.

Theovem 1.53: x, x’ € Z and P a P-process such that
x & %', If x=,4x’, then 3 a P-process P such that
x Ex, Q)+ W(P)=0, and Q(P)=Q(P).

Proof: By Theorem 1. 38, x= ,x’ iff x < 4,2’ and
x’ < 4x, and hence 3 A-processes Py, P, such that
x 3 x’ and x’ <% x. Consider the process P such that
x&x’ﬁ—x, that is, P(n)=P(n) for n <n, and P(n)
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= Py(n —ny) for n>n;, where n, is the length of P, Then
x £ x and thus Q(P) + W(P) = Aulx,x) =0 and P is a -
process. Also Q(P)=@Q(P) + Q(P,) = Q(P) since Q(P,)=0.

This theorem asserts that for any pair of adiabatically
equal points connected by some physical process P
there exists another physical process P whose sole
effect is the complete interconversion of heat and work.
This presents no difficulties if @(P) <0 for then W(P)
=~ @(P) =0 and this corresponds to the conversion of
work to heat. If, however, @(P)> 0, then W(P}< 0 and
heat has been completely converted to work without a
compensating change in the system. This violates
Kelvin’s statement®? of the second law and is a result
at variance with experience. This suggests that we
adopt

Axiom 1.54: x = 4x" iff Q(P)<0V pP-processes P such
that x & x’ or x' & x.

This axiom plays the role of a second law because it
is designed to prevent the occurrence of the same situa-
tions which are prohibited by the second law. One im-~
mediate consequence of Axiom 1.54 is {P) <0V p-
processes such that x & x because x = 4%. The combina-
tion of Axiom I.54 and Theorem I.52(2) shows that if
P is a reversible process linking x and x’ where x = 4x’,
then @(P)=0. Another immediate and important conse-
quence of Axiom I.54 is

Theovem I.55: x < 4x’ iff x < 44’ and Q(P)> 0 for some
P-process P such that x Exorx' &y,

Proof: From Theorem 1. 21, x < 4x’ iff x € 4x’ and
x# 4x°, But the contraposition of Axiom I.54 is x# 4x'
iff Q(P)> 0 for some P-process P such that x &x/ or
x Ex,

The significance of Axiom I.54 and Theorem 1. 55 can-
not be overestimated for they take two relations, =4
and <,, whose definitions involve the concept of re-
versible processes, and recast them into a form which
is wholly independent of the notion of reversible pro-
cesses. The idea of reversibility has been replaced
by the idea of the heat of a process. This enables us
to regard reversible processes as mere mathematical
constructs rather than true physical reality if we wish,
Such a decision need not be made here. It is important
to point out that, while the first law was used in the
proof of Theorem 1.53, both Axiom 1,54 and Theorem
1.55 are independent of the first law. The only purpose
for Theorem I.53 was to provide motivation for Axiom
1.54. Both Axiom I.54 and Theorem I1.55 become de-
pendent upon the first law only if the first law is used
to define heat, that is, if heat is defined in terms of
work and the internal energy increment,

Definition I,56: For any pair of points x, ¥’ Z de-
fine a subset of the reals by S(x, x’) ={@(P) > 0ix & x’
or x’ f'x, ImPC P}CR. The greatest lower bound of
S(x,x*), inf[S(x,x*)], is called the minimum heat for
x and x’ if it exists.

The next few theorems will utilize Definition I. 56 in
an attempt to construct empirical entropies from heat
measurements alone,

Theovem I.5T: Let C be some chain in (T, <4,=4)
and ¢ :CXC —R be a relation defined by ¢{x,x') =0 if
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S(x,x’) is a null set, @(x,x") =inf[S{x,x")] if x < 4’ and
o(x, x") =~ inf[S(x, x*)] if ' < A%. The relation ¢ is a
skew-symmetric function and satisfies (1) x = 4x’

= @x,x’)=0and (2) x < 4x’ = o(x,x’) = 0. If

inf[S(x, x")]e S(x, x') ¥z, x'< C and x#,x’, then (3)
@, x') =0 iff x= 44" and (4) ¢(x,x’) 2 0 iff x < x’,

Proof: By Axiom 1.54, x=,4 x' iff S{x, x') is null
= ¢(x,x") =0 which is (1). If S(x, x’) is not null, then
inf[S(x, x')] = 0. Hence, x < 4x' iff x< 43’ or x= 4%’
= @x,x) =0 or @(x,x")=0=> @lx,x') = 0 which is (2).
To establish the skew-symmetry of ¢ we have, if
x= 4x, then ¢(x,x') + @(x’,x) =0+ 0=0 while, if
%< 4x', then @(x,x')+ @(x’, x) = inf[S(x, )] — inf[S(x, x")]
=0 and similarly for x’ < x. To show ¢ is a function
we must show that (x,x") =(x,x")= CXC = ¢(x, x’)
=¢(x,x'). But (x,x")={x,¥") iff x=% and x' =%' => x = 4%
and x* = 4x’. If x= 4x’, then X= 4x = 4x’ = 4% and con-
versely. Thus, x= ,x' iff x= 4%’ and then ¢(x,x")=0
=@, x'). If x# ,x’ and (x=% and x’ =%'), then x &y’
=>x &%'. But then S(x,x') =S, ¥’') and again ¢(x, x’)
=@(x,x’). This establishes that ¢ is a function. To
establish the last two parts of the theorem suppose,
inf[S(x, ")} S(x, x’). Then by the definition of S it fol-
lows that inf{S(x, x’}]> 0 and hence @(x,x’)# 0 iff x# 4x’.
Thus, ¢(x,x')=0=>x= ,x', which combined with (1)
establishes (3). Further, ¢{x,x'})>0=>x< 4x', and then
o(x,x") 2 0=>x < ,x’; this combined with (2) establishes
establishes (4).

Even though we have not yet produced an empirical
entropy, we have now reached the point where it be-
comes possible to write down conditions which are
sufficient to guarantee the existence of an empirical
entropy. The satisfaction of these conditions will also
permit us to exhibit a number of empirical entropies.

Theovem I.58: Let C be some chain in (Z, <4, =,),
S(x, x) the subsets of the reals given in Definition I, 56,
¢ the function of Theorem 1.57, ¥’ C, and ¢, :C —R
a map defined by ¢, (x) =@@’,x). I Yx, xcC, we
have (1) ¢(x, %) < @(x,x') + (x', %) and (2) inf{S(x, ¥)]
€ S(x, %), then (38) ¢, is an empirical entropy called
the empirical entropy relative to x’ and (4) ¢(x, x")

+ o', x)=plx,x) ¥Yx, x&C,

Proof: From (1) we have ¢(x,x) < ¢x, x') + @{x’, x).
Multiplying by (= 1) and using the skew-symmetry of ¢
leads to @(x,x}= @{x’, %) + ¢(x,x’) = ¢(x,x), where the
last inequality is just (1). Hence, ¢{x,x)=¢(x,x")

+ @(x’,x), and the last part of the theorem has been
proven, From this it follows that ¢.(x) - ¢ (x)
=o', %) - ¢(x’, x) = o(x,x). Hence, by the skew-sym-
metry of ¢, it follows that x =x => ¢,.(x) = ¢,.{x) and
hence ¢,. is a function. Further, ¢.{x) < @,.(x) iff
@lx,x) <0 iff @lx,x) =20 U X < 4x and @ (%) = @u(x) iff
@{x,x) =0 iff x= ;x and then, by Definition 1. 46, ¢, is
an empirical entropy.

Suppose that there exists some x’ C which satisfies
the conditions of Theorem I1.58. Then by the skew-
symmetry of ¢(x,x’) it follows that ¢.(x") = ¢(x’, x") =0
and hence x’ is a state of zero entropy, as is any other
state which is adiabatically equal to it. Clearly, no
particular significance can be attached to this result
unless x’ is unique in some sense, thatis, x’ itself
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possesses some intrinsic significance. But the only
possible way that an element of a chain could be in-
trinsically significant would be for it to be the largest
or smallest element of the chain. These elements, if
they exist, are unique but they need not exist. Intuitive-
ly one feels that a maximal chain, in thermodynamics,
cannot possess a largest element. This certainly is
conjecture and not proof. However, granting this intui-
tive feel, it then seems that the third law of thermo-
dynamics can be regarded as an assertion that a maxi-
mal chain possesses a smallest element and that this
element satisfies the conditions contained in Theorem
1.58. We shall not pursue this further, but instead look
at the situation where more than one point satisfies the
conditions of Theorem I.58 and try to determine the
relationships among the various entropies.

Corollary 1.59: Suppose x’, x" = C both satisfy the
conditions of Theorem I.58. Then ¥ x< C it is true that
Ppulx) = @ulx) = @(x’, x") and (1) @(x’, x”) =0 iff x' = 4x”
and (2) o(x’,x”) = 0 iff x’ < 4x”.

Proof: From the definitions of ¢, and ¢,. it follows
that @.(x) = @..(x) = @', x) = @x”, x) = @x’, x) + px,x").
Since x” satisfies the conditions of Theorem I.58, it
follows from Theorem I.58(4) that ¢(x, x”) + ¢(x”", x)
=¢{x,%) ¥x, xc C. Let x=x" and use the skew-sym-
metry of ¢ to get ¢(x,x”) + ¢(x’', x) = @{x’,x"). The
remainder of the corollary can be proven by setting
x=x"in @{x,x") =0 iff x= 42" and @(x,x”) > 0 iff
x < ,x", which come from Theorem 1.57(3, 4).

All that is now required is the postulate that the con-
ditions of Theorem 1,58 are actually satisfied, Such a
postulate is unwise on two counts. First, the existence
of an empirical entropy is not a requisite of thermo-
dynamics and, second, the conditions of Theorem I. 58
have not yet been subjected to an experimental test.
There are some highly significant aspects of the fore-
going discussion of entropy. The discussion is couched
solely in terms of heat and physical processes. No-
where is there a mention of the first law; if one can
define heat without recourse to the first law, then
entropy possesses an existence which is independent
of the first law, Nowhere is there a need to come to
grips with reversible processes and their experimen-
tal significance. One need know about adiabatic pro-
cesses only to the extent that they determine the maxi-
mal chains which partition Z, My reliance on adiabatic
processes alone contrasts with the work of Buchdahi!
(1958, 1962), who used not only adiabatic processes but
also zero work processes, which he called isometric
processes. Similarly, Rastall! employed adiabatic pro-
cesses and a slight generalization of the isometric pro-
cesses, which he called anergic processes. These
authors used isometric and anergic processes to con-
struct entropies. This could also be done within the
framework of the theory constructed here. It would only
be necessary to postulate the existence of such a set of
processes and assume that these processes suitably link
the equivalence classes [x] of a maximal chain. This
procedure has the disadvantage that one must charac-
terize these processes sufficiently so that they can be
recognized experimentally. Additionally, one must then
verify that any postulated linking properties are realized
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experimentally. To me it seems preferable to construct
thermodynamics from only one class of processes,
namely, the adiabatic processes.

All of the thermodynamics developed so far has dealt
exclusively with the abstract, and hence undefined, con-
cepts of states and processes connecting these states.
An obvious advantage of this abstract approach is that
it gives the experimentalist considerable latitude in
selecting the real world counterparts of the abstract
quantities, Any attempt to be less abstract, and thus
more specific, will limit the choices available to the
experimentalist. The move from the abstract to the
concrete is desirable if it leads to a characterization
of abstract notions in terms of ideas which are more
easily interpretable in the real world. Since our charac-
terization of phenomena in the real world is predicated
on measurements, it is natural to attempt to interpret
states and processes in terms of measurements. This
is precisely what will be done and the opening move in
that direction is a definition of measurement.

Definition 1.60: Let ¥ be a subset of the set of all
physical states X. A measurement m is a real-valued
function on X, m :X —~R, and its restriction to Y,
m| Y, is said to be a2 measurement on Y. A set of mea-
surements M ={m®|Y |m®*:X—~R, acA}on Y is said
to be a measurement set for Y iff it separates the points
of Y, that is, x#x’'c Y=> m*(x)#m®*(x’) for some
ac A, A measurement set for Y is said to be a coordi-
nate system for Y iff it is minimal, that is, /, is a
coordinate system for Y iff // is a measurement set for
Y and / Mo =>/M =My The dimension of a coordinate
system is its cardinality and its elements are called
coordinates of Y.

A measurement is by definition a real-valued
function; however, a real-valued function need not be a
measurement since it is the experimentalist who decides
which real-valued functions qualify as measurements.
An alternative, but equivalent, definition of a coordinate
system would be to say that a measurement set is a
coordinate system for Y iff every proper subset does
not separate the points of Y. In general, a given set
Y could possess many coordinate systems and there is
no a priovi reason for all coordinate systems to have
the same dimensionality. Obviously, the dimensionality
will strongly depend on the character of the measure-
ments. From an experimental point of view it is
essential that the dimensionality be finite because there
is no way to make an infinite number of measurements.
Since the cardinal numbers are linearly ordered, it
makes mathematical sense to speak of coordinate sys-
tems with minimal dimensionality. However, as a
practical matter there is no way to know that a given
system has this property since this requires compar-
ing its dimensionality with the dimensionality of all
other coordinate systems.

Theovem I.61: Let YC X, M={m®|Y |m*:X—~R,
o e A} a coordinate system for Y, Im(m®|¥)=R, ¥
ac A, I, 4R, the Cartesian product of the R, and R®
the collection of all real-valued functions on the index
set A. The relation ¢ : ¥ —Tl,_ o R,, defined by e(x)=7,,
where v, is the map 7, : A ~ U, R, with y, (@) =m*(x),
is a 1—1 function called the evaluation map induced by
M and Ime CI,c o R, CR®. If n® is the gth projection
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map, then 18ce=m?lY, Bc A, and TPeelx)=m(x) is the
Bth coordinate of x= Y. If e’ is an evaluation map in-
duced by /}’, a coordinate system for Y, then the map
e’oe™ :Ime 45k-Ime’ is called a coordinate transforma-
tion from /M to M'.

Proof: From the definition of e it is obvious that
ImeCll, s R,. ¥ R,=R ¥V ac A then the Cartesian
product is the Cartesian product of copies of R, one for
each a = A and this set is exactly the collection of all
real-valued functions on A. Hence, Ime CIl,_ o R, CR®.
Suppose x =x'. Then m*(x) =m*(x') Wa < A; hence,
¥, =7, and e(x) =e(x’) so that ¢ is a function. If x#«’,
then m® (x) # m*{(x’') for some ¢ < A and y,#7¥,, and
therefore e(x)# e(x’), which establishes that e is 1~1.
But then ¢ is 1—1 and onto Ime and hence its inverse
¢! exists and is also 1—1 and onto. Similarly, e’ is
1—1 and onto Ime’ and this implies that the composite
e’oe"l is 1—1 and onto. The only remaining task is to
establish 78°e =m®| Y. But this follows from the defini-
tion of an evaluation map and the definition of a projec-
tion map given in Definition 1. 44, That is, 7fce=1v,(8)
=mf(x) ¥xe Y.

The next axiom has two purposes. First, it asserts
that coordinate systems exist and, second, it makes an
assumption about simple processes that brings them
into closer agreement with the sketch in Fig. 1.

Axiom I.62: The set of all measurements on X con~
tains a subset /) ={m® : X —R |la € A} which is a coordi-
nate system for X and a finite subset /i’ of cardinality
ne N such that 7={rf =mfI1T lmfey,i=1,2,...,n}
is a coordinate system for Z. The elements of 7 are
called thermodynamic coordinates. For some //)’ and
some 4, say i=1, 7' =u, for some x’ < =. Further, if
peTlis a simple process and I=[0,1]CR is the unit
closed interval, then (1) p is a map p :I—X and F(p)
=(p(0), p(1)) and (2) pe O iff p is a constant function.

This axiom says that finite-dimensional coordinate
systems exist for ¥ and that some of these coordinate
systems use the internal energy as a coordinate. It does
not, however, require all coordinate systems for Z to
have the same dimension nor does it say anything about
the dimensions of the coordinate systems for X. The as-
sumptions about simple processes enable us to prove

Theovem I.63: If P is a process of length n; on Z,
then P induces a map from the closed-open interval
[0, ) to X. The induced map, also designated by P, is
the function P :[0, ©) — X defined by P(f) =p,{t-n+1)
forn—-1 <t<nand 1<n<nyand P({) =p,,0(1) for ¢ > ny.

Proof: Obvious.

This theorem brings processes into agreement with
the sketch of Fig. 2. The following definition merely
serves to introduce notation and terminology which will
be useful later. Some of the defined quantities are illu-
strated in Fig. 5.

Definition I.64: Let 1={m®* lac a} and 7
={r1i=1,2,...,n} be coordinate systems for X and I,
respectively, e(/) and e¢(7) the evaluation maps induced
by Mand 7, and 1, aca and ¥, i=1,2,...,n, the
corresponding projection maps. Let m:X —R be a mea-
surement on X, T=m |2, and write Ti(x)=«' ¥ xc =
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and 1=1,2,...,n. The function mce{/)~!, with domain
Im[e(/M)], is called the coordinate representation of m
in X. The function 7oe(7)™, with domain Im[e(7)); is
called the coordinate representation of m in . If
P:[0,%) ~Xis a process on T, then the collection of
functions {17“ ce{M-Plac A} is called a coordinate
representation of P in X and is usually written as

{m* =m%(t)lac a}l. If InPC3Z, then the collection of
functions {r'ee(7)oPli=1,2,... ,np={xt =xb(®) ¢
=1,2,...,n} is called a coordinate representation of
PinZ. If {;:Z —~X is the inclusion map, that is,
ix(x)=x ¥ xc %, then the collection of functions
{r®oe(Moigeoe(7) ! ac A} with domain Im[e(7)] is
said to be a coordinate representation of ¥ in X and
is usually written as {m® =m®(x?, 5%, ..., %"
=m*(x!)lac Al

1t is not only measurements which have coordinate
representations. Suppose YC X, Z some set and
$:Y —2Z. Then p will have a coordinate representation
Yole(MIY)!, If YCT CX, then ¢ will also have the
representations ¥o(e(7) 1 Y)1, In particular if Y=2, we
have the coordinate representation $oe(/)! and written
as P=p(x'). The following two definitions round out the
algebraic treatment of thermodynamics, They simply
define concepts that appear in other treatments of
thermodynamics but which have not been used thus far.

Definition I1.65: A process P:[0,%)—~X on T is said
to be quasistatic, or a process in Z, iff ImPCZ.

Definition 1.66: Let 7, and 7, be coordinate systems
for T such that 7, - 7, =} for some ¥’ c Z and 7, -7
={©}. The thermodynamic coordinate © is said to be an
empirical temperature iff [0(x) <0(®) iff u,. (x) s u,. ()]
and [O(x) =O(%) iff u,.(x) =u.(x)] ¥ x, ¥< T such
that T(x) =7x) v 7€ Ty N7,.

The empirical temperature is not unique for if © is an

im el M}z

/
el. hoigoe( 7)1~
Im el.4)

FIG. 5. The relationship between the evaluation map e(//l)
and the evaluation map (7).
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empirical temperature, then the function 9,,‘, & defined
by Oy, x, (x) = £,©(x) + k; is an equally good temperature
for any real numbers k;> 0, k,. By Definition I, 66 an
empirical temperature is regarded merely as an alter
ego for the internal energy. This is consistent with the
ordinary usage of empirical temperatures in the real
world, where one never measures the internal energy
directly but instead measures a temperature. One
might argue that processes offer a method for measur-
ing the internal energy increments, and hence internal
energies, through the first law. But this presupposes
that one has previously made unambiguous definitions
for both heat and work and this certainly is not the case
in thermodynamics, as was pointed out in the
Introduction.

The wholly algebraic development of the structure of
thermodynamics is now complete, and certainly a few
words are in order about what has been accomplished.
The fundamental structure of thermodynamics has a
completely algebraic character and requires only an
independent definition of heat for its implementation and
experimental verification. Nowhere in the treatment is
there any mention of topology, partitions, or the zeroth
law. While work, internal energy, the first law,
entropy, quasistatic processes, and temperature are
introduced and, in most cases, discussed within the
framework of the algebraic theory, they are clearly
dispensable concepts. The only indispensable tools are
the notions of states, processes connecting these states,
and the heat associated with such processes. The ab-
sence of topology points to the conclusion that
Caratheodory’s inaccessaibility axiom is not a basic
concept in thermodynamics. The absence of partitions
means the algebraic formulation is compatible with
partitions and hence seemingly contradicts the state-
ment, made in the Introduction, that a thermodynamics
without partitions is effectively a local theory. In a
sense this is true, but in a more precise sense there
is no contradiction. The reason for this is that the local
character of the theory is buried in the assumption that
a single point of Z, rather than a collection of points,
represents the state of a real world system. Equivalent-
ly, one set of measurements characterizes the real
world system.

Il. TOPOLOGICAL CONSIDERATIONS

The algebraic prerequisities for the preceding portion
of the paper were minimal and as a result that part of
the paper is almost completely self-contained. Unfor-
tunately, this is not the situation with respect to the
topology and it will be necessary to cite topological
theorems that require a somewhat larger background
on the part of the reader. All of the necessary material
can be found in the recent text on topology written by
Willard, ?° although any other comparable text will also
suffice. For convenience all citations will be to
Willard’s book and will be designated by the letter W.

It is obvious that topological considerations become
essential when one wishes to speak of continuous func-
tions. It is equally obvious that in a physical theory it
is the measurements which one would like to make con-
tinuous. But whether or not a given function can be
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judged continuous is determined by the topologies as-
signed to its domain and range. The range for mea-
surements is the set of reals R. In any physical theory
one would have to be somewhat addled to consider
assigning a topology to R which differs from its usual
topology even though other topologies do exist. Hence-
forth when the topology of R is under discussion it will
always be assumed to be the usual topology. What about
a topology for = ? If (Z, <4, =4) were a chain, then it
certainly could be endowed with the order topology.
However, we have no assurances that this is the case
although we do know that T is a union of disjoint maxi-
mal chains. This does make it possible to choose a sub-
base for T such that the relative topology for a maximal
chain would be the order topology. Such a topology,
based on order properties, has the disadvantage that it
probably would not make measurements on = continu-
ous. A topology to be preferred is one which makes
measurements on Z continuous functions. The follow-
ing scenario is designed to make plausible a choice of
topology for the domain. Since the states of Z are re-
garded as “simpler” than the states of X, measure-
ments, corresponding to the set /’ of Axiom I.62, are
discovered which are adequate for labelling the points
of Z. A topology is assigned to £ which is just adequate
to make the functions 7*= 7 continuous. Additional
measurements m are invented and deemed acceptable

if and only if m |2 is continuous in the topology assigned
to Z. Hence, by construction, if / is a coordinate sys-
tem for X, then /' €/ and me /M - M iff m |2 is con-
tinuous. This story is the basis for the first topological
axiom which, for clarity, incorporates a portion of
Axiom I, 62 in its statement.

Axiom II. 1: Let /) ={m®: X ~Rla c A} be a coordinate
system for X which contains a finite dimensional subset
M’ C/M of cardinality » € N such that (1) 7 ={7
=m*l2 ImteM’, i=1,2,...,n}is a coordinate system
for T and (2) u,. €7 for some x'c=. Let #. =T!. Then
me/M-/M =>m|Z is continuous in the topological space
(Z,7(7)) where 7(7) is the weak topology on T generated
by 7.

The definition of a weak topology is given in (W, p.
55, Def. 8.9).

Theorem II.2: Let (X,7(/)) be a topological space,
where 7(/)) is the weak topology on X generated by /
and (Z,7/(/}))) be a subspace, that is, 7'(/}) is the rela-
tive topology on . Then T7/(/#) =7(7) and hence
(=,7'(/M) and (T, 7(7)) are homeomorphic.

Proof. By definition of the weak topology (W, p. 55,
Def. 8.9) a subbase for 7(/) is the collection of subsets
of T given by {(m! 1) (U) Im* €/’ and U open in R}. A
subbase for T(/) is {(m*)"'(U) Im* €/} and U open in R}
and a subbase for 7/(/) is the collection of sets
{m® 1) (U) I m* €/} and U open in R} (W, p. 59, Exer.
8H.2). Since '/, the subbase for 7(7) is a subset of
the subbase for 7’(/}) and therefore 7(7)C ’(/}}). But,
by Axiom II.1, m®|Y is continuous Yo €A in (&, 7(7))
and, by (W. p. 44, Th. 7.2a, b), (m®iZ)'(U) is open
and hence (m® |2) /() 7(7) Y a < A and then 7'(/)
< 1(7). Therefore, 7'(/#)=7(7), and the identity map
on 2 is a homemorphism.

We have now succeeded in converting Z and X into
topological spaces based on measurements alone. What
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can be said about the resulting topologies?

Theovem II.3: Let /}) and 7 be the coordinate systems
of Axiom II. 1, R® and R" Cartesian products of the reals
endowed with the product (Tychonoff) topology, and e(/})
and ¢(7) the evaluation maps induced by /f and 7, re-
spectively. The space (Z,7(7)) is a metrizable space
embedded in R" by e(7/). The space (X,T(/)) is a
Hausdorff space embedded in R® by e(/) and it is a
metrizable space if the cardinality of A is finite.

Proof: The embedding of ( =, 7(7)) and (X, 7(/})) fol-
lows immediately from (W, p. 56, Th. 8.12) since 7(7)
and 7(/) are the respective weak topologies. The space
R" is metric and hence so too is any subspace. Since
(Z,7(7)) is homeomorphic to a subspace of R" and
metrizability is a topological property (W, p. 49, Exer.
T1.5), it must be a metrizable space. If A has finite
cardinality, then the previous discussion also applies
to (X, T(M)). The reals are a metric space and thus
Hausdorff (W, p. 86, Example 13.6b). But then R* is a
nonempty product space such that each factor is
Hausdorff and hence R* is Hausdorff (W, p. 87, Th.

13. 8b). Since every subspace of a Hausdorff space is
Hausdorff (W, p. 87, Th. 13.8 a) and (X, (/) is
homeomorphic to a subset of R4, it too is Hausdorff,

As a consequence of this theorem we can prove two
corollaries. The first one interrelates Im[e(7)] and
Im[e(/)], while the second one offers a suitable metric
for (Z,7(7)).

Covollary II. 4: The space Im[e(7)] is embedded in

Imfe(/M] by e(M)oigee(T)™.

Proof: Since e(7) is a homeomorphism of = onto
Im[e(7)], then e(7)™! is a homeomorphism of Im[e(7)]
onto Z. The inclusion map ¢y is a homeomorphism of =
into X, and e(/}) is a homeomorphism of X onto
Imf{e(/))]. Hence, the composmon e(M)o one( 7 lisa
homeomorphism of Im[e(7)] into Im[e(/}

The embedding covered by Corollary II. 4 is illustrated
in Fig. 5.

Covollary II 5: The function 5:2 XZ R, defined by
px, %) =[5 (x* - ¥*)*]'/?, wherex'=7'(x)and T 7, i
a metric on £ and generates the topology 7(7) on Z.

Proof: Suppose (Z, T) is a topological space, (M,p) a
metric space, and (M, 7,) a topological space with the
metric topology 7, induced by p. If (Z,7) is homeomor-
phic to (M, 7,) and g is the homeomorphism, then it can
be shown that p: ZXZ — R defined by plz, z)
=plg(z),g(@)) is a metric on Z and induces the topology
7. Now e(7) is a homeomorphism onto Im[e(7)}C R"
whose metric is the restriction of the metric on R".
Hence set Z to &, g to e(]), and for p use the restric-
tion of the usual metric on R".

More details about the topological structure of Z may
be obtained by postulating some additional properties
for processess.

Axiom II1.6: ¥ x, x’ =2 3 some quasistatic process
P such that x & x’, Further, if p is a simple process,
then p is a continuous function.
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Theovem II.'T: The topological space (Z, 7(7)) is
pathwise connected and hence connected. If m |2 is not
a constant function, then Im(m|Z) is an interval in
R ¥ me/l, where/} is the coordinate system of
Axiom II. 1.

Proof: Suppose P is a quasistatic process of length
ny and x &x’. Then it follows from Definition I. 65 that
Imp,CZVY ne N, where p,:/ — X is continuous by Axiom
I1.6. Define p:1—3 by p(t) = Paligt —n+1) ¥ x <n; and
t such that (n — 1)/n, <t <n/m,. Then ? is a function and
its restrlctwn to the closed interval [(n - 1)/n,, n/n,]
is continuous because p, continuous. Further,

82 - 1)/ny,n/n)=[0,1] and by (W, p. 48, Exer.
7D.2) or by the repeated application of (W, p. 45,

Th. 7.6) it follows that p is continuous. Thus, V

%, ¥’ €Z 3 a continuous function p such that p(0) =x
and (1) =x’, and by (W, p. 197, Def. 27.1), = is
pathwise connected, and by (W, p. 197, Th. 27.2),

Z is connected. By Axiom II.1 m [Z is continuous on
=, 77N Y meM, for either m /)’ and then m | is
continuous by the choice of the topology 7(7), or
me/M-/M and is also continous. But by (W, p. 192,
Th. 26.3) Im(m Z) is connected since it is the contin-
uous image of a connected space. If m |Z is not a con-
stant function, then Im(# {Z) C R contains at least two
points. But the only connected subsets of R with at least
two points are the intervals.

To establish Theorem II. 7, it was only necessary to
postulate that quasistatic simple processes were con-
tinuous, whereas Axiom II. 6 assumes all simple pro-
cesses to be continuous. This broader assumption en-
ables us to prove, in the next theorem, that all process-
es are continuous. Boyling? makes the more restrictive
assumption that they are continuous and possess con-
tinuous derivatives of all orders.

Theovem II.8: If P:[0,<)—~ X is a process, then P
is continuous, as are e{(/))eP and 7™ ce(/M)cP Y a c A,
If P is quasistatic, then e(7)oP and 7*oe(7) P,
i=1,2,...,n, are continuous.

Proof: Suppose P is a process of length n,. Then by
the definition of P given in Theorem I. 63, the restric-
tion of P to [#—1,n] is continuous since it is p, ¥
n <ny. Now U:21[n— 1,n]=[0,n,] and by (W, p. 48,

Exer. 7D.2) or by the repeated application of (W, p. 45,
Th. 7.6) it follows that the restriction of P to [O,no] is
continuous. If r= [no, «], then the restriction of P to
[no,r] is also continuous since it is a constant function
and by (W, p. 45, Th. 7.6), P is continuous on [0, ¥].
Now suppose ¥y € [0, «). Then choose 7 so that ny <+ and
¥y < for then 7y & [0 r] and thus P is continuous at 7y

v 7;< [0, ) and hence continuous by (W, p . 44, Def.
7.1). The evaluation map e(/}) is a homeomorphism and
therefore continuous, which means that e(/) o P is con-
tinuous since the composition of continuous functions is
continuous by (W, p. 45, Th. 7.3). Similarly, the con-
tinuity of m®=n%oce(/) assures the continuity of
7*oe(/M)oP=m" P. If P is quasistatic, thenImPCZ
and the continuity of e(7) and 7fce(/) =7° make e(7) P
and 7t °e(7)oP =71+ P continuous.

Except for the notion of the reverse of a process, all

of the abstract ideas associated with states and pro-
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cesses have now been made more concrete by relating
them to measurements. The reverse process will be
made less abstract by the next axiom, where the usual
definition of a reverse process will be given. This
should be viewed as a realization of the function f of
Axiom I. 1.

Axiom II.9: If p is a simple process on Z, then the
reverse of p is given by p*({t)=p(1 -¢) W t<[0,1].

Theovem I1,10: If P is a process of length #, on Z,
then the reverse of P is given by P*(t) = P(n, - t) for
t <n, and P*(t)=P(0) for ¢ >n, P* is quasistatic iff
P is quasistatic.

Proof: We need only consider 0 < <n;, for which
P{t)=pp(t-n+1) whenn—~ 1<t <n by Theorem I. 63.
Butifn-1<t<n, thenny—n<n;—f<n;—-n+1 and
Osny—t-(y—-n)<1lor 0<n-¢<1 and, hence, Plny-t)
=p,,0_,,,1(n - 1) whenn - 1<t <pn. But, using Axiom II, 9,
we obtain Plny—t)=p¥* . (1=n+¢) whenn—- 1<t<n and
by Theorem L. 63 this implies P(n,— t) =P*(t) for ¢ < n,
where Definition I.14 was also used. This result now
shows that ImP =ImP* and hence P* is quasistatic iff
P is quasistatic.

In view of this theorem and Axiom II.9 a process is to
be considered reversible if and only if a system can be
made to pass through the same states but in reverse
order. Hence, this rules out the situation depicted in
Fig. 1 where a process and its reverse do not coincide.
We now have available not only algebraic structure but
also topological structure on £, The next two theorems
combine the two structures to obtain results which can-
not be obtained from either alone. The first theorem
concerns itself with empirical temperatures, while the
second one deals with empirical entropies. In these
theorems and for the balance of the paper the subscript
on the internal energy will be suppressed and the inter-
nal energy will simply be denoted by u rather than u,.

Theorvem II.11: Let © be an empirical temperature
and denote its coordinate representation in = by the
symbol 6, that is, 6= 6(x',x%,...,x" = 8u,x*,...,x").
Then 6 is a monotone increasing function of the internal
energy. Further, if 6 is differentiable with respect to
win YCZ, then 36/0u>01in Y. If 36/3u is continuous
in ¥, then 3 a unique solution u=wu(6,%2,...,xM in ¥
such that » and du/36=c are continuous with respect to
6. The heat capacity ¢ satisfies the condition ¢>0in Y.

Proof: Since O is a temperature, it is the restriction
of a measurement to = and hence is continuous and has
the coordinate representation 6= 6(u,x?,...,x"). But
then Definition I. 66 is just the requirement that 6 be
monotone increasing. If it is differentiable, then the
monotone increasing property shows that 36/3u> 0.

The existence and continuity of «(8,x%,...,x") and
du/ 96 follow from a standard theorem known as the
implicit function theorem. Further since (3u/26)(26/3u)
=1, we have ¢> 0.

Theorem II.12: Let ¢ be an empirical entropy for
some chain in T and ¢ =¢u,x?,...,x" its coordinate
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representation. Suppose ¢ is a monotone increasing
function of #, continuous and possessing continuous
first partial derivatives with respect to x*,
i=1,2,...,n, in some subchain C; then, in C, T ,d¢
=du - [(0u/3x%), dx® + (Bu/ 3x%) , dx® + + + + + (3u/ 3x") , dx"],
where 1/T,=3¢/3u>0. The function T, is called the
absolute temperature in C associated with the empirical
entropy ¢.

Proof: From the conditions in the statement of the
theorem it follows that 3¢/du > 0. Further, d¢ =3¢/
du)du + (9¢/3x%) dx® + o« + (3¢/ 3x™) dx". Since d¢/du
#0, we can divide by 2¢/3u and use (9¢/3x*)/(3¢/%u)
=~ (du/0x),, i=2,...,n.

Although T, has been called a temperature, it might
not be an empirical temperature for two reasons. First,
it might not be a monotone increasing function of # and,
second, it might not correspond to any measurement
which could be performed on X. If T, were differen-
tiable, then it would be a monotone increasing function
of u if and only if 62¢/au2 <0. The fact that T, should
be coupled to a particular empirical entropy is obvious
if one considers the entropy k¢, where k is a positive
real number. For then it follows that 27, =T,.

The differential form which appears in Theorem II.12
is very much like the form of the first law displayed in
thermodynamics textbooks. It cannot, however, be the
first law because it is defined only for increments in the
chain CC Z, while the first law must be defined for any
process P which need not even be quasistatic. I wish to
pursue the consequences of assuming a differentiable
form for the first law but then processes themselves
must be assumed differentiable in the sense that the
functions 7% e(M)o P =m*°P, which are the coordinate
representation of P, are differentiable. These items
are incorporated into the next axiom.

Axiom II,13: All processes P are differentiable, that
is, 1™ oe(M) - P is differentiable ¥ o € A, Let/, /)?,
and 7 be the sets of Axiom II.1 and define a finite sub-
set of the index set A by {af lm* e/’ and m™* |3
=7'c 7}. Then 3 n real-valued functions B; : X — R, with
coordinate representations B; = §;  e(/]) = B;(m?),
i=1,2,...,n, in X and B{=1. The heat increment
is the differential form dQ = B, dm®! + +« « + B, dm®"
and the work increment is dW= — [B,dm%z+ .
+ B, dm®n]. For any process P the heat and work are
Q(P)= [ dt dQ(P)/dt and W(P)= [ dt dW(P)/dt, where
aQ(P)/dt = Bydmy\/dt + «« « + B,dm"/dt and aW (P)/dt
=—[B,dmp?/dt+++-+ B dmp"/di]. If P is quasistatic,
then the notation dQ(P)/dt =dy(P)/dt = A, dxL/dt
+ees+ A dx/dt and AW(P)/dt =dw (P)/dt= - [A, dx%/dt
+eoe+A,dx%/dt] will be used, where 4, (x’)
=B[m*x)]#0V¥ xc =.

The definitions contained in Axiom II. 13 lead to the
result Q(P)+ W(P) = [§dt dm}/dt = m (=) -~ m*(0) = Au
since m'| Z =u and the end points of P are in T, and
also to the result q(P)+ w(P) = [§ dt dxL/dt= Au. Thus,
Axiom II. 13 contains the first law for any process as
well as its restriction to quasistatic processes. Two
things should be pointed out in connection with Axiom
II. 13. First, the functions B, were not required to be
measurements, although they could be. Second, while
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the quasistatic form of the first law is obtained from
the general form, it will not be possible to reverse the
procedure if % is a proper subset of X. As has already
been pointed out, the notion of entropy is not dependent
upon the first law and may be discussed purely in terms
of heat. But the usual treatments of thermodynamics

do associate an entropy with the quasistatic form of the
first law. This connection can be investigated provided
that some additional assumptions are made. These
assumptions will be made here since they lead to results
of a topological nature. However, the connection be-
tween the quasistatic form of the first law and the
entropy will be treated in the following section.

Axiom II.14: Let C be a maximal chain in (£, €4, =4).
Then (1) x = 4x' iff 3 a quasistatic process P such that
x £ x" and dq(P)/dt =0V tc[0,»), 2) Vx, x'eC3
some process P such that x £+ x’ and Im PC C, and (3)
every continuous differentiable map P: [0, %)~ =. such
that Pl[r, ) is a constant function for some » <=, is a
process.

Theovem II.15: Let C be a maximal chain in
(,<4 =,) and x< C. Then C and [x] are pathwise con-
nected and hence connected.

Proof: The connectivity and pathwise connectivity of
C follow from Axiom II.14(2) exactly as the correspond-
ing properties for T followed from Axiom II.6 in
Theorem II. 7. To establish the result for {x], we ob-
serve that by definition [x]={x’1x"cZ and ' =4x}. But
x'=,4x=x=4x" and by Axiom II.14(1)3 a quasistatic
process P such that x £~ x' and dq(P)/dt =0V t< [0, =).
Let 7, [0, ) and define P:[0, =)~ by P![0,7,]
=PI[0,7,] and B(t>7,)=P(r,). Then by Axiom II. 14(3)
P is a quasistatic process and by construction dq(P)/dt
=0V t<[0,); hence, ¥=,P(r) V¥ v;c[0,») and thus
ImP < [x]. But in the manner of Theorem II.7, P induces
a map from the unit interval I to © whose range then
lies in [x]. Now suppose x’, " [x]; then ¥’ = ;x =, x"
and obviously 3 a path from x’ to x” in [x]. Thus, [x] is
pathwise connected and hence connected.

Covollary II1.16: Let /| be the coordinate system of
Axiom II.1 and me /M. If m|COml[x]!) is not a constant
function, then Imm |C(Imm |[x]) is an interval in R.

Proof: See the proof of the corresponding property in
Theorem II. 7 using the fact that the restriction of a
continuous function is continuous (W, p. 45, Th. 7.5).

Observe that this section and the previous one have
reduced the abstract ideas of states, processes, coor-
dinate systems and topological structure to the concrete
experimental idea of measurement. Yet in spite of their
commonality, there exists a strange gulf that separates
the two sections. It is significant that, while quasistatic
processes appear quite prominently in this section, they
are essentially nonexistent in the preceding section. The
converse is true of reversible processes. A second
significant difference between the two sections is that in
the previous section it was necessary to distinguish be-
tween physical and nonphysical processes, whereas such
a distinction is not even mentioned here. It is not even
necessary to regard a quasistatic process as a physical
process and hence it need not be possible to carry out
such a process in the laboratory. Based solely on axi-
om II. 14(1), it is tempting to consider the condition
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dg(P)/dt =0V t< [0, ) as the definition of a reversible
adiabatic process. Although it is done conventionally,
it is neither necessary nor desirable for it imposes ad-
ditional constraints on the theory. More properly
Axiom II.14(1) should be viewed as an alternative way
of determining adiabatic equality just as was done with
Axiom I.54. The counterpart of Theorem I.55 is

Theovem II.17: x < 4x' iff x < 4x’ and A a quasistatic
process P such that (x £ x’ and dg(P)/dt=0 V t< [0, ©)).

Proof: From Theom I.21 x < 4x’ iff x < 4x’ and x#4x'.
Thus, the theorem follows from the contraposition of
Axiom II. 14(1).

11l INTEGRABILITY CONDITIONS

Considerations about integrability in thermodynamics
specifically focus on the relationships among (1) the en-
tropy, if it exists, (2) its total differential in the form
given in Theorem II.12, if it exists, and (3) the quasi-
static differential form of the first law, dg, if it exists.
This topic itself would not exist were it not for the exis-
tence of Axiom II. 14, Its counterpart, Axiom I.54, is
supported by a substantial accumulation of experimental
fact but it is not obvious that Axiom II.14 is valid. Its
verification requires one to know the quasistatic differ-
ential form of the first law, that is, the A; =A, (x’),
i=1,2,...,n, and either to construct mathematically
the quasistatic processes such that dg(P)/di=0V
€ [0, ) or else to carry out such processes experimen-
tally. But these processes are quasistatic and the (un-
proven) consensus seems to be that quasistatic proces-
ses are not physically realizable processes (Wilson, ?
p. 9; Landsberg, ® 1961, p. 35; and Callen, ' p. 60).
This, if true, leaves us with only the possibility of a
mathematical test. The mathematical test is generally
based upon a Pfaffian form, the quasistatic differential
form of the first law, coupled with Caratheodory’s
theorem and Caratheodory’s adiabatic inaccessibility
axiom. Caratheodory’s theorem provides necessary and
sufficient conditions for the integrability of a Pfaffian
form in terms of the properties of its integral curves.
Landsberg® (1961, p. 50) gives a proof of the theorem
based on reduction of the Pfaffian to canonical form, as
does Bernstein,® while Buchdahl? [1949 (p. 44, p. 212),
1954, 1955] offers proofs in terms of integral curves.
The use of Caratheodory’s theorem is an indirect ap-
proach to the integrability problem since it uses integral
curves rather than the Pfaffian itself. This oblique at-
tack on the integrability problem might have an advan-
tage if it eliminated the need fo know the functions
Ai(xj), as would be the case if quasistatic processes
were physical processes. It would also have an advan-
tage if it eliminated some restrictions on the functions
A;(x%). Neither of these criteria are satisfied by the
approach based on Caratheodory’s theorem. Further,
this method has not been wholeheartedly accepted by
thermodynamicists.

Of course, a direct frontal assault on the Pfaffian dq
should also be capable of dealing with questions of inte-
grability. The basis for such an approach is already
partially available in the literature of differential equa-
tions. ?! The analysis of this section is assumed to take
place on some open connected subset, say V< Ime(7)
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C R", and it will be useful to define some standard nota-
tion and terminology.

Definition 111, 1: Let VCIme(J) CR" be an open con-
nected subset of Ime(7). (1) A real-valued function
Yp:V—R is said to be of class C"", k a nonnegative
integer, iff all partial derivatives up to and including
those of order % exist and are continuous. (2) A collec-
tion of real-valued functions {zp‘ :V—~RIli=1,2,...,p}
is said to be functionally dependent in V iff 3 a relation
T(y, P2, . . ., ¥) =0 which does not explicitly depend
upon the coordinates x*, k=1,2,...,n. K the functions
are not dependent, they are said to be independent.

(3) If 3 a collection {2*=z'(x/)1i=1,2,...,n} of inde-
pendent, class C, functions on V such that for some
nonnegative integer n<n, 2*=c!, i>%, wherec’is a
constant, then Vi 1s said to be_an n-dimensional sub-
space of e(7) and z1,2?%,...,2" are called intrinsic co-
ordinates for V. The functions x* =x'(z!, ..., E
cM=x'(z,...,2" are said to give a parametric rep-
resentation of V. (4) When an index is repeated in a
term, once as a subscvipt and once as a superscript,
summation over the range of that index is understood.

The existence of the parametric representation of V
in Definition HI. 1(3) is a consequence of the implicit
function theorem which also shows the representation to
be of class C*¥, The next theorem and its corollary
are also standard consequences of the implicit function
theorem and are cited without proof. They will be used
in the subsequent analysis,

Theovem III. 2: Consider a collection {yy, ¥y, ..., ,}
of p real-valued, class CD functions on V, where p is
a positive integer. Then 3 p — 7 relations connecting
these functions iff rank J=v%, where J is the Jacobian
matrix 3 (¥, ¢, . . ., ¥,)/3(!, %%, ... ,x" and rank J is its
rank,

Covollary III, 3: Two real-valued functions of class
CY on V, ¥y and ¢, are functionally dependent in V iff
a(wl’ Z,)2)/8 (x‘)xj) =0V i)j-

The next theorem and its corollary make a partial
connection between an empirical entropy and the quasi-
static differential form of the first law.

Theorem Il 4: Let ¢ be an empirical entropy for a
maximal chain in (Z, <4, =4) and ¢ = ¢ (x*) its coordinate
representation, Suppose 3 an open, connected subchain
C such that ¢! C is not a constant function, C is an n-
dimensional subspace of e(/) with parametric represen-
tation x* =x¥(z!,2%,...,2"), and, in C, ¢ is of class
C®, If Pis a quasistatic process such that ImPc C,
then dq(P)=0=>ImPC[x] for some x & C iff Po¢ =const
iff d(Po¢)=0.

Proof: Po ¢ =const iff d(P-¢$)=0 is obvious. Now
dq(P)=0=> dq(P)/dt=0 vte [0,=) and hence P(r,)
=4P(ry) ¥ 7,73 [0, ) as in Theorem II, 15. K x is
any point in ImP, then ImPc(x]. ButV x'c[x], ok’)
= ¢{x) since ¢ is an empirical entropy; hence ¢ (x’)
= ¢ (x) and thus P.¢ =const, Conversely, Po¢ =const
=@ (P(r1)) = @(P(ry))=>P(ry) =, P(r;) ¥ 71,7, € [0, =)
=ImPC [x] for some x € ImP,

Covollary III, 5: Suppose the conditions of Theorem
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1L, 4 apply and ImP C [x]=>dy(P)=0. Then, in C, dy(P)
=0 iff d(Po ¢)=0 and 3 a real-valued function A
=x(z!, 22 ,2"#0 such that dp =1 dg and 2¢/92*
=2y ax’/az , @=1,2,...,n. I P is a quasistatic
process, £+ % and ImPCC then [¢®) - @ )]/ I s
<q(P)sgn(p) < [(P(—) (p(x)]/l Mupins Where |2l pay,

| A pip are the largest and smallest values of the mag-
nitude of x along P and sgn(\) is the sign of A. I n=mn,
then x=23¢/au, 3¢/ax' =24, i=1,2,...,n, and 4,
= (u/ox'),, i=2,3,.

Proof: Combining the condition in this corollary with
dq(P)=0=>ImP C [x] from the previous theorem estab-
lishes the first part of the corollary. By the chain rule
for differentiation the condition dg(P)=0 iff d(P-¢)=0
gives (3¢/32%)dz%= (3¢/ax*)(8x*/92%)dz* =0 iff
A ax‘/az“) 92°=0, where o runs from 1 to %, For the
case =1 we have, upon suppressing index a, de¢/dz
=A,;dx*/dz and take =1, If n> 1, then let a4, o

[1 2,...,%]; now since the z® are independent, we can
choose dlsplacements so that dz®=0 for o+ ay, ay.
Then d¢ = (3¢/32*)dz™ + (3¢/92*2) dz*2 and dy
=(A; ox'/32%0) dz®1 + (A; 5x*/82%2) dz®2. Then dy =0 iff
d¢ =0 leads to a pair of homogeneous equations for
dz®1,dz*? which have a nontrivial solution iff the deter-
minant (3¢/82*)(4, 0x/82%) - (3¢/82°2)(A,; ax*/321)
vanishes. Varying oy, ap, we get

ap/0z! 3¢/ 02 9¢/02"

Agoxt/azl T A axi/0z2 ~ A, oxi/az"
Observe that \=0=>8¢/32%=0=>¢ =const, a contradic-
tion and hence x# 0. It immediately follows that d¢
=dy. Now q(P)sgn()=sgn(\) [fd¢/x=[1do/Irl,
where the integrals are line integrals along P from x
to x. Further, we have [¢ (%) = ¢ (0¢*)]/I Xl gae < [Edp/ 101
<[p&") - ¢&"])/ I\ gs, Where x*=T!(xX). Since ¢ ()
= ¢ ('), we have then [9®) - @()]/ I\ 50r < g(P) sgn(n)
<[@@) = ¢®)]/ I\ g ¥ 7=n, the matrix of partial
derivatives is nonsingular and (3x*/az%)(2z7/ax*) = 8f,
where 5 is the Kronecker delta. Thus multiplying
9¢/0z7 =2A,; ax'/02’ by 927/ax* gives 3¢/ax* =2A,. But
with 2 =1 we have 3¢/axl = 3/ du = M= since 4;=1,
But then Ak_ (8¢/3x*)/(3¢p/du) = - (3u/3x"), for
i=2,3,.

Comllaafy 111, 6: Suppose the conditions of Theorem
IIL. 4 and Corollary III, 5 are satisfied with 7 not neces-
sarily equal to . Then (1) x=,x iff ¢(P)=0 and
(2) x <,4x iff ¢(P)sgn(r)= 0 V quasistatic processes P
such that ImPc C and x &%,

Proof: Suppose ¢(P)=0., Then from Corollary IIL 5
[(p(;) - (p(x)]/”\lmax§ 0= [(p(J_C) - W(ﬂf)]/i >t|min- Since
A max>0and IXl,>0, we find ¢{x) - @{x) <0 and
@)~ @)= 0 and hence, since ¢ is an entropy, @(x)
=@(x) iff x =4%. Conversely, x =4x iff ¢(x)= @) and
therefore 0 < q(P)sgn(x) <0. Since sgn(A)==1, then
q(P)=0. I x <,x, then (%)~ ¢(x)> 0 and g(P) sgn()
= 0. Conversely if q(P)sgn(d)= 0, then [¢&)- @)}/
A 1min= 0 and it follows that ¢ (x) < @(x) iff x < 4.

=A.

This result can be regarded as the quasistatic
analog of Axiom L 54 and Theorem L 55. However, it
should be kept in mind that some fairly strong assump-
tions were used to derive it. Further, it may not be
valid for a maximal chain but only for some subchain.
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Now that we have treated one aspect of the connec-
tion between entropy and the quasistatic first law, we
should also consider the converse problem, In the
direct problem we have demonstrated that if an entropy
@ is assumed to exist, then under suitable conditions
there exists a function X such that the coordinate rep-
resentation ¢ of the entropy satisfies d¢ =adg. In the
converse problem we do not assume the existence of
an entropy but ask under what conditions does there
exist a function, analogous to x, which converts dy into
the total differential of some function and under what
additional conditions does this latter function become an
entropy. We first consider the integrability of dy and
subsequently examine when the resulting function be-
comes an entropy. As mentioned before, Caratheo-
dory’s theorem is one method of dealing with the in-
tegrability problem. I shall now discuss a more direct
approach and begin with a definition of terminology.

Definition III. 7: Let V be an open connected subset of
e(7). The differential form dy =A,dx* is said to be in-
tegrable on V iff 3 functions ¢ = ¢ (x*) and M=M(x*)=0
such that, on V, d¢ =M dg =MA,dx*. The function ¢ is
called a pseudopotential and the function M is called
an integrating factor.

The next theorem, although well known, is cited
proven because it will be used in the discussion of the
integrability problem and because its method of proof is
similar to the proof used in the integrability problem
(Theorem III. 9).

Theovewm III, 8: Let V be an open connected subset of
Ime(7) and {¢;14=1,2,...,n} a collection of C*’ func-
tions on V. The system of partial differential equations
a0/ axt = ¥; possesses a solution on V iff the conditions
av;/8x* — 8y, /oxt =0, i,k =1,2,...,n, are satisfied.

Proof: Suppose ¢ is a solution. Then 3°¢/ox* ax*
=3¢/ ax* axt =3y, /6x"* — 3¢,/3x' = 0. Obviously, if n=1,
the ordinary differential equation possesses a solution
given by the indefinite integral ¢ = [ §; dx!, Now pro-
ceeding by induction, assume the theorem true for
n-1, use Greek indices ¢,83,:---=1,2,...,n—1, and
suppose ¢ satisfies 3¢/9x%=,, where ¢ =@ (x*;x")
and x” is regarded as a parameter, Let A=y, — a¢>/ax",
Then 34/3x% =ay,/ax*— 8°¢/ax" ax® = 8h,/0x % = 3,/ ox"
=0 and therefore A= A(x"). Let ®=¢ + [ A(x")dx". Then
2®/ax*=0¢/8x* =1, and 3®/ax"=23¢/ox" + A=1,, and
thus & is a solution of 3¢/ax*=4;, i=1,2,...,n.

The introductory remarks to this section contained
an allusion to the availability of results in the literature
which would provide a basis for a direct approach to the
integrability of dq. Specifically, I had in mind the con~
tents of the next theorem, which are available in Chap.
1 of Forsyth, 21 Instead of merely quoting the results,
the theorem will be proved here because of its im-
portance, its simplicity of proof, and because the meth-
od of proof differs from that found in Forsyth and
may be more appealing to some.

Theorem III, 9: Let V be an open connected subset of
Ime(7), dq=A,dx*, where the functions A4,=A4,(x*)#0,
k=1,2,...,n, are of class C"Y on V. Then dg is in-
tegrable on V iff A,(34,/ax’ — 8A,/ox*) +A,(0A,/ox*

- 2A,/3x") + AL (04,/0x' - 3A/ox) =0 ¥ i,j,k=1,2,...,
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n.. Further, an integrating factor is not unique, and
any function M=M{x*)#0 is an integrating factor iff it
is a solution of the system of first order partial dif-
ferential equations A; 9M/3x! ~ A; aM/ox* = M(3A,;/ax*
-84,/ 8x%), i,j=1,2,...,n.

Proof: Suppose dy is integrable. Then M dq = MA, dx*
= (3¢/0x*)dx* or 3¢/dx*=MA,. Using 8%¢/ax’ ax’
=3%¢/ax’ ax’ gives 3(MA,)/ox* = 3(MA,)/ax’ and per-
forming the differentiations gives the differential equa-
tions A; aM/ox? — A, 8M/ax* = M(3A,;/ax* - 8A,/ox).
Multiplying this by A, gives MA,(34,/0x* — 8A,/5x7)
=AA; aM/3x7 - A,A,8M/3x*. A cyclic permutation of
indices & —¢ —j — & followed by addition of the result-
ing three equations produces M[A,(94,/3x' - 34,/ dx)
+A;(0A,/0x7 — 3A,/3x*) + A;(0A;/3x* - 34,/x7)]=0. But
since M(x')# 0, the bracketed factor must vanish, Con-
versely, suppose M is a solution of the system
A;aM/ox? - A aM/oxt = M(3A;/3x* - 8A;/3x7). Then this
=3 (MA;)/axt - 3(MA;)/ox’ =0; by the previous theorem
the system 8¢/ax* = MA,; possesses a solution ¢, and,
of course, d¢ = (@p/ax*)dx’ = MA,dx* =Mdyg. The proof
of this theorem is complete if we can establish that the
system of partial differential equations for M has a
solution when the integrability conditions are satisfied.
We must first show the system of equations is con-
sistent; that is, if we select any »n of the equations
which can be solved for the derivatives aM/3x*, then
these solutions will identically satisfy the remaining
equations. Equivalently, we can show that any pair of
equations with a common index will imply another equa-
tion of the system. Thus, consider the (j,%) and (%, i)
members of the system; multiply the former by A;, the
latter by A; and add the resulting equations to get

oM oM
A, (Afm - Ai'é}? >

_atla (24 a_Aj> 94; _ 24,
_M[Ai(axi T axk +4; axk ~ oxt

The last equality is a result of using the integrability
conditions. But since 4,#0, this implies A; aM/ax*

—A; aM/8x? = M(3A,/3x’ - 8A,;/ex*), which is the (j,7)
member of the system. Thus, the system is consistent
by virtue of the integrability conditions. Now we com-
plete the proof by induction to demonstrate that a solu-
tion exists. For n=1 we have dg =A;dx'. If we set

¢ = fAldxi, then d¢ =dg with 3/ =1 and an integrating
factor exists for n=1. We now assume that the case »n

— 1 is integrable, that is, if Greek indices are used for
the range 1,2,...,n—1, then A, dx” is integrable. Thus,
3 functions M{x*:x") and ¢(x*;x") such that yIAa dx®* = dp*®
where x" is regarded as a parameter. But ¢ regarded
as a function of # variables satisfies d¢ = (3¢/ax*) dx®
+ (3¢ /0x") dx" = MA ,dx® + (3¢/3x") dx", and therefore
Mdg—-de=(MA,- 3¢/8x")dx"= Adx", 1t is easily proven
that if the A, satisfy the integrability conditions, then
so too will the functions obtained from A, by multiplica-
tion by any differentiable function, Hence, if we write
D, =MA,, then D;(8D,/0x’ - aD,/3x*) + D;(8D;/ dx*

- 2D,/dx') + D,(8D;/ax* - 3D,/ax’) =0, If we now set
i=n, j=a, k=p and use 36/3x*=MA,, this becomes
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MA,(8°3/ox® ox® — 3%¢/axB ax ®) + 33/ ax *[B(MA,)/ ax*

- 2%/ ax" ax®) + 9/ ax"[0%d/ox" 3x ® - B(MA,)/3x*]=0.
The first term is identically zero, while the remainder
can be rewritten as (3¢/ax%)(84/3x%) — (3¢/2x")(3A/9x®)
= 3(5, A)/a(xa:xe):() VYa,B=1,2,...,n-1 But, by
Corollary I, 3, $ and A are dependent insofar as their
dependence on x%, and so at worst A= A(¢,x"). Hence,
dgad$ + Adx" is a differential form in two variables,

& and x". Let &(¢,x") = const be a solution of dg =0,
that is, of the differential equation d¢/dx"= - A, x™).
Then dg=0 iff d =0. But as in Corollary IIL. 5 this
condition => the existence of a function A= A($,x") such
that Adg=d® and so dg is integrable. But then d®

= Adg= MM dy) and thus A¥ is an integrating factor for
dg; hence, by induction dg is integrable for any n. That
an integrating factor cannot be unique is obvious, since
if M is an integrating factor, so too is kM, where 2 is a
constant. As a matter of fact, any function of the
pseudopotential, corresponding to M, when multiplied
by M will give an integrating factor.

There is no a priovi reason why the region of in-
tegrability V of dg should in any way be connected with
the chain of (Z, <4,=,4). Is it possible, working solely in
V, to determine if V can be thought of as the image of
some chain? This certainly is not possible without im-
posing some conditions because the relation = 4is
defined in terms of adiabatic processes which need not
be quasistatic, whereas if we work only in V, then we
can carry out only quasistatic processes. However,
Corollary III 6 offers a clue as to just what the addi-
tional conditions must be.

Theovem III, 10: Suppose VCIme(7) is an open, con-
nected subset, C=[e(N]" (M =xecZle(NK)c V}, dg
integrable on V, M an integrating factor, and ¢ the cor-
responding pseudopotential. If x <,x iff 3 some process
P such that x %%, ImPc C, and q(P) sgn(M)=>0, then C
is a chain in (Z, < 4, =) and ¢ is the coordinate rep-
resentation of an entropy for C.

Proof: Let ¢ be the function on C whose coordinate
representation is ¢, thatis, ¢ =¢oe(7)IC. Then just
as in the proof of Corollary II. 5 it can be readily
established that

[e®@) - )/ | M| max
<q(P)sgn(M) < [0®) = ¢®))/| M|

v processes P such that x £ ¥ and ImPC C. From this it
follows that ¢(x) < ¢(x) iff ¢(P)sgn(M)= 0 ¥ processes

P such that x £ x and ImPC C, and also if ¢(P)sgn(M)

= 0 for one such process, then ¢(P)sgn(M)= 0 for all
such processes. Note that no conclusion can be drawn
concerning the quasistatic heat effect for quasistatic
processes for which ImP¢ €, Now since V is an open,
connected subset of R" then V is pathwise connected
(W, p. 199, Cor. 27.6) and hence C is pathwise con-
nected since C and V are homeomorphic images of each
other under e(/)!C. Thus, for each pair x,¥< C 3 some
process P linking x and X,x & x and ImP< C. Now either
q(P)sgn(M)= 0=>x < ;¥ and ¢{x) < ¢(), or q(P)sgn(M)
<0=q(P*)sgn(M) > 0=>q(P*)sgn(M)= 0=>X <, x and
¢®)< k), Thus, ¥ x,XcC, x < X or x <,x, and
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hence C is a chain. Further, x <4% iff o) < @), and
since x = 4x iff x <4% and ¥ <,4x iff ¢(x) < ¢(X) and

&) < k) iff o(x)=¢ &), and hence ¢ is an entropy
and ¢ is its coordinate representation.

A connection between pseudopotential and empirical
entropy cannot be made unless one can verify the con-
dition on < 4 contained in Theorem III. 10 or else one is
prepared to accept it as an assumption. In either event
its function is analogous to that of Axiom I 54 where
the relation =4 was expressed in terms of heat, Here
the relation <4, and hence also =,, is related to quasi-
static heat., The surprising feature of this latter con-
nection is that it involves sgn(M). But a little reflection
dispels this surprise for sgn(M) is arbitrary because,
if M is an integrating factor, so too is (-~ M). Con-
sequently, the condition ¢{P)sgn(M)= 0 really is nothing
more than the requirement that sgn[q(P)] be invariant for
all processes P such that ImPC C, The factor sgn(M)
was retained in Theorem IIL 10 merely to reinforce the
warning that Theorem III, 10 critically depends upon
dq being integrable. Without integrability there would
be no theorem.

Covollary III. 11: Suppose Theorem III. 10 is valid and
¢ is the pseudopotential corresponding to the integrat-
ing factor M for dg. K V is of dimension z with intrinsic
coordinates z!,2%,...,2", then in V we have 3¢/32®
=MA, 3x,/0z%, a=1,2,...,7%. lf n=n, then 3¢/ou=M,
3¢/ox! =MA;, i=1,2,...,n, and A; =~ (3u/3x"),,
i=2,3,...,n

Proof: See corresponding proof in Corollary III, 5.

Several features of thermodynamics remains to be
clarified. These include (1) a determination of the num-
ber of independent integrating factors and pseudopoten-
tials, (2) a consideration of the role played by the in-
tensive—extensive partitioning of thermodynamic
variables, and (3) an exploration of the connection be-
tween integrating factors and empirical temperatures.

I shall now look at the first of these three items. This
question is examined by Forsyth (p. 3).%! However, his
discussion is predicated on the assumption that only one
relation connects the differentials dx!, Clearly, this is
an assumption which goes beyond any statement con-
fined to properties of dg alone. The next theorem de-
pends only upon dg and the fact that it is integrable.

Theorem III, 12: Let V be an open, connected subset
of Ime(7), dg=A,dx? is integrable on V and also the
functions 4,=4,x%+0, k=1,2,...,n, are of class
C® on V and, for some k,j, 34,/8x7 - 3A,/3x*#0. Then
(1) any two pseudopotentials are dependent, and (2) if M
is an integrating factor and ¢ the corresponding
pseudopotential, then M and ¢ are independent. Further,
(8) dq possesses only two independent integrating fac-
tors, and (4) if M is an integrating factor and ¢ the cor-
responding pseudopotential, then any other integrating
factor is of the form M =Mg(¢), where g(¢) is any
function of ¢ and M is independent of M iff g is not a
constant function,

Proof: To establish (1) and (2) suppose ¢4, ¢, are
pseudopotential corresponding to the integrating factors
My, My. Then 3¢;/dx* = M;A,, 3¢,/dx?=M,A,, and hence
3Dy, $2)/8(x*, x7) = (3 1/3x*)(3y/3x") — (3¢p1/3x*)(3by/3x*)

Frank J. Zeleznik 1601



= (MA,)(MA;) - (MA,)(M,A,)=0, Now consider

Ao, MY/ o0, x%) = (09 /ox*) (o M/ ox?) - (3¢/ox?)(0M/ ox*)
=M(A, 0M/3x’ - A; aM/ox*) = M?(8A,/ ex* — 8A,/8x7),
where the last equality comes from the differential
equation, satisfied by M, given in Theorem IIL 9,
Obviously, since M#0, 3(p, M)/a(x*,x?) =0 iff 34,/ax*
- 24,/8x’ =0. But by hypothesis this is nonzero for
some k,j, and, by Corollary IIL 3, ¢ and M are inde-
pendent, and ¢, and ¢, are dependent. The property (3)
is established by supposing M,, »=1,2,3, to be in-
tegrating factors, Since dy is integrable, at least one,
say M,, is nontrivial, that is, M;+#0. By Theorem

IIL, 9 we know that A, aM,/ax! — A, aM,/3x* = M, (3A,/ox*
- 3A,/3x7), x=1,2,3. Now consider the expression

A, 3(M,/ M)/ 8x? = A, 3(M,/M,)/8x* = (1/My)(A, oM,/ ax?
- A; 3M,/ox*) = (M /ME) (A, 0My/3x? — A; 3M,/ dx*)

= (M,/M,)(34,/3x* — 3A,/ox") = (M, M,/ M3)(9A,/ ox*

- 3A,/9x’)=0. Hence, with x=1,3 we have

Ay a(My/M,)/3x7 — A; 3(My/M,)/3x* =0 and

A, 9(My/My)/ax? - A, 8(My/My)/2x*=0. Since A;#0,
i=1,2,...,n, the A; are a nontrivial solution to a pair
of homogeneous, linear equations, But homogeneous,
linear equations have a nontrial solution iff the deter-
minant vanishes. Hence, 3(M;/M,, My/M,)/8(x*,x7)=0
Vv %,j. But by Corollary II 3 and Definition IIL 1(2) we
have ¥(M,/M,, My/M,) =0 and My, My, My are dependent,
Thus, there can be no more than two independent in-
tegrating factors. Suppose M=g(¢)M; then by direct
computation 3(M, M)/3(x*,x*) = (dg/d$)2 (¢, M)/3 (x*,x7).
I dg/d¢ +0, then M, M are independent since ¢ and M
are. Hence, there always exist two independent in-
tegrating factors since it is trivial to verify that M is
an integrating factor. This completes the proof of (3)
and a portion of (4). To complete the proof of (4), we
consider a third integrating factor M. By (3) 3 a func-
tion ¥ such that A7 =¥ (M, M). Now by differentiation
351/ ax® = (3% /aM) (aM/ 3x*) + (2% /aM) (g (¢) 8M/ ax*

+ M od/ox%), where ¢ =dg/d¢. Substituting into the
differential equation satisfied by i we have, using
2/ axF = MA,, 0=A, 38/ /ax’ - A, ail/ox* - 34,/ ox*

- 3A,/ox7) = (3%/3M + g ¥ /aM) (A, aM/ax? — A, 0 M/ox*)
- W (3A,/3x* - 3A,/ox'y = [(3%/2M + g 9% /2 FDM - ¥]

x (3A,/8x* - 8A,/ax’). Since 24,/ox* - 24,/ax’+0 and
gM =71, we find that ¥ is a solution of M a¥/aM
+AT8¥/5M =¥, The general integral of this equation is
obtained from two independent solutions of the sub-

sidiary equations dM/M=dM/M=d¥/¥. The first equal-

ity has the solution 3/M =c, where ¢, is a constant,
while by equating the first and third terms we get the
solution ¥/M = ¢, where ¢, is a constant. The general
integral is thus of the form ¥/M =G (3/M). But M/M
=g(¢); hence, ¥=MG(g(¢)) and the theorem has been
proven.

Extensive and intensive variables are endemic to
thermodynamics, and this partitioning of physically
relevant quantities does not seem to extend to other
physical theories. Roughly speaking, extensive varia-
bles are often said to be proportional to the mass of the
system while intensive variables are said to be inde-
pendent of the mass. Alternatively, it is sometimes
said that extensive variables are additive over the sub-
systems of a composite system. The first of these has
no meaning in a local theory, while the second has no
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place in a theory which avoids composite systems, If
we are to explore the consequences of such a partition-
ing of thermodynamic variables, then we must find an
alternative, but equivalent, expression of the exten-
sive—intensive property. The extensive—intensive
partitioning reflects physically significant properties of
these variables. Further, mathematics and physics
differ in their treatment of functions only because
physics insists that each function bear a set of physical
units or dimensions. Hence, the obvious place to look
for the extensive—intensive characterization is in the
physical units assigned to functions. The following
definition does just this for real-valued functions on Z,
although it could equally well apply to real-valued func-
tions on X,

Definition III,13. Suppose ¥ :Z — R is a real-valued
function. The function ¥ is said to be extensive iff ¥ is
a specific quantity, that is, ¥ is expressed per unit
mass. If ¥ is not extensive, then it is said to be inten-
sive. Let 7 be the collection of Axiom IL 1, and suppose
# members of 7, say 7, 7%,..., 7, are extensive and
the »—7 members 7!, ..., 7" are intensive, where 2
is an integer and 0 <» <n, Then J is said to be exten-
sive of rank 7. I 7 is extensive of rank %, then the
following index convertion will be adopted: (1) Latin
indices will use the range 1,2,...,%n. (2) Greek indices
from the first part of the alphabet (o, B, v, --) will use
the range 1,2,...,n. (3) Greek indices from the last
part of the alphabet (u,v,o, 7,- ) will use the range
n+1l,...,n

Axiom III, 14: Suppose ¥ ;Z — R is a real-valued func-
tion and $(x*) =(x* x*) is its coordinate representation
in =, Then (1) ¥ is extensive iff »(x*) is homogeneous
of degree one in the extensive variables, that is,

DO, x*)=ap(x®, %), (2) ¥ is intensive iff p(x*) is
homogeneous of degree zero in the extensive variables,
that is, P(x*, x*) = * x*).

Definition III. 13 might be regarded as the physical
characterization of extensive and intensive quantities,
while Axiom III, 14 serves to relate this physical char-
acterization of a function to the mathematical charac-
terization of homogeneity. It would be nice to replace
Axiom IIL 14 by a corresponding theorem, but there
does not seem to be an obvious proof. In the absence of
such a proof Axiom III, 14 serves to limit the class of
thermodynamic functions, It represents a reasonable
restriction since, at least for algebraic functions, it is
sufficient to guarantee that the physical units of y will
be correct.

Some clarifying remarks are necessary before we can
begin an analysis of the significance of the intensive-
extensive partitioning of variables. The form A,(x!)dx*
has been indicated simply by dg, and no attempt was
made to indicate that its evaluation required the x* co-
ordinates and their differentials. This created no prob-
lem since essentially only the xt coordinates were ever
used, We will shortly consider the form A,(z*)dz*,
where the z* are new coordinates related to the xt by a
particular kind of coordinate transformation z* =z x*).
Whenever it becomes necessary to distinguish between
the two differential forms, we will write dg,=A4,(c*) dx®
and dg,=A,(z%) dz*. In general, we cannot expect dg,
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to equal dq, despite the fact that the same functions were
used in both cases.

Definition III, 15: The differential form dy is said to
be extensive on Ime(7) iff dy,= 1 dyg, for the coordinate
transformation z%=xx®, z* =x", where A#0 is indepen-

dent of x* and dg,=A, (%) dz*, dy,=A,K')dx".

Theorem III, 16: The differential form dg is extensive
on Ime(7) iff the functions A, are intensive and the func-
tions A, are extensive. That is, iff A,(", %)
=A% x") and 4, (x®, x*) =24, (%, x").

Proof: Since dg,=A, (2%, z2")dz" + A, (2%, 2") dz"
=M, x")dx® + A, (e, 5"y dx*, it follows that dq,
~ g, = A[A, (0%, %) - A, (5, 5")) dx® +[A, (P, 5)
-2, (x%,x)]dx". But in Ime(7) the x* are independent
and hence, since 1#0, the theorem follows.

Relatively important, for the structure of the thermo-
dynamics based on the use of a pseudopotential as an
entropy is the assertion that the pseudopotential is ex-
tensive. Yet, so far as I know, no one has questioned
the validity of this assumption or attempted to prove it.
I shall now deal with just this question. Is it always
possible to choose the pseudopotential as extensive and,
concomitantly, the integrating factor as intensive?

Theovem III,17T: Let dg =A,(x*)dx* be extensive on
Ime(7), integrable on an open, connected subset V
C Ime(7) with A, of class C'’ on V. If M(x*,x") is an
integrating factor on V, then for any constant A+ 0,
M(Ox®,x*) is an integrating factor.

Proof: Since dq is integrable, 3 an integrating factor
M, which by Theorem III. 9 satisfies A, (x*) aM/ax’
— A, (x®) 9M/3x* = M(3A,;/ox* - 3A;/8x%). There are three
cases which must be considered. For i=oq, j=8 we
have A, (x7,x*) aM/8x® - Ag(x", x”) aM/8x®
=M[3A,",x")/3x% = 3A,(x”, x*)/2x*], Dividing by x and
using Theorem III. 16 we obtain A, (27, ") 8M/82°
- Ag(27,2%) 8M/22% = M[8A,(2", 2%)/32% - 3A (27, 2%)/32%].
In a similar manner we find for i=q, j=p and i=o0,
§ =T the results A,(z",2") eM/8z* - A, (27, 2") aM/ 32"
=M[3A,(27,2")/82% - 8BA, (5", 2")/82"] and A,(z", 2")
XoM/pz2" = A 2", 2¥) oM /3z° = M[8A (27, 2¥)/02°
- 0A,(2",2")/8z2"). Hence, A;(z*)2aM/3z7 - A;(z*) aM/ 32"
=M(A;/3z" = 9A;/82%). Thus, if M(x*,x*) is an integrat-
ing factor, so too is M(z%, z"*)=M (% x").

This theorem says, in effect, that the transformation
z28=x"%, z*=x" is a symmetry transformation for the
system of partial differential equations whose solutions
are the integrating factors for dg. It thus guarantees
the existence of a continuous one parameter family of
integrating factors M(ax® x*). But by Theorem III, 12(3)
only two members of this family can be independent,

Theovem I1I,18; Let dg = A,{x*) dx* be extensive on
Ime(7), integrable on an open connected subset V
C Ime(7) with A,# 0 of class C'? on V and 24,/ax’
- 8A,/ax*# 0 for some k,j. I M(x®, x") is an integrating
factor on V, then M is homogeneous of degree p in the
extensive variables for some real p. That is,
MQOx®, x*)=x3Mx* x*) and p real,

Proof: Write M, (x*,x*)=M(Ox% x*), Then M;(x%,x*)
=M(x*,x"). Let ¢ be the pseudopotential corresponding
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to M. Then since M, is an integrating factor, by The-
orem I 17 it follows from Theorem III. 12(4) that M,
= Mg(¢;»). Differentiation with respect to ¢ gives
aM,/3¢ =Mag/ap +g3aM/d¢. But 3M,/a¢ =0=0M/3¢,
and since M+#0, we conclude that 3g/3¢ =0 and hence
M, =Mg()). I this result is differentiated with respect
to x to get [6M,/3(x®)] 8(0x®)/8x = Mg()) where (1)
=dg/dx, X is set equal to 1, and in place of g(1) we
write p, we then find that x®2M/ax®=pM. Hence, for
some real number p, M is a solution of a partial differ-
ential equation whose subsidiary equations are dx!/x1
=dx¥/x?=-++ =dx"/x"=dM/pM. Now % independent in-
tegrals of these equations are easily found by selecting
one of the x*, say x!, and solving dx!/x'=dx®/x*,
«=2,3,...,%, and dx!/x1=dM/pM. The solutions are
x%/x'=c®, «=2,3,...,7%, and M/(x!»=c, where ¢ and
c¢® are constants. The general integral of the partial
differential equation for M is M= (x'P¥(x?/x!,. ..,
x"/x!,x*). This form immediately shows that M is
homogeneous of degree p in the extensive variables
where p is real,

Covollary II1.19: Let dg = A, (x*) dx* be extensive on
Ime(7), integrable on an open, connected subset
V< Ime(7) with A,#0 of class C'* on V and 34,/3x’
- 8A;/8x*#0 for some k,7, M(x* x"*) an integrating
factor for dg on V, homogeneous of degree p in the ex-
tensive variables, p real and ¢ the corresponding
pseudopotential. (1) I (» +1)#0, then ¢ can be chosen
to be homogeneous of degree (p + 1) in the extensive
variables. (2) If ( +1)=0, then for some x”+#0, ¢ has
the form ¢ =clnx” +¥, where ¥ is a function homo-
geneous of degree zero in the extensive variables with
the form ¥(xl/x?, ..., x"V/x", «™ /%, . ., x"/x", x*), and
¢ is a constant, The constant ¢ =0 iff x*A, =0, and iff
c#0, then ¢ =Mx%A, and M can always be chosen so
that c=1.

Proof. Suppose M(z*, z*)=MOx*,x*) =NM(x*,x"),
Then 